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Abstract 
Taking the opportunity of the 20th anniversary of the word « proteomics », this young 
adult age is a good time to remember how proteomics came from enormous 
progress in protein separation and protein microanalysis techniques, and from the 
conjugation of these advances into a high performance and streamlined working 
setup. However, in the history of the almost three decades that encompass the first 
attempts to perform large scale analysis of proteins to the current high throughput 
proteomics that we can enjoy now, it is also interesting to underline and to recall how 
difficult the first decade was. Indeed when the word was cast, the battle was already 
won. This recollection is mostly devoted to the almost forgotten period where 
proteomics was being conceived and put to birth, as this collective scientific work will 
never appear when searched through the keyword “proteomics”. 
 
 
 
Introduction 
 
This year 2014 celebrates the 20th birthday of the word "proteome", which was 
publicly introduced in the first Siena meeting in 1994, and used for the first time in a 
publication shortly thereafter [1]. These two decades of  development are impressive 
and deserve reviewing by themselves, but in this paper I would like to use the 
privilege of experience to explore the family tree of proteomics and to recall the 
history of this young science. While it is true that human languages can create words 
for everything and anything, these words do not stay unless they cover a sensible 
concept or object, and the words "proteome" and "proteomics" are no exception to 
this rule. The fact that these words caught on immediately, being sometimes called 
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buzz words and even bucks words, means that they cover a reality that was already 
there but with no good name, and I would like to explore in this paper this time of 
proteomics before it was named, the paleoproteomics if I dare call it that way. So if 
proteomics is born in 1994, the two preceding decades of life of its parents are worth 
exploring, although it will drive back almost half a century ago. I will also try to 
explain not only the hard scientific facts, but also to replace them in the more general 
landscape of the molecular biosciences and of their evolution during these two 
decades. 
 
1. The 70's, a glorious start 
 
If we take this two decades period before 1994, it drives us back to 1974, and it is 
interesting to describe the state of molecular biosciences at that time. Protein 
biochemistry was first and foremost, and the mainstream was protein purification and 
function determination. The methods at that time were far from being miniaturized, 
and compared to nowadays standards, everything was up by three orders of 
magnitude. What we do now on microliters was done on milliliters and what we do 
now on milliliters was done on liters at that time, and the necessary starting material 
was found more often in slaughterhouses that in tiny biopsies or on small culture 
dishes. The basic protein separations were already at hand, both chromatography 
and electrophoresis, as reviewed recently for the electrophoretic separations [2], but 
the detection methods were of very poor sensitivity, Coomassie Blue being recently 
introduced for acrylamide gel staining [3, 4]. On the side of protein characterization, 
protein sequencing was a well-established science, due to the outstanding work of 
Pehr Edman [5], but even the most modern protein sequencers of that time needed 
milligrams of proteins to determine a protein sequence [6, 7]. Even though miserable 
by today's standards, this situation was much more glorious than the one of nucleic 
acid sequencing, which was basically non-existing at that time except for very short 
and abundant RNAs such as tRNAs.  
In this landscape, the two most promising protein analytical electrophoretic 
separations, namely isoelectric focusing and SDS-PAGE, were combined to create 
the most powerful protein separation method, still in use today, namely two-
dimensional electrophoresis. The first publication, in 1974 [8], got relatively 
unnoticed, and thus poorly credited. Indeed, the use of Coomassie Blue as a 
detection tool produced relatively poor maps in terms of number of spots. However, 
the next publication in 1975 [9], using radioactive labelling, was much more 
spectacular and got immediate attention. Yes it was possible to visualize, separate 
and quantify at the same time hundreds of proteins. This paper drove a lot of 
enthusiasm immediately (1400 citations in the first 5 years) and some of the pioneers 
of proteomics started this type of large-scale protein analysis in the late 70s [10-12]. 
 
It must be realized, however, that this technique was much more an art than an 
everyday laboratory routine, and even worse was NEPHGE, devised to analyze the 
basic proteins that escape classical isoelectric focusing [13]. The isoelectric focusing 
gels were particularly nightmarish, as they were cast in thin, low percentage 
polyacrylamide rod gels. The closest description that can be made would be an 
overcooked rice noodle. This gives a good impression of the texture and strength of 
these IEF gels, which were to be loaded on top of the stronger SDS gels without any 
bubble. Needless to say, deformations and breakages were numerous, and it was 
quite an ordeal to end with a small series of comparable gels. Beyond these day to 



day problems, long term reproducibility was basically non existent, as the pH 
gradient was generated by carrier ampholytes, i.e. a modern version of a witch broth 
concocted by awful batch syntheses [14]. Even though different batches produced 
the same final pH gradient in its span, a carrier ampholyte-generated pH gradient is 
in reality a multi step gradient where each step is made by a different chemical 
species, and the height of the step is the concentration of this species. Needless to 
say, it is impossible to reach such a degree of control during the syntheses of 
different ampholyte batches, so that local deformations are unavoidable. In spite of 
all these problems, 2D gel electrophoresis was already able to separate over 1500 
protein spots, as shown in Figure 1, a performance close to what is achievable 
today.  
So the future looked bright. But besides this nice evolution in protein biochemistry a 
real revolution was taking place at the same time elsewhere in molecular 
biosciences, in the nucleic acid world, with cloning of  DNA [15], including cDNAs 
[16], and DNA sequencing [17, 18].  
 
2. Ad augusta per angusta (to brightness through darkness): the 80's, from underdog 
days to the birth of proteomics 
 
At the very beginning of the 80's, the situation in the microanalysis of the major 
cellular macromolecules had toppled. Long before PCR was invented, DNA cloning 
was a way to amplify DNA up to the amounts that were needed to read a sequence, 
and basically any gene and any mRNA, thanks to the cDNA trick, could be fully 
deciphered. In addition, cloning made heterologous expression possible [19], so that 
only sky was the limit for genetic engineering.  
In contrast, as proteins could not (and still cannot) be amplified directly without 
resorting to nucleic acids, 2D electrophoretic maps were basically mute. Of course 
antibodies were already a very powerful identification tool [20], but the huge gap 
between the abilities of 2D electrophoresis in terms of protein separation on the one 
hand, and the requirements of protein sequencing on the other hand, did not allow 
the protein scientists to answer the simple question: what is the protein that I see in 
this wonderfully changing spot ? 
Thus, 2D maps were very much looking as astronomical star maps, and it is not by 
chance that one of the first softwares used for the comparison of 2D gels was named 
from the Renaissance astronomer Tycho Brahe [21]. As the french philosopher 
Blaise Pascal wrote,  “le silence éternel de ces espaces infinis m'effraie” (the eternal 
silence of the infinite spaces frightens me). So by one of these pendulum swings 
occurring from time to time in science, many scientists were afraid and switched from 
the monkish and silent world of proteins to the Babel of DNA, where every piece of 
DNA could produce a story (and a paper), including some stories of mutations, 
molecular evolution, orthologs and paralogs, and so on and so forth.  
In this context, the community of scientists still believing that large scale analysis of 
proteins had a future was holding by its fingernails. It was common practice to hear 
that protein analysis was a thing of the past, and that all what was needed for 
proteins was biotechnological stuff to purify correctly the recombinant proteins. “I 
clone therefore I am” was the motto of these days. Thus, resource allocation was 
scarce for protein scientists, and it is probably not unfair to say that proteomics was 
close to extinction before it was even born, despite the creativity of the protein 
scientists of this time. As naming the proteins on 2D gels was not possible, the 2D 
gellers had developed computerized gel analysis systems [22-24] pattern analysis 



and global analysis tools to derive biological sense from their maps [25-29], doing 
profiling long before anyone else. Thus, it is a missense to say that modern 
computerized analysis of large datasets has been pioneered by transcriptomics. 
Once again, as in sequencing, proteins were first and nucleic acids second. 
However, despite all these fancy tools, a robust protein identification method 
applicable to 2D gel spots was needed if the soon-to-come proteomics was to 
survive. Ten years after the glorious start in 1975, it was really the bottom of the tide. 
Hopefully, two major improvements were developing almost underground in this 
decade of triumphant DNA. The first major improvement was the development of 
immobilized pH gradient, in other words a chemically clean way to produce high -
performance and tailorable pH gradients. It took half a decade to Bjellqvist, Righetti 
and Gorg, the Holy Trinity of immobilized pH gradients, to develop this promising 
technique [30] into a really usable tool (reviewed in [31]). Many problems were first to 
be solved to enable just isoelectric focusing of most proteins, from gel polymerization 
[32] to pH gradient design [33-35] and even fighting strong adsorption problems [36-
38]. Then producing a really practicable solution to interface immobilized pH 
gradients with SDS gels was not easy either [39] and required quite extensive work 
[40-43]. However, by the end of the decade, 2D electrophoresis was stronger than 
ever, thanks to immobilized pH gradients, with high reproducibility [44], high 
micropreparative abilities [45, 46], further increased later by improved protein 
extraction solutions [47], and finally high sensitivity of detection without radioisotopes 
thanks to silver staining [48], which mechanisms were finally understood [49] and 
controlled after a decade of collective work started in 1979 [50], going here again 
from black magics to well-controlled laboratory routine.  
 
Although important, these developments were not crucial. The key development was 
at the protein identification stage, and the key enabling technology was the gas 
phase sequencer [51]. On the one hand it decreased the amount of protein needed 
from the nanomole to the low picomole range, and on the other hand the interface 
between 2D gels and the sequencer was much easier than ever before. Blotting on 
PVDF membranes allowed the direct sequencing of N-terminally free proteins [52], 
while techniques were developed to digest the proteins, separate the peptides and 
sequence them, either from blots [53-55] or from gels [56], developing the in-gel 
digestion process that is still widely in use today.  
 
When combining these two processes, proteomics became eventually possible. 
Complex protein samples could be separated by high-resolution 2D electrophoresis, 
quantified and compared by computerized systems. Then lists of spots of interest 
could be drawn, and the molecular identity of these spots could be determined by 
Edman sequencing, sometimes after years of previously unsuccessful effort [57-59]. 
If the sequence of the gene was available then the story was much easier, but quite 
often it was not the situation at that time, and the protein was a "novel" one. 
However, the internal sequences obtained by the Edman process were information-
rich, so that it was still possible to derive DNA probes from these peptides, to screen 
DNA libraries and finally identify the gene of interest [60, 61].  
Even for the largest and most performing laboratories in this area, throughputs were 
quite low, in the order of 1 protein per day. This did not prevent the paleoproteomists 
to produce a lot of useful data (e.g. in [62-70] ), paving the way for modern 
proteomics. 
 



3. From Edman sequencing to mass spectrometry: a classical ménage à trois 
 
If we describe 2D gel electrophoresis as the father of proteomics and Edman 
sequencing as its mother, then the switch from Edman sequencing to mass 
spectrometry that occurred soon after the birth of proteomics is some kind of middle 
age lust crisis, i.e. switching from an old wife to a younger, more attractive one.  
In 1981, when Edman sequencing gained its full maturity with the gas phase 
sequencer [51], mass spectrometry of macromolecules was still in its infancy, with 
FAB ionization just coming out [71]. This was however the first method able to 
analyze large and polar molecules such as peptides [72], but half a decade was 
needed for more practical methods to be applied for peptide ionization [73-75]. So at 
the end of the 80's both mass spectrometry and Edman sequencing had around the 
same performances in sensitivity and in throughput, with the incredible advantage for 
mass spectrometry of being able to analyze modified amino acids [76, 77] even with 
non classical modifications [78]. However, reading a sequence by mass 
spectrometry required interpreting manually the MS/MS fragmentation spectra [79, 
80] a process that required as much expertise as running an Edman sequencer. On 
such bases, and as science is normally based on performance rather than on 
fashion,  how did it come that mass spectrometry overwhelmed Edman sequencing 
in a few years? Well, as in every good vaudeville, there is a lover hidden in the 
closet. Ironically enough, this lover is the old archenemy that almost killed 
proteomics in its tracks in the 80's, namely DNA sequencing.  
The fact is that Edman sequencing produces high quality sequence data, with almost 
no holes, but this quality comes at the price of low productivity. These data are ideal 
when the gene sequence is not necessarily known, but this level of quality is 
somehow superfluous when the name of the game is just to get an univocal 
identification in a complete DNA database. Conversely, getting complete peptide 
sequences with mass spectrometry is also material and labor intensive, but mass 
spectrometry can generate easily and with a high productivity data that are slightly 
fragmentary, but that are still valuable enough to produce an univocal identification in 
databases. Furthermore, tricks can be developed that allow to perform automated 
searches against databases. Maybe the nicest of these tricks is peptide mass 
fingerprinting [81-84], which allows a univocal identification of a purified protein with 
no sequence data and only peptide masses, provided that the full length cDNA 
sequence is available. With the incredible progresses in DNA sequences [85, 86], 
hallmarked by the first completely sequenced genomes in 1995 [87], this trick 
became efficient enough to reach the goal of protein identification, with a 
tremendous increase in productivity. Soon after came the computerized search of 
MS/MS data [88, 89], and with more data (partial amino acid sequences) came the 
ability to analyze mixtures and not only purified proteins [90].  
With this quantum leap in protein quantification came proteomic strategies based on 
less demanding analyte separation techniques than 2D electrophoresis, as in the 
various flavors of shotgun proteomics [91, 92]. The rest is well-known recent history, 
and other authors in this issue will give a much better view of the proteomic age, as 
opposed to the paleoproteomic period.  
 
4. Coda 
 
The rather hectic development of proteomics, as related here, reflects the fact that 
proteomics has always been, and still is, a lame science. Lame by the fact that its 



two legs, namely separation science and identification, have never had the same 
length. It started by separation without identification, but now the reverse is true, and 
identification is well beyond separation. In some kind of parthenogenetic fever, there 
is a current trend in proteomics stating that mass spectrometry will do almost 
everything with minimal separation prior to it. However, it has been shown over and 
over that good separation dramatically improves the coverage of the proteome [93, 
94]. Proteomics appears rather short of new and high performance separation 
methods, as two-dimensional separation of peptides was described almost 30 years 
ago [95] and has just been miniaturized. Clearly enough, existing separation 
methods are not able to take the challenges of the number of analytes and dynamic 
expression range, and they are the factor limiting the performance of proteomics, 
and especially its reproducibility [96]. Within this frame, it is also my personal opinion 
that isoelectric focusing has still a lot to offer in modern proteomics, as its latest 
flavors have not been fully exploited. For example, segmented IEF with isoelectric 
membranes [97, 98], if applied to peptide IEF, would bring a reproducibility that is 
lacking and that should dramatically improve the overall reproducibility of shotgun 
proteomics and allow further tailoring of the separation prior to the MS analysis.  
It is also my old timer opinion that moderation in all things is wise. Thus, proteomics 
should not indulge too much neither in fashion arguments nor in the general recent  
trend in omics that prizes quantity over quality. DNA sequencing is not free of this 
problem either, as now more time is spent and more errors are made in assembling 
genomes than in sequencing their DNA.  
 
Moreover, in the constant competition between proteomics and transcriptomics, 
basic chemical diversity reasons in peptides compared to polynucleotides will always 
make proteomics more difficult than transcriptomics. Thus, in a side to side race, 
proteomics will always lose. Consequently, proteomics should concentrate more on 
its unique strengths, namely the analysis of all that happens only in the protein world, 
independently of RNA (basically PTMs and protein complexes). With complex 
genomes that are not that complex in terms of protein coding genes (only 10% more 
in man compared to C. elegans) it is obvious that a lot of regulations that make living 
organisms so complex lay at the protein level, awaiting for next generation 
proteomics to be discovered. Here again, it will require a countercurrent switch in 
paradigms, from quantity back to quality, from brute force back to subtlety.  It is time 
to leave the safe shores of boolean logics and to go into the more inhospitable areas 
of fuzzy logics, where things can be both Yin and Yang at the same time. We are still 
using the classical molecular genetics paradigm, where correctness of sequence and 
level of expression is everything. We shall move to a more subtle paradigm, where 
the quality or even the "flavor" of proteins, as defined by how they are modified, 
reversibly or not, will be a key element as well. It is only a problem of will, as 
proteomics has already shown that it could take this challenge [99-101]. 
Furthermore, the recent developments of top-down proteomics hold great promises 
in this direction [102]. Mass spectrometry offers the ability to decipher any type of 
modification, an opportunity that has never been encountered before in biosciences, 
and it would be pity to keep blinkered and to analyze only peptides as they are 
predicted from DNA databases.  
It is true that proteomics, as all omics, is a technology-driven science, and I hope 
that  this paper has shown how difficult the development of proteomics has been. 
However, the toolbox is now more mature than ever before, and it is now time in this 
technology-driven science to do less technology and more science, in other words to 



take more care about the biological sense that proteomics will produce [103]. In 
science too, a tree is judged by its fruit. 
 
Finally, it should emphasized that the scientific community that gave rise to 
proteomics was really small, probably no more than 300 scientists all around the 
world in the 80's, quite a tiny fraction of the molecular biosciences community taken 
as a whole. As life on earth at the end of Permian the embryonic proteomic 
community almost disappeared, but it managed to survive, and the whole proteomic 
community of nowadays owes a lot to this small bunch of pioneers. Just measuring 
up to these masters and carrying the torch of proteomics through the challenges to 
come in increasing our understanding of life will be an achievement. 
On a more personal note, it has been a privilege to start in this field almost from the 
very beginning (I started in 1980), and despite the hard times it has been a 
tremendous reward to see what proteomics has become and a lot of fun and 
excitement to be part of this play. 
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Figure 1: Evolution of 2D electrophoresis gels over 25 years 
Left panel: electrophoresis of total proteins from a human cancer keratinocyte cell 
line. Carrier ampholytes-driven pH gradient extending from pH 4 to pH 7.2. 35S 
labelled proteins (with radiolabelled methionine) were used, and 33,000 Bq of 
radioactive proteins were loaded on the first dimension gel rod. 1304 spots are 
detectable on the autoradiographic film after 3 weeks of exposure. T. Rabilloud's 
collection, 1987 
 
Right panel: electrophoresis of total proteins from a mouse premonocyte cell line. 
Immobilized pH gradient gel in the first dimension, extending from pH 4 to pH 8. 
120µg loaded on the first dimension gel strip, detection with silver staining. 1977 
spots can be detected. T. Rabilloud's collection, 2012 


