
HAL Id: hal-01054342
https://hal.science/hal-01054342

Preprint submitted on 31 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A novel architecture and language concepts for web
attacks detection

Abdelhamid Makiou, Samih Souissi, Ahmed Serhrouchni

To cite this version:
Abdelhamid Makiou, Samih Souissi, Ahmed Serhrouchni. A novel architecture and language concepts
for web attacks detection. 2013. �hal-01054342�

https://hal.science/hal-01054342
https://hal.archives-ouvertes.fr

A novel architecture and language concepts for

web attacks detection

Samih Souissi and Abdelhamid Makiou

INFRES Department

Telecom ParisTech

Paris, France

{souissi, makiou}@telecom-paristech.fr

Ahmed Serhrouchni

INFRES Department

Telecom ParisTech

Paris, France

serhrouchni@telecom-paristech.fr

Abstract—In recent years, the web has emerged as an

important gate to access resources and information systems.

Consequently, web applications have become a privileged

target for attackers. This paper presents a new formalism for

web attacks detection. The objective is to simplify complex

rules’ expression, thanks to a modular architecture and

intuitive syntax that give a high power of expression. The

originality of our approach is that the syntax can be deduced

from a certain behavior or automatically generated from

valid behavioral scenarios. The paper presents the main

concepts behind the proposed approach that allows dealing

with the growing complexity of web applications and web

attacks.

Keywords- Web application; HTTP; Injection attacks; SQL

injection; XSS; Web Application Firewall

I. INTRODUCTION

Web applications are actually widespread and HTTP
protocol is becoming the new transport layer of these
applications. In fact, nowadays, most of the applications are
web-based. On the one hand, the need for web applications
is becoming more significant and application developers
have to respond to customer needs quickly, sometimes
neglecting the security aspects. Thus, applications are more
likely to be vulnerable to security attacks. On the other
hand, attacks are becoming more complex, diverse and
specific, targeting a particular type of application servers.

Many solutions to counter web attacks have been
proposed. There are solutions that are specifically
conceived for a particular type of attack or server while
others are generic or based on modifying the source code of
the application. These different existing solutions are not
efficient for three main reasons. First, the scope of security
of a solution specific to a type of attack is not appropriate
for complex attacks that combine different methods to
launch an attack on a web server. Second, generic solutions
are complex to handle when defining effective detection
rules. Third, a solution based on modifying the code needs
a high expertise, is fastidious and requires a thorough
knowledge of each web application to secure.

Therefore, the objective of this paper is to propose a
modular and generic Web Application Firewall architecture
in addition to a combined language to simplify rules’
writing while improving detection performances. As SQL
Injection attacks have been considered as one of the most
important threats for web application [1], we have
considered this attack as a first topic in our work.

This paper is organized as follows. Section II details the
related work. Our proposal and ongoing work are described
in section III. Finally, we deal with Future work in section
IV.

II. RELATED WORK

In [2], Kruegel and Vigna propose an anomaly-based
intrusion detection system for web applications. It
characterizes HTTP requests using a number of statistical
characteristics derived from the parameter’s length,
character distribution, structure, presence and order. This
method focuses only on the incoming query parameters
whereas it ignores the respective HTTP response. These
results are either causing unnecessary false positives or
missing certain attacks. AMNESIA [3] is an SQL injection
detection and prevention system which combines static
analysis and runtime monitoring. It uses a model based
approach to detect illegal queries. Nonetheless, it requires
source code changes in the web applications. Johns et al.
[4] proposed an anti XSS solution that operates by
matching incoming data and outgoing JavaScript. The
model uses similarity metrics but is not suitable for
dynamic JavaScript response and requires a learning
process before deployment on the server side.

ModSecurity proposed by Ivan Ristic [5] is an open
source solution based on signature attack detection.
ModSecurity is widely used and has good performances.
Though, this system is strongly related to some types of
web servers and it only analyses POST queries to avoid
performance deterioration. In addition, the rules formalism
is very complex, needing a high expertise in HTTP protocol
and in regular expressions. Another recent open source is
NAXSI [6]. It uses a heuristic approach for the detection of
XSS and SQL injection attacks. Its performances are
acceptable but require a learning process to define
whitelists. Defined rules are static and limited to the context
of injection attacks using a cumulative scoring system.

The systems mentioned above do not offer a
compromise between acceptable performance and
formalism simplicity. Thus, defining good security rules
that guaranties a suitable overall security level is not
obvious. For a matter of formalism simplicity and better
performances, some approaches offer adapted solutions for
a kind or two of attacks. However, unlike attacks that
evolve very quickly, they are neither open nor scalable.
Other radical approaches focus on modifying the
application code source which is a tedious task that should
be customized according to each application.

Method URI Version User-Agent

H_Method H_URI H_Version H_User-Agent

Orch_Rule1

Orch_Rule2

Orch_Rule3

Orch_Rule1

Orch_Rule2

Orch_Rule3 Orch_Rule3 Orch_Rule3

Orch_Rule2 Orch_Rule2

Orch_Rule1 Orch_Rule1

Basic Rules

DataBase

WAF

Orchestration Rules

Basic Rules Orchestration

(1) Request

(0)

 Load Rules

 Schemes

(3)

Load Basic

Rules

(4) Attacks

Detection

(6) Request Handled

 (Accept, drop, log…)

Requests Cache

(5)

Request Caching

With score

R3

H_Method H_URI

R1

R1

R5

R2

R6

R4

R4

R5

R1 R2

R3 R4 R5

R6

...

(2) Dissection and

hook placement

III. PROPOSAL AND ON GOING WORK

In this section, we describe both the proposed language
and the architecture of our solution.

A. Modular architecture

Our proposed architecture is independent of the server’s
type. It is a modular system that can fit to any kind of web
platform. In fact, the detection engine includes different
modules that allow a comprehensive analysis of the HTTP
transaction.

This analysis begins with a loading phase of all
orchestration rules. Secondly, the HTTP request is
dissected into several significant fields and hooks are at the
end of each field dissected. Orchestration rules, which are
already loaded in memory, are assigned to each hook. Once
a hook is reached, the engine applies the rules related to this
hook. Fig. 1 shows this mechanism. The system get access
to the disk to load the basic rules related to every
orchestration rule to perform. This allows caching all
detection logic expressed within orchestration rules and
load only necessary basic rules every time a hook is
reached. Fig. 2 shows the different phases of HTTP request
handling.

B. Composed language

The complexity of the formalisms used in current
WAFs has led us to propose a solution to simplify the
writing of security rules. These security rules can include
security checks on http protocol and attack signatures
expression.

The formalism combines two languages: a basic
language and an orchestration language. The basic
language offers simple and specific rules used to describe
either a pattern or a control. It is used to hide the
complexity of security rules’ expression to a non-expert
user (instead of writing long and complex regular
expressions). These rules serve as components to build
another language called Orchestration language. This
language is used to define the context of a particular attack,
such as SQL injection for example, by composing the basic
rules through simple operators. In addition, those basic
rules can be generated automatically from a behavioral
analysis. The format and an example of both languages are
given in Table I.

TABLE I. PROPOSED LANGUAGE

IV. FUTURE WORK

We are currently dealing with the specification of the

scoring system for correlation between the request and the

response, in addition to the syntax and the scope of both

basic and orchestration languages.

After defining the different elements of our architecture

and the SQL injection detection formalism, we are

focusing on the optimal placement of the hooks, trying to

find the appropriate dissection for HTTP requests. We are

also directing our work towards transaction content

classes’ definition using statistical methods. Those

methods will help evaluate the transaction to determine

different classes related to attacks’ type.

Figure 1. Hook mecanism

Figure 2. Request handling mecanism

REFERENCES

[1] “The Top 10 2013 classification of attacks on Web applications”
https://www.owasp.org/index.php/Top_10_2013-Top_10

[2] C. Kruegel and G. Vigna. “Anomaly detection of web-based
attacks”. 10th ACM Conference on Computer and Communication
Security (CCS ’03), pages 251–261. ACM Press, October 2003.

[3] W.G. Halfond and A. Orso, “AMNESIA: Analysis and Monitoring
for NEutralizing SQL-Injection Attacks,” Proc. 20th IEEE and
ACM Int’l Conf. Automated Software Eng., pp. 174-183, Nov.
2005.

[4] M.Johns, B.Engelmann, J.Poegga, “XSSDS:Server-side Detection
of Cross-site Scripting Attacks on Computer Security Applications “
in International Conf. ACSAC 2008.

[5] Ivan Ristic : ModSecurity Handbook: The Complete Guide to the
Popular Open Source Web Application Firewall, 2010 Feisty Duck
Ltd Edition ISBN: 1907117024 .

[6] Naxsi (Nginx Anti Xss & Sql Injection) October 2013
https://www.owasp.org/index.php/OWASP_NAXSI_Project

 Basic Language Orchestration Language

Format
* Rule_type | matching
expression | {options} |

Rule_ID

* Hook | {pattern class} |

Rules composition |{options}

Example
*SQLRule ‘password’
SQLi_character score 3 R1

* ActionRule Log R2

* H_URI SQLi_Evasion R1

AND R2

