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Abstract

PAC-Bayesian theory provides generalization bounds for weighted majority vote. However, these
bounds do not directly focus on the risk of the majority vote, but on the risk of the Gibbs classifier.
Indeed, it is well-known that the Gibbs classifier and the majority vote are related. To the best of
our knowledge the tightest relation is the C-bound proposed by Lacasse et al. (2007); Laviolette et al.
(2011) for binary classification. In this paper, we provide three generalizations of the C-bound to
multiclass setting.
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1 Introduction

The PAC-Bayesian framework, first introduced by McAllester (2003), is an important field in machine
learning theory. Given a family H of models, called voters, given a prior distribution over H, and given
a learning sample S, the PAC-Bayesian approach aims at learning a posterior distribution ρ over H that
leads to a well-performing ρ-weighted majority vote1 (over H). An important result in PAC-Bayesian
theory known as “the PAC-Bayes theorem” (McAllester, 2003; Langford & Shawe-Taylor, 2002; Seeger,
2002; Catoni, 2007; Germain et al., 2009) offers generalization bound for the ρ-majority vote by bounding
the risk of the stochastic Gibbs classifier associated to ρ, which predicts the label of an example x by
first picking h in H according to ρ, and then by returning h(x). However, in binary classification this
bound is based upon that the risk of the majority vote is bounded by twice the error of the Gibbs
classifier. Note that, in multiclass classification the risk of the majority vote is bounded by the number
of classes times the error of the Gibbs classifier (Morvant et al., 2012). To tackle this drawback in binary
classification setting, (Lacasse et al., 2007; Laviolette et al., 2011) proposed a tighter relation between the
risk of the majority vote and the one of the Gibbs classifier: the C-bound. This bound involves the first
two statistical moments of the margin of the majority vote. In this work we generalize the C-bound for
multiclass weighted majority vote.

This paper is organized as follows. Section 2 recalls the C-bound in binary classification. We present
our generalizations to the multiclass setting in Section ??. We conclude in Section 4.

2 The C-Bound for Binary Classification

In this section, we recall the C-bound of Lacasse et al. (2007); Laviolette et al. (2011) in the binary
classification setting, which stands in the PAC-Bayesian framework (first introduced by McAllester (2003)).

LetX ⊆ R
d be the input space of dimension d, and let Y = {−1,+1} be the output space. The learning

sample S = {(xi, yi)}
m
i=1 is constituted by m examples i.i.d. from a fixed but unknown distribution P

over X × Y . Let H be a set of real-valued voters from X to Y . Given a prior distribution π over H and

∗This work was carried out while Emilie Morvant was affiliated with Aix-Marseille Univ., LIF-QARMA, CNRS, UMR
7279, F-13013, Marseille, France.

1Note that the ρ-majority vote is sometimes called the Bayes classifier. However to avoid any confusion with the Bayes
classifier in Bayesian classification we rather use the term majority vote.
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given a sample S, the objective in the PAC-Bayesian approach is to find the posterior distribution ρ on
H which minimizes the true risk of the ρ-weighted majority vote Bρ(·) where:

∀x ∈ X, Bρ(x) = sign

[

E
h∼ρ

h(x)

]

.

Its true risk RP (Bρ) on the distribution P is:

RP (Bρ) = E
(x,y)∼P

I (Bρ(x) 6= y) ,

where I(a) = 1 if predicate a is true and 0 otherwise.
It is well-know that minimizing RP (Bρ) is NP-hard. To get around this problem, one solution is to

make use of the C-bound which is a tight bound over RP (Bρ). This bound is based on the notion of
margin of Bρ(·) defined as follows.

Definition 1 (ρ-margin). The ρ-margin of Bρ(·) realized on an example (x, y) ∼ P is:

Mρ(x, y) = y E
h∼ρ

h(x).

According to this definition, Bρ(·) correctly classifies an example (x, y) when its ρ-margin is strictly
positive:

RP (Bρ) = Pr
(x,y)∼P

(Mρ(x, y) ≤ 0) . (1)

This equality allows to prove the following theorem.

Theorem 1 (C-bound of Laviolette et al. (2011)). For every distribution ρ on a set of real-valued functions

H, and for every distribution P on X × Y , if Mρ
P > 0, then we have :

RP (Bρ) ≤
Var(x,y)∼P Mρ(x, y)

E(x,y)∼P (Mρ(x, y))
2 .

= 1−
(Mρ

P )
2

Mρ2

P

,

where Mρ
P and Mρ2

P are respectively the first and the second statistical moments of the ρ-margin on P ,

and are defined by:

Mρ
P = E

(x,y)∼P
Mρ(x, y)

= E
h∼ρ

E
(x,y)∼P

yh(x),

Mρ2

P = E
(x,y)∼P

(Mρ(x, y))
2

= E
(h,h′)∼ρ2

E
(x,y)∼P

h(x)h′(x).

Proof. We first introduce the Cantelli-Chebyshev inequality, that is the main tool of the proof.

Theorem 2 (Cantelli-Chebyshev Inequality). Let Z be a random variable. Then, we have:

∀a ≥ 0, Pr
(

Z ≤ E [Z]− a
)

≤
Var Z

Var Z + a2
.

We prove the C-bound by applying the Cantelli-Chebyshev inequality on the random variableMρ(x, y),
and with a = Mρ

P . According to Definition 1, we have:

Var
(x,y)∼P

Mρ(x, y) = Mρ2

P − (Mρ
P )

2
.
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Then:

RP (Bρ) = Pr
(x,y)∼P

(Mρ(x, y) ≤ 0)

≤
Var(x,y)∼P Mρ(x, y)

Var(x,y)∼P Mρ(x, y) + (Mρ
P )

2

=
Var(x,y)∼P Mρ(x, y)

E(x,y)∼P (Mρ(x, y))
2

= 1−
(Mρ

P )
2

Mρ2

P

.

Note that the minimization of the empirical counterpart of the C-bound is a natural solution for
learning a distribution ρ that leads to a ρ-weighted majority vote Bρ(·) with a low error. This strategy is
justified thanks to an elegant PAC-Bayesian generalization bound over the C-bound, and have lead to a
simple and elegant algorithm called MinCq (See (Laviolette et al., 2011) for more details).

In the following, we propose to generalize this important theoretical result in the PAC-Bayesian liter-
ature to multiclass setting.

3 Generalization of the C-Bound for Multiclass Classification

3.1 Multiclass Setting

In this section, we stand in the multiclass classification setting where X ⊆ R
d is still the input space, but

Y = {1, . . . , Q} is the output space with a finite number of classes Q ≥ 2. Let H be a set of multiclass
voters from X to Y . We recall that given a prior distribution π over H and given a learning sample S,
i.i.d. from P , the PAC-Bayesian approach looks for the ρ distribution which minimizes the true risk of
the ρ-weighted majority vote Bρ(·). In the multiclass classification setting, Bρ(·) is defined as follow:

Bρ(x) = argmax
c∈Y

[

E
h∼ρ

I(h(x) = c)

]

. (2)

Given a distribution ρ on a set H of multiclass voters, we recall that the risk of the ρ-weighted majority
vote RP (Bρ) is defined as the probability that it commits an error on an example coming from P :

RP (Bρ) = E
(x,y)∼P

I
(

Bρ(x) 6= y
)

.

An important notion related to the majority vote is the notion of margin realized on an example (x, y).
For multiclass classification, such a notion can be expressed in a variety of manners. In the next section,
we present three versions of multiclass margin that are equivalent in binary classification.

3.1.1 Margins in Multiclass Classification

Firstly, we make use of the multiclass margin proposed by Breiman (2001) for the random forests, which
can be seen as the usual notion of margin.

Definition 2 (ρ-margin). Let P be a distribution over X × Y , let H be a set of multiclass voters. Given

a distribution ρ on H, the ρ-margin of the majority vote Bρ(·) realized on a example (x, y) ∼ P is:

Mρ(x, y) = E
h∼ρ

I(h(x) = y)− max
c∈Y,c 6=y

(

E
h∼ρ

I(h(x) = c)

)

.

Like in the binary classification framework presented in Section 2, the majority vote Bρ(·) correctly
classifies an example if its ρ-margin is strictly positive:

RP (Bρ) = Pr
(x,y)∼P

(Mρ(x, y) ≤ 0) . (3)

Technical Report V 1 3
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Note that when Y = {−1,+1}, we find the usual notion of margin:

Mρ(x, y) = E
h∼ρ

I(h(x) = y)− max
c∈Y,c 6=y

(

E
h∼ρ

I(h(x) = c)

)

= E
h∼ρ

I(h(x) = y)− E
h∼ρ

I(h(x) 6= y)

= E
h∼ρ

[I(h(x) = y)− I(h(x) 6= y)]

= E
h∼ρ

yh(x)

= y E
h∼ρ

h(x) .

Since the ρ-margin is defined with a maximum, it could be hard to deal with it in an algorithmic perspec-
tive.

We then consider the relaxation proposed by Breiman (2001) that is based on a notion of strength for
a given example (x, y). This notion is related to the deviation between the correct classification and the
errors independently.

Definition 3 (ρ-strength). Let P be a distribution over X × Y , let H be a set of multiclass voters from

X to Y . Given a distribution ρ on H, the ρ-strength of the majority vote Bρ(·) realized on an example

(x, y) ∼ P for a class c ∈ Y is:

Sρ(c, (x, y)) = E
h∼ρ

I(h(x) = y)− E
h∼ρ

I(h(x) = c).

From this definition and Equation (3) we have:

RP (Bρ) = Pr
(x,y)∼P

(Mρ(x, y) ≤ 0)

= Pr
(x,y)∼P

(

∃c ∈ Y, c 6= y : E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c)
)

= Pr
(x,y)∼P





Q
∨

c=1, c 6=y

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c)





= Pr
(x,y)∼P

(

Q
∨

c=1

[

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c) ∧ c 6= y

]

)

≤

Q
∑

c=1

Pr
(x,y)∼P

(

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c) ∧ c 6= y
)

=

Q
∑

c=1

[

Pr
(x,y)∼P

(

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c)
)

+ Pr
(x,y)∼P

(

c 6= y
)

− Pr
(x,y)∼P

(

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c) ∨ c 6= y
)

]

=

Q
∑

c=1

[

Pr
(x,y)∼P

(

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c)
)

+ Pr
(x,y)∼P

(

c 6= y
)

− 1

]

(4)

=

Q
∑

c=1

Pr
(x,y)∼P

(

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c)
)

+

Q
∑

c=1

Pr
(x,y)∼P

(

c 6= y
)

−

Q
∑

c=1

1

=

Q
∑

c=1

Pr
(x,y)∼P

(

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c)
)

+ (Q− 1)−Q

=

Q
∑

c=1

Pr
(x,y)∼P

(

E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c)
)

− 1

=

Q
∑

c=1

Pr
(x,y)∼P

(Sρ(c, (x, y)) ≤ 0)− 1. (5)
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Line 4 comes from the fact that either c 6= y or E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c).

When Y = {−1,+1} it is trivial to prove: RP (Bρ) =

Q
∑

c=1

Pr
(x,y)∼P

(Sρ(c, (x, y)) ≤ 0)− 1.

Lastly, in order to relax the ρ-margin, one solution is to consider the following loss.

Definition 4 (the ω-loss). Let P be a distribution over X × Y , let H be a set of multiclass voters from

X to Y , and let ω ∈ [0, 1] be a constant. For every distribution ρ on H, we define the ω-loss, associated
to ρ on an example (x, y) ∼ P , as the loss function ℓ ρ(ω, (x, y)):

ℓ ρ(ω, (x, y)) = I

[

E
h∼ρ

I(h(x) = y) ≤ ω

]

. (6)

The true value of the ω-loss of ρ on P is:

ℓ ρP (ω) = E
(x,y)∼P

ℓ ρ(ω, (x, y))

= E
(x,y)∼P

I

[

E
h∼ρ

I(h(x) = y) ≤ ω

]

. (7)

This loss can be seen as a linear relaxation of the ρ-margin. Moreover, for every distribution ρ on H,
the following theorem relates the risk of Bρ(·) and the ω-loss associated to ρ.

Theorem 3. Let Q ≥ 2 be the quantity of classes. For every distribution P over X×Y , for every example

(x, y) i.i.d according to P , and for every distribution ρ over a set of multiclass voters H, we have:

ℓ ρP (
1
Q
) ≤ RP (Bρ) ≤ ℓ ρP (

1
2 ). (8)

Proof. Firstly, we prove the left-hand side of Inequality (8):

ℓ ρP (
1
Q
) ≤ RP (Bρ).

In fact, we have:

RP (Bρ) = Pr
(x,y)∼P

[Mρ(x, y) ≤ 0]

= Pr
(x,y)∼P

[

∃c ∈ Y, c 6= y : E
h∼ρ

I(h(x) = y) ≤ E
h∼ρ

I(h(x) = c)

]

= Pr
(x,y)∼P

[

E
h∼ρ

I(h(x) = y) ≤ max
c∈Y,c 6=y

E
h∼ρ

I(h(x) = c)

]

≥ Pr
(x,y)∼P



 E
h∼ρ

I(h(x) = y) ≤

1− E
h∼ρ

I(h(x) = y)

Q− 1



 (9)

= Pr
(x,y)∼P

[

E
h∼ρ

I(h(x) = y) ≤
1

Q

]

= E
(x,y)∼P

I

[

E
h∼ρ

I(h(x) = y) ≤
1

Q

]

= ℓ ρP (
1
Q
).

Line (9) comes from :

max
c∈Y,c 6=y

E
h∼ρ

I(h(x) = c) ≥ E
c∈Y
c 6=y

E
h∼ρ

I(h(x) = c)

=
1

Q− 1

Q
∑

c=1
c 6=y

E
h∼ρ

I(h(x) = c)

=
1

Q− 1

[

1− E
h∼ρ

I(h(x) = y)

]

Technical Report V 1 5
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Secondly, we prove the right-hand side of Inequality (8):

RP (Bρ) ≤ ℓ ρP (
1
2 ).

This is verified if:

R(Bρ) = Pr
(x,y)∼P

[Mρ(x, y) ≤ 0]

= Pr
(x,y)∼P

[

E
h∼ρ

I(h(x) = y) ≤ max
c∈Y,c 6=y

E
h∼ρ

I(h(x) = c)

]

≤ Pr
(x,y)∼P

[

E
h∼ρ

I(h(x) = y) ≤
1

2

]

= ℓ ρP (
1
2 ).

It is equivalent to prove that:

∀(x, y) ∼ P, max
c∈Y,c 6=y

E
h∼ρ

I(h(x) = c) ≤
1

2
.

(i) According to the definition of Bρ(·), if E
h∼ρ

I(h(x) = y) ≤ 1/2 for (x, y) ∼ P , then Mρ(x, y) ≤ 0.

(ii) Moreover, from the definition of the ω-loss, if we fix ω = 1
2 , then we have:

RP (Bρ) = Pr
(x,y)∼P

[

E
h∼ρ

I(h(x) = y) ≤ max
c∈Y,c 6=y

E
h∼ρ

I(h(x) = c)

]

≤ Pr
(x,y)∼P

[

E
h∼ρ

I(h(x) = y) ≤
1

2

]

.

The result comes from (i) and (ii).

There exists a region of indecision when ω ∈
[

1
Q
, 1
2

]

(see Figure 1) which implies that ω should be

chosen carefully. Note that when Y = {−1,+1}, it is trivial to prove: RP (Bρ) = ℓ ρP (
1
2 ).

The three notions of margin presented above are then equivalent if we stand in the binary classification
setting. However, they differ on the considered information.

• The ρ-margin is associated to the true decision function in multiclass and is independent from the
true class of the example.

• The ρ-strength depends on the true class y of x and corresponds to a combination of the binary
margin (one class versus another class) for y′ 6= y.

• The ω-loss depends also on the true class y of x, but it does not consider the other classes. This loss
is a linear measure regarding to y, easier to manipulate, but implies a higher region of indecision
(see Theorem 3).

These properties are illustrated on Figure 1, and lead to the three generalizations of the C-bound presented
bellow.

3.1.2 Generalizations of the C-bound in the Multiclass Setting

The following bound is based on the definition of ρ-margin in multiclass (Definition 2).

Theorem 4 (the multiclass C-bound). For every distribution ρ on a set of multiclass voters H, and for

every distribution P on X × Y , such that Mρ
P > 0, we have:

R(Bρ) = Pr
(x,y)∼P

(Mρ(x, y) ≤ 0)

Technical Report V 1 6



Morvant, Roy, Laviolette, Ralaivola Generalization of the C-Bound to Multiclass Setting

1,0 0,1
1/2,1/2

(a) The three margins are equivalent when
Y = {−1,+1}. The coding of the class −1
is (1, 0), the one of +1 is (0, 1).

1,0,0

0,0,1

0,1,0

0,1/2,1/21/2,0,1/2

1/2,1/2,0

The ρ-margin

The ω-loss

ω=1/2

ω=1/Q

The ρ-strength

(b) The three margins when Y = {1, 2, 3}, and when the true
class of x is 2. The coding of the class 1 is (1, 0, 0), the one of
the class 2 is (0, 1, 0), and the one of the class 3 is (0, 0, 1).

Figure 1: Given an example (x, y), we can represent the vote Bρ(x) by the convex combination with the
barycentric coordinates where each angle corresponds to a class of Y = {1, . . . , Q}. The coordinates of
Bρ(x) are then (Eh∼ρ I(h(x) = 1), . . . ,Eh∼ρ I(h(x) = Q)).

≤
Var(x,y)∼P Mρ(x, y)

E(x,y)∼P (Mρ(x, y))
2

= 1−
(Mρ

P )
2

Mρ2

P

,

where Mρ
P and Mρ2

P are respectively the first and second statistical moments of the ρ-margin Mρ(x, y),
and are defined by:

Mρ
P = E

(x,y)∼D′

Mρ(x, y)

= E
(x,y)∼P

[

E
h∼ρ

I(h(x) = y)− max
c∈Y,c 6=y

(

E
h∼ρ

I(h(x) = c)

)]

= E
(x,y)∼P

E
h∼ρ

I(h(x) = y)− E
(x,y)∼P

max
c∈Y,c 6=y

(

E
h∼ρ

I(h(x) = c)

)

,

Mρ2

P = E
(x,y)∼P

(Mρ(x, y))2

= E
(x,y)∼P

[

E
h∼ρ

I(h(x) = y)− max
c∈Y,c 6=y

(

E
h∼ρ

I(h(x) = c)

)]2

.

Proof. Same proof process than the binary C-bound (see Theorem 1)

This bound offers an accurate relation between the risk of the majority vote and the margin without

the number of classes Q. However, the term maxc∈Y,c6=y

(

E
h∼ρ

I(h(x) = c)

)

makes the derivation of an al-

gorithm to minimize this bound harder than in binary classification.

We now present the approaches related to the relaxations stated in the previous section.

Thanks to the definition of the ρ-strength (Definition 3), and according to the proof process of the
C-bound we obtain the following relation.

Technical Report V 1 7
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Theorem 5. For every distribution ρ on a set of multiclass voters H, and for every distribution P over

X × Y , such that ∀c ∈ Y,Sρ
P (c) > 0, we have:

R(Bρ) ≤

Q
∑

c=1

Pr
(x,y)∼P

(Sρ(c, (x, y)) ≤ 0)− 1

≤

Q
∑

c=1

Var(x,y)∼P (Sρ(c, (x, y)))

Var(x,y)∼D′ (Sρ(c, (x, y)))−E(x,y)∼P (Sρ(c, (x, y)))
2 − 1

=

Q
∑

c=1

(

1−
(Sρ

P (c))
2

Sρ2

P (c)

)

− 1

= (Q− 1)−

Q
∑

c=1

(Sρ
P (c))

2

Sρ2

P (c)
,

where Sρ
P (c) and Sρ2

P (c) are respectively the first and the second statistical moments of the ρ-strength of

the class c, and are defined by:

Sρ
P (c) = E

(x,y)∼P
Sρ(c, (x, y))

= E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− E
h∼ρ

I(h(x) = c)

)

= E
(x,y)∼P

E
h∼ρ

I(h(x) = y)− E
(x,y)∼D′

E
h∼ρ

I(h(x) = c)

Sρ2

P (c) = E
(x,y)∼P

(Sρ(c, (x, y)))
2

= E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− E
h∼ρ

I(h(x) = c)

)2

Proof. Comes for Inequality (5).

This relation does not depend on the computation of a maximum, but explicitly depends on the
quantity of classes Q. This result can be seen as a sum of C-bounds for every class. A practical drawbacks
of this bound is then that we have to minimize Q binary C-bounds.

Finally, the bound related to the ω-loss is:

Theorem 6. For every distribution ρ on a set of multiclass voters H, and for every distribution P on

X × Y , if E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)

> 0, then:

ℓ ρP (ω) ≤

Var(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)

E(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)2

= 1−

[

E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)]2

E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)2 . (10)

Proof. According to Definition 4 of ℓ ρP (ω), we have:

ℓ ρP (ω) = Pr
(x,y)∼P

[

E
h∼ρ

I(h(x) = y) ≤ ω

]

= Pr
(x,y)∼P

[

E
h∼ρ

I(h(x) = y)− ω ≤ 0

]

. (11)
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We apply the Cantelli-Chebyshev inequality on the line (11) on the random variable E
h∼ρ

I(h(x) = y). We

obtain:

ℓ ρP (ω) ≤

Var(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)

E(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)2 .

Finally, since:

Var(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)

= E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)2

−

[

E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)]2

,

we have:

ℓ ρP (ω) ≤ 1−

[

E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)]2

E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)2 .

Since the term E
(x,y)∼P

(

E
h∼ρ

I(h(x) = y)− ω

)

is linear, the derivation of an algorithm seems easier.

4 Conclusion and Perspectives

In this paper, we extend to the multiclass setting an important theoretical result in the PAC-Bayesian
literature. Concretely, we prove three versions of the C-bound, a bound over the risk of the majority vote,
based on three generalizations of the notion of margin in multiclass classification. These results opens the
door to develop new algorithms for multiclass classification when we desire to learn a weighted majority
vote over a set of multiclass voters.
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