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Many of the multichannel extracellular recordings of neural activity consist of attempting to sort spikes on the basis of shared
characteristics with some feature detection techniques. Then spikes can be sorted into distinct clusters. There are in general two
main statistical issues: firstly, spike sorting can result in well-sorted units, but by with no means one can be sure that one is dealing
with single units due to the number of neurons adjacent to the recording electrode. Secondly, the waveform dimensionality is
reduced in a small subset of discriminating features. This shortening dimension effort was introduced as an aid to visualization and
manual clustering, but also to reduce the computational complexity in automatic classification. We introduce a metric based on
common neighbourhood to introduce sparsity in the dataset and separate data into more homogeneous subgroups. The approach
is particularly well suited for clustering when the individual clusters are elongated (that is nonspherical). In addition it does need
not to select the number of clusters, it is very efficient to visualize clusters in a dataset, it is robust to noise, it can handle imbalanced

data, and it is fully automatic and deterministic.

1. Introduction

Neurophysiologists assume that the brain encodes informa-
tion in the firing rate of neurons, that is, the number of
“spikes” over a temporal interval. While many powerful imag-
ing techniques have been used in neuroscience, extracellular
recording remains the only choice that provides resolution of
neuron activity in the brain. However, multiple extracellular
recordings are useful only when the spikes generated by
different neurons can be correctly sorted.

Lewicki [1] reviewed numerous methods that have been
proposed to classify spikes. The usual assumptions for spike
sorting are (1) that all spikes generated by a specific neuron
are characterized by a similar waveform, (2) that this wave-
form is unique, and (3) that this waveform is conserved for
each neuron during a stationary recording [2]. Analysis of
neural recordings requires first detecting action potentials,
spikes, from noise, which is achieved with thresholding
discrimination by manual or semiautomatic classification
methods. The second process is spikes sorting and produces
a number of “spike trains” corresponding to the temporal
sequence of real signals [3-5].

Among different methods used for spike sorting, template
matching is one of the most popular procedures. The usual
practice to produce templates is to use a “supervisor,” that is,
an experienced and knowledgeable operator, to preliminarily
classify the waveforms following a selection of templates
corresponding to distinct neurons. Few methods have dealt
with unsupervised template creation. Atiya [3] for instance
used the Isodata clustering algorithm to estimate typical
spike shapes and then compared all possible combinations
of templates to find the combination with the highest like-
lihood. Letelier and Weber [6] applied Bayesian probability
theory to quantify the probability of both the form and the
number of spike shapes. Zouridakis and Tam [7] proposed
a procedure based on fuzzy k-means clustering algorithms
to create reliable spike templates. Some authors [8-10] used
independent component analysis (ICA) for distinguishing
the spikes according to their sources; the independence
assumption of the firing neurons helps to identify spikes from
the same source. In [11] the occurrence time information
of spikes and features related to the shape simultaneously is
applied to estimate the interspike interval for each neuron and
sort the spikes using a Monte Carlo algorithm. Pouzat et al.
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FIGURE 1: Effects of an algorithm of arrangement on a data set.

[12] used an empirical characterization of the recording noise
to optimize the action potentials clustering and for assessing
the quality of each cluster. Zhang et al. [13] reconstructed
the spike templates according to the clustering results from
principal component analysis (PCA) and substractive clus-
tering techniques. Probabilistic methods have been proposed
[14, 15] and have focused on the modeling of each group in
specific subspaces of low dimensionality.

Several approaches are associated with a visualization
objective such as factorial methods [16, 17]. The latter meth-
ods can be global when they are based on the proximity
between various groups such as graph methods or local when
they evaluate the proximity between the individuals, like the
hierarchical methods, they can also combine the local and
global relations, as in the case of seriation.

A taxonomy of the methods was proposed by Carroll and
Arabie [18] which associates a particular mode of seriation
with each type of table.

Seriation aims to display and to reveal natural clusters
and their dependencies in a dataset only by reordering rows
and columns so that the adjacent rows and, respectively,
columns are the most similar. This situation is illustrated by
Figure 1 where, starting from a table of relations presented
by Figure 1(a), the lines and the columns permuted to form
a partition in which the similar elements were gathered
together, thus forming groups (Figure 1(b)), and, in order
to better appreciate the presence of the diagonal structure
per block, this ordered matrix is pixelized (Figure 1(c)). Such
an approach could be connected with a local technique of
ordered clustering in so far as information is brought on one
hand about the local relations between individuals because
of an order in the data and on the other hand about the
total structure of the data. Seriation has other advantages
outlined by several authors such as Arabie et al. [19], like the
no need of prior knowledge on the number of clusters and
direct visualization of the structure on the table of values.

These advantages might disappear when the data are
noisy or imbalanced or when groups of data are superim-
posed. The presence of noisy data prevents a clear visual-
ization of the various blocks and distinguishing the clusters
becomes a difficult task. Our approach is based on symmetric
binary matrices of similarities (or dissimilarities) linked to
common neighborhood. Such matrices indicate similarities

between pairs of observations and can be computed by dif-
ferent measures depending on the nature of the dataset such
as Euclidean distances or more generally p-norm, correlation
coefficients [20], or divergences [21] for example. A criterion
derived from the problems of data compression selects the
most compact ordered matrix—in the form of diagonal
blocks—in order to obtain the most informative visualization
off the intrinsic data structure. In some situations, too great
a parsimony generates the ousting of underrepresented data
forming very small clusters. To mitigate this nondetection,
we propose a multiscale approach combining various levels
of sparsity of the data.

This paper is organized in the following way: in Section 2,
seriation is presented according to two different points of
view, one as a mathematical optimization problem to be
solved and the other on its algorithmic bases. Section 3
details our original approach as well as a multiscale algorithm
of the proposed arrangement, called Parsimonious Block-
Clustering. Experiments on simulations and benchmark data
are presented in Section 4.

2. Method

2.1. The Optimization Problem. Seriation seeks an order in the
data that reveals the locality/proximity between adjacent lines
or columns to thus reveal a structure. This order is obtained
by successive permutations of lines and columns which
makes it possible to tackle seriation optimization problem
(The number of possible combinations of permutations of
lines and of columns is n!p! for a rectangular n x p table
or n! in the case of a symmetrical matrix of dissimilarity.)
through two different angles: one being to determine all the
best possible permutations, the other being related to the
complexity of the solution (np-complete problem).

The seriation approach can be applied to any type of
matrices but we focus in this work on dissimilarity matrices.
Let us consider a set of N samples (xi,...,x)y) described
of size N x N where each element d;; gives a “measure” of
dissimilarity between the pair of observations (x;, x;). Let ¥
define a permutation function which orders the elements of
matrix D, according to a given criterion C. The objective of
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the seriation is thus to find the optimal permutation ¥* which
optimizes the arrangement criterion C, such that

¥ = arg max® (¥ (D)). ey

These criteria are based on a measure of similarity
s(+) between the successive elements of the matrix D and
maximize max Y o' s(i, i + 1).

This measure of similarity is declined in a different way
according to the authors as one can observe in Tablel.
McCormick et al. [22] and Arabie and Hubert [23], for
example, seek to maximize a measure of effectiveness (cf. €,
criterion in Table 1) based on the sum of the scalar products
in lines and columns of the data matrix; this measure was
generalized thereafter by Climer and Zhang [20]. Other
authors, such as Hubert et al. [24] or Chen [25], based their
optimization on the divergence measure between the matrix
of dissimilarity and an anti-Robinson structure seeking to
gather the values of the smallest dissimilarities around the
diagonal (cf. €, criterion). On the other hand, some authors
such as Caraux and Pinloche [26] (cf. €, and &, criteria) or
Brusco and Steinley [27] (cf. €5 criterion) rather seek to place
the smallest dissimilarities out of the diagonal (Robinson
structure). Lastly, in the framework of data compression,
Johnson et al. [28] proposed to minimize a criterion based on
the number of sequences of consecutive elements (on a line)
different from 0 (cf. € criterion). Many authors proposed
new criteria of arrangement like Niermann [29] who seeks
to compare each observation with its adjacent neighbors
through vicinity criteria (cf. €, criterion) or Batagelj [30]
or Doreian et al. [31] who propose criteria of structural
equivalence or Dhillon et al. [32] who use mutual information
and an entropy-based criterion.

These recent approaches require a prior knowledge of
the number of clusters formed by the individuals and the
variables whose determination is not trivial.

2.2. A Family of Embedded Binary Matrices. To deal with
the problem of imbalanced datasets, noisy data, overlapping
clusters, and outliers, we propose a new algorithm based
on a family of embedded binary matrices which stands for
different degrees of sparsity of the data. The binary matrices
are ordered according to an algorithm named Parsimonious
Block-Clustering (PB-clus). This algorithm makes it possible
to select the level of parsimony to produce the optimal
compact block structure.

In our approach, the degree of vicinity is defined as a
“threshold value” equal to the number of common neighbors
between pairs of observations after which pairs of obser-
vations are eliminated. The larger the number of common
neighbours imposed is, the more parsimonious the matrix
will be (filled with zeros). Hence, the degree of parsimony
is associated with the degree of common vicinity. Let us
consider a data matrix X with elements in R? and X% = (x;.ij),
i,j € {1,...,n} the dissimilarity matrix associated to X, the
choice of the distance function depending on the type of data:
it can be an Euclidean distance between individuals i and
j (and more generally p-norm), a correlation, or any other
function characterizing the concept of proximity between

3
pairs of observations (see Tablel). Let A = (aij), i,j €
{1,...,n}, and the (0,1)-matrix with elements

1 if xidj <e
al'j = d (2)
0 if xj; > €

where € is the threshold characterizing the proximity of the
pairs of observations. Its value can be given arbitrarily; we
propose to fix it at the first quartile of the distribution of
the distances between pairs of observations. In addition, the
matrix of similarity is symmetrical; that is, a;; = aj;. Let the

Gram matrix B = AT A where each element b;j is the number
of neighbors of the two data i and j. This matrix corresponds
to a matrix of common vicinity.

Definition 1. A binary matrix By = (bl;’"), i,j e {l,...,n}

parsimonious with a degree A,, (with m € {1,...,M}) is
characterized by
1 ify; >e€
by = V= 3
i {o if b; <€, ®)

where b;; represent the elements of the Gram matrix B defined
previously. The set (B ,...,B, ,) forms a family of binary
matrices whose level of parsimony is related to the number of
common neighbors.

Taking into consideration this definition, the greater A,,
the fewer the number of pairs of observations which satisfy
this condition. The associated matrix will contain a greater
number of zeros and will thus be more parsimonious. The
sequence (A,,) m € {1,...,M} such that A, < .-+ < Ay,
makes it possible to establish an order relation C between the
M elements of the set B,\mm ef{l,...,M}

B, CB,, € CBy, (4)

in which the most parsimonious matrix is contained in all the
other matrices of its family. One of the advantages of such
a matrix is the cancellation of the extreme values and of the
noise when the level of parsimony increases, which facilitates
the arrangement of the matrix as well as the appearance
of adiagonal block structure. In relation to this family of
matrices, a question remains: how to obtain the “best” level
of parsimony, that is, the one which will make it possible to
obtain a comprehensive visualization of the data structure?

o A, ..

The ordered matrix B)Lm’ord = (bij’ord)ord) i,je{l,...,n},

m € I withthesetI € {1,..., M} contained in a set of ordered
matrices, verifies that

2ol | e
B* ine@ . n2 nl ’bij,ord bi(j+l),ord
= arg min = ar; mmz Z —_— .
Amsord & mel  Am 8 mel &= & bAm _ b/\m
i=1 j=i+1 ij i(j+1)

(5)

This criterion is based on the idea that the fewer the
alternations between the 0 and the 1 on the lines of the
matrix considered, the more compact a structure this matrix
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TaBLE 1: Criteria of arrangement used within the framework of the clustering one-mode.
Type Criterion to optimize depending on the dissimilarity matrix D = {d}; ;...
C =) ydyli-jP
i=1 j=1
n n
C, =) Y (d;-ali-jl*)
i=1 j=1
n-2 n-1 n
- Y (dy—ali- jP)
i=1 j=i+1 k=j+1
iteri C, = fdpdy)+ Y fldyd;)  with
Structural criteria 1<k ! 1<k 7
f(x, y) =sign(x — y)
fy) == lx - ylsign(x - y)
floy) =
fley) =Ix-yll,,
n-1 n
Cs = Z Z |dij - di,j+1|
S ke
C6 - Z dz](dzj 1+d1]+1 +d1+1]+d1 1])
l_]n 1
C,=) f; with
ij=1
Similarity criteria min(n,i+1)  min(m,j+1)
fi,j = Z (dij - dke)z
k=max(1,i-1) €=max(i,j—1)
min(n,i+1) min(n,j+1)
fi,j = Z (dij - dkj)z + Z (dij - die)z
k=max(1,i-1) £=max(i,j—1)

will have Indeed in Table 2, if one considers the quantity

Y 12 1] (i ?] " 1)oral @ccounting for the number of
changes between the 0 and the 1 of an ordered matrix of
degree A, and the quantity 1% fiiord l(J " 1),0rd| associated with
the nonarranged matrix of the same degree, it is notable that
the number of changes between the 0 and the 1 stays smaller in
the case of the ordered matrices. As the degree of parsimony
increases, the number of alternations between the 0 and

the 1 falls: in the example, the numerator Y. | Z;‘;ll |bi)}mOr i

bi;.”ﬂ)’or 4l is equal to 9 for a level A 1 and to 3 when

the degree of parsimony is 3. In order for the selection
criteria not to be biased in favour of an infinite sparsity,
©),, is standardized by the number of alternations between
the 0 and the 1 of the nonordered binary matrix associated
with the same degree of parsimony. Thus, according to
the example of Table 2, the level of parsimony retained is
Az2

Let us note that, at this level, a structure with two groups
is selected and a piece of data that can be regarded as extreme
data is excluded. This criterion derives from the concept of
run used in data compression [28, 33], characterizing the
biggest sequences of 1 on a line in a Boolean matrix. The
chosen criterion &)  is related to the full number of changes
present in the nonordered binary matrix of the same degree
of parsimony so that it is not skewed in favour of an infinite
parsimony or conversely, of too low a parsimony.

2.3. The Pb-Clus Geometry-Based Criterion. There are a
plethora of criteria for the task of seriation [34] but the
reordering algorithm that we proposed is based on the inner
product because of its geometric interpretation. Since our
work is based on symmetric matrices, the Tanimotos norm
(isalso based on the dot product but adapted for binary data.)

defined by x X / (x x; + xlx, — xJTx,») can be used for binary

7%
, M})

matrices B\ of parsimony degrees A, (Vm € {1,...
defined in Section 2.2.

The permutation function ¥ which seeks to optimize the
sum of the consecutive scalars can be written as

b W; b‘PZﬂ

"S-

This criterion is based on the principle of connected
components: when several observations share the same neigh-
borhood then these observations will belong to the same
cluster or to the nearest clusters. The algorithm is based on
a branch and bound method meaning that an exhaustive
search is made in various subsets that are determined by
the geometric properties of the dot product: the algorithm
first searches the independent vectors which the separated
clusters produce, then considers the connected component of
each of these vectors and finally, and reorders the correlated
vectors in each group. These steps can be done for a binary
neighborhood matrix B, with level A in the following way.

n—1

(6)
‘I’(z) b\l’(1+1)
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TABLE 2: An example of calculation of the C,  criterion calculated from the matrix of the introductory example cf Figure 1(a).
200300
010000
Matrix of common neighbors B= 003033
200300
003033
003033
Parsimony level A>1 A>2 A>3
100100 100100 100100
0100O00O0 000O0O0O0 0000O0O0
Binary matrices of common neighbors B= 001011 B= 001011 B= 001011
100100 100100 100000
001011 001011 001011
001011 001011 001011
6 N5 1 Am i hm
Zi:l Zj:l |bi,j - bi,j+1| 7 15 9
(calculus per line) (3+2+3+3+3+3) B+0+3+3+3+3) 0+0+3+0+3+3)
110000 110000 111000
110000 110000 111000
Sorted binary matrices B = 00 1110 By = 001110 By = 111000
001110 001110 0000O0O0O0
001110 001110 0000O00O0
000O0O0T1 0000O0O0 0000O0O0
6 \o A Am
Zi:l ijl Kbi,j )sort - (bi,jﬂ)sortl 9 85 3

(calculus per line)

Q+14+2+2+2+1)

1+14+42+2+2+0) 1+14+11+0+0+0)

Criterion C, Cyo1 =9/17 = 1.89

Cy,20 = 8/15 = 1.88 Cy, o1 =3/9 = 3.03

(1) Compute a matrix of dot products (inner products or
Tanimotos product) for each pair of columns of X
without considering the columns full of zeros.

(2) Select a column and find its connected components.
Then find an orthogonal vector of the previous
column and extract its connected components. This
procedure is performed until there are no more
vectors. In this way, several independent submatrices
are built.

(3) In each submatrix, place the most correlated vector
alongside the first column and keep on doing this
process until the submatrix is reordered.

(4) Gather the rearranged submatrices and apply this
order to Bj.

The most informative visualization in terms of block-
matrix is derived from the concept of run in compression
approaches which characterizes a maximal sequences of
nonzero entries in a row of a Boolean matrix [33]. It is
intuitive that the fewer changes between series of ones and
zeros are on each row the better the reordered matrix is. Since
the sizes of the binary neighborhood matrices are different,
this quantity is normalized by the minimum between the
number of zeros or the number of ones of each rows so that

@ - i card,; (0, 1) + card; (1,0)
AT Lomin (card; (0,0), card, (1,1))’

i=1

7)

where n, is the number of nonzero columns of the reordered
matrix B,.

The algorithm enables us to find all the connected
components of a cluster and to display relationships between
clusters. This algorithm is straight forward deterministic
algorithm, meaning that for a current move, the previous
permutations are not challenged. Such an approach does not
pretend to be optimal compared with the other approaches
proposed in the literature but remains efficient and very fast
even for large datasets and performs well when the data are
noisy.

Since the proposed algorithm is a forward procedure (see
Table 1), the final rearrangement obtained depends strongly
on the first column selected in each submatrix. To deal with
this problem, we propose to select a central observation for
each submatrix to initialize the algorithm. The initialization
is based on the idea that if we find a central observation in
each cluster, then all connected components can be gathered.
So, the first column is selected according to the number of
strong correlated vectors which has to be maximum.

Lastly, Pb-Clus has a higher cost of calculation than the
other methods of seriation since the arrangement is carried
out not on only one matrix but on M matrices relative
to different degrees of parsimony. In the case of a matrix
of size n x n with K groups of same size n/K, there are
at most K(n/K)! calculations. As the degree of parsimony
increases, the matrix is filled with columns (lines) of zeros,
which decreases the number of elements to be arranged, and
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FIGURE 2: (a) Projection of the data in their space (b) visualizations of the central matrix ordered by Pb-Clus with a sparsity level 0of 16 common

neighbors and (c) 8 common neighbors.

consequently the computing time. The calculation cost would
remain significantly lower than M - K(n/K)!.

3. Experiments on Simulated Data

3.1. Case of Non-Separated Clusters. For this experiment,
the data are simulated from three different 2-dimensional
Gaussian mixtures with large variances and two clusters are
superposed as illustrated in Figure 2(a). The first cluster is
formed of 5% of the data (15 observations) while the two
others account for 32% and 63% of the data, respectively
(i.e., 100 and 200 observations). The central partition linked
to this situation is represented in Figure 2(b) with a sparsity
threshold of 16 common neighbors.

For this level of parsimony, more than 6% of the data were
excluded which results in the removal of the smallest cluster.
For a level of 8 common neighbors, it is possible to recover
the third cluster.

Even if the central visualization Figure 2(c) is a bit less
clear than previously, it is still informative and three different
clusters can be seen. Moreover, the superposition of two
clusters can be identified since in the central visualization, the
two relative squares are inscribed in a bigger square which
means correlations or proximities between these two groups.
Lastly, among the seriated data, 98% have been correctly
classified.

3.2. Influence of the Level of Superimposition of Clusters. In
this second experiment, we seek to evaluate the influence
of the level of covering of clusters in the search for a data
structure. With this intention, we simulated 3 Gaussian
distributions in a 2-dimensional space so that their respective
averages check: m, = (x, y)*, m, = (x,—y)", m; = (0,—-y)"
with y € [0,0.3], and y € [0,0.225]. Consequently, the
relative position of the averages varies and this variation
determines the level of superposition of the groups. Thus,
when x = 0and y = 0, the 3 groups are mixed and
that corresponds to a superposition of 100%. In the opposite
case of separate groups where the covering rate is zero, the
averages of the clusters check: m; = (0.3, 0.225)7, m, =
(0.3,-0.225)7, my; = (0, -0.225)". Table 3 presents the

evolution of the sparsity level and its associated ousting rate,
according to the covering of the groups.

First of all, one notices that the greater the superposition
of the clusters is the more the &) criterion selects a parsi-
monious representation of the data. Indeed, when the visible
data structure becomes less marked, this effect is balanced by
a greater sparsity in the data with a bigger common vicinity.
In the same way, as the data structure becomes increasingly
complex, the rate of classification related to the subsets of
seriated data decreases as well as the quality of visualization.
In our example, beyond a rate of covering of the data of
40%, the rate of classification becomes weak (<60%) since the
algorithm Pb-Clus no longer detects a structure in the data
and this, whatever the level of parsimony imposed.

3.3. Case of Noisy Data. In this experiment, 30% of the data
are replaced by a uniform noise in a hypercube [~1,1]* and
the rest of the data are distributed from a mixture of three
closed four dimensional Gaussian distributions as illustrated
in Figure 3(a). Figure 4(c) depicts the central visualization
which brings out a natural structure of three clusters in the
dataset even if the data are noisy.

Figure 3(b) presents the evolution of the compactness
criterion &' according to the various degrees of parsimony,
namely, the number of common neighbors. The central
partition (Figure 3(c)) selected is the one for which the &,
criterion is minimal. This corresponds to a common vicinity
of 59. This sparsity results in the ousting 0of16% of the data and
only 84% of the initial data make it possible to obtain a block
diagonal representation; the subsets of excluded data are
entirely made of noisy data. The rate of correct classification
among the seriated data amounts to 99%, which implies that
these subsets of seriated data are a structural visualization
of the 3 clusters. In order to evaluate the performance of
our approach, three methods of seriation based on distance
matrices were applied: hierarchical clustering (HC) for the
seriation (Figure 4(a)), the approach of Chen based on
an anti-Robinson structure [25] (Figure 4(b)), and another
method of anti-Robinson seriation by simulated annealing
[35] (Figure 4(c)).
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TaBLE 3: Influence of the degree of covering of the clusters on the structure detection.
Degree of covering (en%) 0 6.7 13.3 20.0 26.6 33.3 40.0 46.6 53.30 73.3 100
x 0.30 0.28 0.26 0.24 0.22 0.10 0.18 0.16 0.14 0.08 0
y 0.225 0.21 0.195 0.18 0.165 0.15 0.135 0.120 0.09 0.06 0
Degree of parsimony 5 6 9 35 33 34 35 35 35 35 34
% of evinced values 0.00 0.00 0.00 0.26 0.23 0.34 0.37 0.35 0.39 0.35 0.43
Value of C, 1.95 2.01 2.42 2.64 2.90 2.82 3.34 3.29 3.32 3.54 3.65
Classification rate 0.99 0.99 0.99 0.99 0.95 0.90 0.86 0.60 0.49 0.44 0.39
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(a) Visualizations of the Gaussian mixture disturbed in the data space

(b) Evolution of the & criterion according to the number of common

neighbors

(c) The central matrix ordered by Pb-
Clus with a sparsity threshold of 67
common neighbors

FIGURE 3: Seriation in the case of noisy data.

Among the methods of seriation used, we notice that
only the central partition provided by Pb-Clus brings a clear
visualization of the three clusters. The representation of this
structure in three distinct groups is possible thanks to the
family of parsimonious binary matrices. Indeed, the higher
the degree of parsimony in the matrices, the greater the
decrease in the quantity of noisy data taken into account.

3.4. Influence of the Noise Level. This second experiment
aims to demonstrate the behavior of Pb-Clus in the case

of very noisy data. For this purpose, we simulated three 2-
dimensional Gaussian distributions of 50 observations each
with the following means m; = (-04, -03)", m, =
(-0.4,-0.3)", and m; = (0,0.3)", respectively, and matrix
of variance-covariance S = diag(0.1,0.1). These groups are
voluntarily separated in order to be able to evaluate the
sensitivity of the algorithm to the noise. The noisy data were
generated according to a uniform law on the support [-1, 1%
To evaluate the impact of the noise on visualization, we varied
the quantity of noise from 10% to 200% of the number of data



3.5. Comparison on Classical Datasets. In this section, we
compare the performance of PB Clus in terms of visualization

Computational Intelligence and Neuroscience

(a) Hierarchical method of cluster- (b) Method of Chen (c) Method based on an anti-
ing Robinson representation

FIGURE 4: Visualizations of the pixelized distance matrix seriated.
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FIGURE 5: Visualization of the data structures according to various levels of noise added to the initial data.

in the initial sample. Figure 5 presents how the visualization which are described by 4 morphometric characteris-

of the data evolves with additional noise. tics based on the width and the length of their sepals
One notes that the group visualization degrades little and their petals. This database is extremely popular

with the additional noise. Indeed, in Figure 5, the structure is in the statistical community because of difficulty of

degraded only when the disturbed data represent more than distinguishing the virginica and the versicolor.

half of the whole data.

(ii) The ruspini data come from work of Ruspini [37] on
clustering: they are made of 75 points in 2 dimen-
sions and divided into 4 homogeneous and balanced

firstly with two other methods of seriation, one using hierar- classes.

chical classification (HC) and the other using a criterion of (iii) The townships data are binary data reporting the pres-
divergence related to an anti-Robinson structure described ence or the absence of 9 descriptive characteristics
in Hahsler et al. [36] and, secondly, with an unsupervised of 16 cities, such as the presence or the absence of
classification method based on the Euclidean distances, the universities, agricultural cooperatives, and railroads.
k-means. The 5 chosen datasets are detailed below. There is no information on the number of groups

N g e . . structuring the data.
(i) Fisher’s irises database collects 3 different species of

iris in the Gaspé peninsula: setosa, virginica and the (iv) Old Faithful geyser data evaluate the time between
versicolor. Each species is represented by 50 flowers two eruptions of geysers of the national park of
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TABLE 4: Comparison of 3 methods of seriation, PB-Clus, HC, and Chen approach according to Moore and Neumann criteria on the data

benchmarks.

Method PB-Clus seriation HC seriation Chen seriation
Criterion Moore Neumann Moore Neumann Moore Neumann

Dataset
Iris 1371.2 4711 31728.8 10 893.1 193578 7304.0
Townships 244.5 91.8 1109.9 441.5 849.0 342.0
Ruspini 1290.1 4422 8724.9 3036.4 6503.7 22771
Faithful 2634.1 889.4 34045.5 11503.5 23390.0 9894.2
Geysers 2514.9 850.4 68205.3 2302.1 12866.8 4501.4

Yellowstone of Wyoming (USA) and their duration.
They are characterized by 272 observations [38].

(v) The geysers data represent a full version of the preced-
ing data that were collected by Azzalini and Bowman
[39]. These relate to the 299 eruptions which were
studied (same types of measurements as previously)
between 1st and 15th August, 1985.

The quality of the visualization is calculated from two cri-
teria proposed by Niermann [29] and presented in Section 2;
the partition obtained will be evaluated by cross-validation
with the true label when available or with the labels estimated
by the k-means. As the latter supposes a prior knowledge of
the number of groups of the mixture, we use the number of
clusters detected by Pb-Clus in order to obtain comparable
partitions.

The right-hand column of Figure 6 represents the con-
secutive dot products of elements i and i + 1 ordered out
of the 5 previous databases. These curves of consecutive dot
product give an evaluation of the proximity between two
adjacent observations and points of rupture for the passage
of one cluster to another, which makes it possible to select the
number of clusters in the mixture and to obtain a partition of
the data. In Figure 6 the left-hand column of represents the
central visualization of the parsimonious matrix ordered with
the algorithm PB-Clus. In the case of the Fisher’s irises, the
observation of its central matrix of degree of common vicinity
8 shows a total structure of two clusters.

One finds here the particular structure of the irises in
which the versicolor and the virginica are not very distinct
species. In addition, this partition in 3 groups is confirmed
by the 2 break points present on the curves of its consecutive
dot products. These 2 graphs demonstrate the performance
of our parsimonious approach for the visualization of the
data, especially as the methods of clustering which select
one optimal model with 3 iris classes are rare (cf. mixture
models of Raftery and Dean [40]). In the case of the Ruspini
and the OIld Faithful data, ruptures on the curve of the
consecutive dot products are clear and large which show the
total disconnection of the clusters between them. The same
conclusion is visible on their ordered central matrix of degree
5 for the Ruspini data and of degree 2 for the Faithful data.

On the contrary, the Geysers and the Townships data
present small breaking points. In the case of Geysers data,
they are explained by the proximity of the clusters. Then, in

the case of the Townships data, the curve of the consecutive
scalars shows that the first city is, certainly, connected to the
7 following cities but less strongly than these 7 cities between
each other. The central visualization of the parsimonious
ordered matrix of degree 2 with Pb-Clus brings a better com-
prehension of the relationships between the cities. Indeed,
it is noticed that the first data is strongly correlated with
two distinct blocks of cities. This is confirmed by an analysis
of Hahsler et al. who showed the existence of a structure
with 3 groups: urban cities, country towns, and transition
cities. This first evaluation based on our visual perception
is supplemented by the measure of quality based on seri-
ation criteria evaluating the vicinity in the ordered matrix.
Table 4 evaluates the performances of 3 methods of seriation,
the best method being the one whose criterion is minimum.
It is noticed that the 2 criteria of Niermann are minimum for
a parsimonious approach for all the databases.

Lastly, Table 5 presents the tables of cross-classification
with the true label for the irises of Fisher and with the
labels obtained by k-means in the case of the data Ruspini,
Townships, Geysers, and Faithful. Let us note that in the case of
the irises and Geysers data, we threshold the scalars in order to
obtain a label for each data. Concerning the Fisher irises, the
correct classification rate of PB-Clus is 89.0%, slightly weaker
than that obtained by the k-means (90.6%). This difference
in rate is related to the data located at the intersection of
the virginica and the versicolor and with initialization of our
algorithm. For the other data files, one observes that the
partitions obtained by Pb-Clus and the k-means agree almost
perfectly, the rates of classification bordering 98%.

4. Experimental Methods

In this section, we approach the task of classifying spike
waveforms using PB-Clus.

4.1. Animal Training and Behavioral Tasks. The detection
of neural spike activity is a technical challenge that is a
prerequisite for studying many types of brain function (for
more details see Vigneron et al. [41]).

The study, approved by the Institutional Animal Care
and Use Committee at the National Chiao Tung University,
was conducted according to the standards established in the
Guide for the Care and Use of Laboratory Animals. Four male
rats weighing 250-300g (BioLASCO Taiwan Corp., Ltd.)
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FIGURE 6: (a)-(e) rearranged matrices obtained with the PB-Clust (f)-(j) consecutive scalars resulting from the rearranged matrices.

were individually housed applying a 12 h light/dark cycle, with
access to food and water ad libitum.

Dataset was collected from the motor cortex of awake
animals performing a simple reward task. In this task, male
rats (BioLACO Taiwan Co.Ltd) were trained to press a
lever to initiate a trial in return for a water reward. The

animals were water restricted 8-hours/day during training
and recording session but food was always provided to the
animal ad lib every day.

4.2. Chronic Animal Preparation and Neural Ensemble Re-
cording. The animals were anesthetized with pentobarbital
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TABLE 5: Tables of cross-validation of the data benchmarks.
(a)
Fisher Iris Township

Known Clusters PB-Clus Known Clusters k-means Clusters PB-Clus

Known classes
classes 1 2 3 classes 1 2 3 1 2 3 4
Setosa 50 0 0 Setosa 50 0 0 Urban cities 8 0 0 0
Versicolor 0 50 Versicolor 0 49 Transitions 0 4 0 0
Virginica 0 17 33 Virginica 0 13 37  Country towns 0 0 2 0

Unclassified 0 1 0 1

Classification rate = 0.88 Classification rate = 0.90 Classification rate = 0.94
(b)
Ruspini Faithful Geysers

Clusters Clusters PB-Clus Clusters Clusters PB- Clus Clusters Clusters PB-Clus
k-means 1 2 3 4 k-means 1 2 k-means 1 2 3
Group 1 50 0 0 0 Group 1 168 4 Group 1 88 2 7
Group 2 0 35 0 0 Group 2 0 100 Group 2 0 105
Group 3 0 0 15 0 Group 3 0 0 97
Group 4 0 0 0 20

Classification rate = 1.00

Classification rate = 0.98

Classification rate = 0.97

(50 mg/kgi.p.) and placed on a standard stereotaxic apparatus
(Model 9000, David Kopf, USA). The dura was retracted
carefully before the electrode array was implanted. The pairs
of 8 microwire electrode arrays (no.15140/13848, 50 m in
diameter; California Fine Wire Co., USA) were implanted
into the layer V of the primary motor cortex (M1). The area
related to forelimb movement is located anterior 2-4 mm and
lateral 2-4 mm from bregma. After implantation, the exposed
brain should be sealed with dental acrylic and a recovery time
of a week is needed.

During the recording sessions, the animal was free to
move within the behavior task box (30 cm x 30 cm x 60 cm),
where rats only pressed the lever via the right forelimb,
and then they received 1-mL water reward as shown in
Figure 7. A multichannel Acquisition Processor (MAP,
Plexon Inc., USA) was used to record neural signals. The
recorded neural signals were transmitted from the head-
stage to an amplifier, through a band-pass filter (spike
preamp filter: 450-5 kHz; gain: 15,000-20,000), and sampled
at 40 kHz per channel. Simultaneously, the animal’s behavior
was recorded by the video tracking system (CinePlex, Plexon
Inc., USA) and examined to ensure that it was consistent for
all trials included in a given analysis.

4.3. Preprocessing. Neural activity was collected from 400-
700 ms before to 200-300ms after lever release for each
trail. Action potentials (spikes) crossing set thresholds were
detected and sorted and the firing rate for each neuron was
computed in 33 ms time bins. Since the signals are collected
with 10 nanometers invasive probes, the noise effects are
limited.

FIGURE 7: The experimental setup (top). Light-color (red virtual
ring) was belted up the right forelimb to be recognized the trajectory
by video tracking system. The sequence images captured the rat
performing the lever press tasks in return for a reward of water
drinking (bottom).

The experiment was made on 16 channels which collected
EEG signals from microprobes which are implanted in the
layer V of the M1 region of a rat.

4.4. Manual Scatterplot Classification. A method for classi-
fication is by plotting a selection of 2 or 3 spike features in
a scatter diagram. This results in a 2- or 3-D graph with
separate groups. The groups can only be assigned when there
is enough spacing between the groups. Elliptic shaped areas
are drawn around the groups isolating the classes.



12

Computational Intelligence and Neuroscience

(a) Intrinsic structure of the data obtained by
PB-Clus on channel 2
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(b) Projection of spikes on the first discriminant axis

estimated by MDA

(c) Projection of the data obtained by PCA-EM

FIGURE 8: Results obtained by PB-Clus and 2 unsupervised approaches MDA and PCA-EM on channel 2.

TaBLE 6: Number and type of spikes recorded in the 16 channels.

Channel 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of spikes — 799 60 405 727 489 300 229 475 224 533 538 21 1833 1491 421
Types of spikes — 2 2 2 1 2 4 1 1 2 2 2 1 2 1 4

4.5. Spike Waveforms Classification. To both reduce the size
of these patterns and to cluster the spike mixture in a finite
number of classes, we use two different tools: a seriation
approach (PB-Clus) and a subspace clustering approach [42],
named MDA (Mixture Discriminant analysis). Statistical
discriminant analysis methods such as MDA aims to find

the groups. The quality of the partition obtained by both
approaches will be measured by the Fisher index which is
defined by the ratio between the within (S,,) and the between
(Sp) scatter matrices:

Sy _ Zle Yiec, (xi = my) (x; - my)'

i =< > (8)
both a parsimonious and discriminative fit for the data in index = g YK o (my - %) (my - %)
order to ease the clustering and the visualization of the «
clustered data in a Gaussian mixture model context. MDA, where m = (1/my) ZieCk x; is the empirical mean of

developed by Hastie and Tibshirani [43], is a generalization
of LDA (Linear Discriminant Analysis) in which each class
is modeled by a mixture of Gaussians (see [44, chp. 4] for
more details). This modelization gives more flexibility in
the classification rule than LDA and allows MDA to take
into account heterogeneity in a class. Breiman et al. [45],
MacLachlan and Basford [46] have actually contributed and
tested this generative approach on many fields. This latent
subspace orientation is chosen such as it best discriminates

the observed column vector x; in the class k and x =
(1/n) sz:l mmy, is the mean column vector of the obser-
vations. Besides, both methods will be compared with a
traditional approach of clustering which first reduces the
dimension by principal component analysis (PCA) and then
clusters the data in the projected space and refers in this paper
to PCA-EM. Clustering accuracy will be computed between
the partition obtained by both approaches and that obtained
by a k-means approach.
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4.6. Results for Some Prominent Channels. This first study
aims to satisfy the existence of 4 classes of spikes. For this
experiment, the clustering task was made channel by channel
and, in each channel, we consider all the different events
which correspond to movements of the rat. Finally, for each
event, many spikes were recorded. Each normalized spike
waveform is a time series that are of 32 dimensions.

Table 6 presents the number of spikes recorded in each
of 16 channels and also the a priori number of kinds of spikes
found by the preprocessing task. Besides, in the preprocessing
task, as PCA components are computed so that different types
of spikes are separated, we are going to first consider the
projection on the 2 first components of PCA on each channel.

Figure 9 stand for the projection of the spikes of all the
events of a selection of channels on the two first components.
Whereas Table 6 describes the number of supposed types of
spikes and given the preprocessing task, we expect to visualize
on Figure 9 the intrinsic structure of the dataset where the
number of separated clusters corresponds to those obtained
in Table 6. However, it is difficult to visualize in Figure 9
a partition of several clusters in the data for each channel,
whereas different clusters for channels 2, 7, and 16 can be
observed in Figures 9(a), 9(e), and 9(k); such distinctions
cannot be generalized since, on the other channels, it is
not possible to visualize a group structure in the projected
data. Without the label information of the preprocessing task,
nothing enables us to suppose the true existence of different
clusters. Furthermore it can be observed in Figure 9(b)—
which stands for the projection of data of channel 3 plotted
with the labeled spikes elaborated by the preclassification
task—that the manual labels give no sense to a partition of
the 2 groups of the data.

Consequently, from now, the proposed labels will not be
taken into account and the main purpose of this work is
to check the relevance of the preprocessing task. This study
focuses on channels 2 and 7 whose datasets appear structured.

4.6.1. On Channel 2. The possible existence of two types
of spikes in the axes of PCA in Figure 9(a) is satisfied by
both the seriation and the subspace clustering approaches. In
Figure 8(a) which represents the rearranged observations
obtained by the Algorithm1, one can observe 2 differ-
ent blocks, one for each types of spikes in the data. In
Figure 8(b) which stands for the projection of the data in
the discriminative axes estimated by MDA algorithm, it can
be observed that the clusters appear to be well separated
compared with those obtained in the PCA axis. Figure 8(c)
illustrates the projection of the data in the discriminative axes
estimated by algorithm, it can be observed that the clusters
appear to be well separated compared with those obtained
in the PCA axis. Figure 8(c) which stands for the response
of the supervised classification by PCA-EM approach has
a similar representation of the data as those obtained by
their projection in the 2 first principal components of PCA
illustrated in Figure 9(a). In addition, Table 7 represents the
Fisher index which has been computed for the different
approaches previously presented. For the PB-Clus partition,
the Fisher index is lower than those obtained by PCA-EM and
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TABLE 7: Fisher index computed in channel 2 for PCA-EM, PB-Clus,
and MDA.

Methods
F,

index

PCA-EM PB-Clus
864.5 210.1

MDA
588.7

MDA. It can be explained by the fact that PB-Clus introduces
sparsity in the data, which produces smaller clusters that
are more compact than those produced by PCA. Besides,
the Fisher index for the MDA approach is equal to 588.7,
which is equivalent to the result obtained by the PCA-EM
classification (F,gex 585.0) and lower than the PCASs
one (F 4« = 864.5). Finally, to check the validity of the
partition obtained by both methods, a cross-validation on
the k-means results obtained by the work of [25] has been
made. The contingency table and the clustering accuracy are
presented in Table 8 and for each approach, it can be noted
that 99% of the labeled data match with the PCA-EM labels.
Consequently, it seems that, in channel 2, there are 2 different
kinds of spikes and their respective shape obtained by both
PB-Clus and MDA approaches is detailed in Figure 10.

4.6.2. On Channel 7. According to Figure 9(e), it can be
observed on the first two components of PCA that there are
at least 3 different groups of spikes. This remark is satisfied
by the seriation approach, since Figure 11(a) which represents
the intrinsic structure obtained by PB-Clus stresses 3 different
kinds of spikes. In the same way, 3 components have been
selected by using the Bayesian information criterion (BIC)
for the mixture model in the case of PCA-EM, whereas both
the preprocessing task and MDA, with the computation of
BIC, have found 4 types of spikes. Figure 11(b) represents
the projection of the clustered data on the 3 discriminant
axes estimated by PCA-EM. In addition, since the k-means
approach is based on the results of the preprocessing task,
the prediction of the class membership of this dataset is made
amongst 4 classes as can be seen in Figure 11(c).

Since the number of clusters varies between the different
methods, data have been modeled by mixture models with
3 and then 4 components for both PCA-EM and MDA
approaches, in order to be able to compare all the approaches.
In Table 9 the Fisher index has been computed for the
different cases. As expected, this criterion is much lower in
the case of PB-Clus since it includes parsimony in the data
whereas the ones obtained for MDA or PCA-EM remain
high for a mixture of 3 components. Finally, the contingency
table and the clustering accuracy are presented in Table 10.
It can be observed that for the first case, PB-Clus detects the
types 1, 2, and 4 of spikes whereas the 3 rd type of spike is
mixed with the first one. Furthermore, the classification rate
reaches 91% on the spikes retained by PB-Clus when 40% of
the data are ousted because of a high level of sparsity. In the
second case, the partition obtained by MDA is comparable to
these obtained by the PCA-EM classification except for type
1 which is mainly spread on type 3.

Finally, Figures 12(a) and 12(b) show the different spikes
clustered by the PB-Clus and MDA algorithms. The difference
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FIGURE 12: Clustered spikes obtained by PB-Clus and MDA for the channel 7.

between the two approaches is clearly seen on the 3 rd type
of spikes (blue in Figure12) which is detected by MDA
whereas it is not by PB-Clus. This could be explained by
the weak dissimilarity between the shape of the 1st and the
3 rd type of spikes (resp., black and blue in Figure 12) which
is not taken into account by the measure of similarity, the

euclidean distance, used in PB-Clus. Different measures of
similarity have been tried on PB-Clus such as Spearman
correlation or maximum distances but have not brought any
more information or any improvement for the visualization.

To conclude, given these results, the existence of 4
different types of clusters does not seem really relevant
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Require: seq := vector of expected number of neighbors
Require: liste® := vector of criterion values
(1) foralli € seqdo
(2) Compute the binary matrix By of common neighbors for A = seq (i)
(3) Compute B, the scalar products matrix of B,
(4) A« sort(S,) (sort the individuals)
(5) C, « crit(B,, S,), compute the criterion
(6) liste® — merge(liste®, C,)
(7) end for
(8) A" «arg min, (liste®)
(9) B+ < min(liste®)
(10) O, « ordre(S,+)
The PB-Clus algorithm returns the minimum of the criterion B,
the related number of common neighbors and the optimal sorting matrix O, ..
(1) procedure sort(S,)
(2) V:=colinear(i.obs, S))
(3) liste := list of individuals whose common neighbors (cn) is non-zero (cn = 0)
(4) i.max := the individual for which ¢ is maximum
(5) i.perm := 0 (list containing the ranking value of the individuals)
(6) repeat
(7) iperm « merge(i.perm, liste[V.col])
(8) if length(V.cor) >1then
9) S;<S; [e(V.cor, V.ind), ¢(V .cor, V.ind)]
(10) liste « liste[c(V.cor, V.ind)]
1) if length(V.cor) > 1 then

(12) V « colinear(l, B,)
(13) end if
(14) else

15) Sj — Sj [V.ind, V.ind]
(16) liste = liste[V.ind]
17) if length(V.cor) > 1 then

(18) i. max = arg max; cn(Sj)
19) B, = B, [V.ind, V.ind]
(20) V = colinear(i. max, B))
(21) end if

(22) end if

(23) until length(liste) > 1

(1) procedure cOLINEAR(i, S) returns 3 different lists
(2) s, :=ithlineofS

(3) V.col :=list of individuals that are colinear with s;
(4) V.cor:=list of individuals that are correlated with s;
(5) V.ind:= list of individuals that are independent of s;

ALGORITHM I: PB-Clus algorithm.

TaBLE 8: Contingency tables for PB-Clus and MDA partitions with TABLE 9: Fisher index computed in channel 7 for PCA-EM, PB-Clus,

k-means classification in channel 2. and MDA.
PB-Clus MDA Methods PCA-EM PB-Clus MDA
k-means Clusters k-means Clusters F, 4ex for 3 clusters 614.1 287.9 483.6
classes 1 2 classes 1 2 F, 4o, for 4 clusters 3922 — 3241
Typel 214 0 Typel 515 2
Type 2 0 79 Type 2 5 277
Classification rate = 100% Classification rate = 99.12%

approaches. Consequently, either the preprocessing task is

biased since the different types of spikes do not really exist
since some types of spikes, in particular types 3 and 4, are  or the 32 dimensions of the studied spikes are not sufficient
often mixed with the first type in both PB-Clus and MDA to discriminate the 4 different types of spikes.



Computational Intelligence and Neuroscience 17
TaBLE 10: Contingency tables for PB-Clus and MDA partitions with k-means classification for the channel 7.
PB-Clus MDA

k-means classes Clusters k-means classes Clusters

1 2 3 1 3 4
Type 1 183 1 0 Type 1 181 0 17 6
Type 2 0 0 7 Type 2 1 36 0 0
Type 3 5 0 0 Type 3 0 0 33 4
Type 4 1 5 1 Type 4 0 0 0 22

Classification rate = 91%

Classification rate = 90.1%

5. Conclusion

Controlled numerical experiments using spike and noise
data extracted from neural recordings indicate significant
improvements in detection and classification accuracy com-
pared with amplitude and linear template-based spike sorting
techniques. Algorithm 1 makes it possible to visualize subsets
of spike data and their dependencies. With this intention,
we proposed a family of embedded parsimonious matrices
of different levels of parsimony whose level is directly deter-
mined by the number of common neighbors between pairs
of observations. This is an effective tool for the analysis of
data, which offers better results visually than the traditional
clustering methods, in particular when the data are noisy or
imbalanced or when the groups are superposed.

Moreover, this parsimonious approach facilitates the
interpretation of the data and offers a quality of partitioning
comparable with the k-means method with the advantage
of not posing any assumption about the number of clusters.
In addition, choosing a level of parsimony in the data
corresponds to seeking explicative subsets of a structure.
This new point of view can be connected with an approach
by levels of density, commonly called level sets, which was
initially approached by Hartigan [47] and then by Nolan [48].
A comparison of these two approaches and the search for a
theoretical bond are part of our research tasks in progress.
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