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A PRIORI AND A POSTERIORI ERROR ANALYSIS FOR A LINEAR ELLIPTIC
PROBLEM WITH DYNAMIC BOUNDARY CONDITION.

TOUFIC EL ARWADI', SERENA DIB, AND TONI SAYAH?

ABSTRACT. In this paper, we study the time dependent linear elliptic problem with dynamic boundary
condition. The problem is discretized by the backward Euler’s scheme in time and finite elements in
space. In this work, an optimal a priori error estimate is established and an optimal a posteriori error
with two types of computable error indicators is proved. The first one is linked to the time discretization
and the second one to the space discretization. Using these a posteriori errors estimates, an adaptive
algorithm for computing the solution is proposed. Finally, numerical experiments are presented to show
the effectiveness of the obtained error estimators and the proposed adaptive algorithm.

KEYWORDS. Dynamic boundary condition , finite element method, a posteriori analysis.

1. INTRODUCTION

Let ©  R? be a bounded simply-connected open domain in R?, with a Lipschitz-continuous connected
boundary T', and let ]0, T’ to denote an interval in IR where T' € (0, +00) is a fixed final time. We denote
by n(z) the unit outward normal vector at x € I". We intend to work with the following time dependent
linear elliptic problem with dynamic boundary condition:

—Au(t, ) = 0 in]0,T[xQ,
%(t,x) + Bn(r).Vu(t,z) = 0 on]0,T[xT, (1.1)
u(0,z) = ug onl,

where § is a positive constant. The unknown is u and wug is the initial condition at time ¢ = 0.

The solution of problem (1.1) can be represented on the boundary by a Dirichlet-to-Neumann semigroup
(see for instance [17]). For the existence and uniqueness of this solution see [17]. In a particular case,
where 2 = B(0,1) the unit ball of R?, in his book [14], P.Lax showed that the Dirichlet-to-Neumann
semigroup had a simple explicit representation. In [9], it is shown that the Lax representation cannot be
generalized if © is not the unit ball of R?. This motivated the authors of [9] and [7] to introduce a semi
discrete explicit and implicit Euler’s scheme in order to approximate the Dirichlet-to-Neumann semigroup
numerically. The convergence of these semi discrete schemes is based on the Chernoff’s product formula.
For the discretization of problem (1.1), the authors of [9] show simple numerical experiments. The aim
of this work is to show optimal a priori and a posteriori estimates and some numerical investigations.

The idea of the a posteriori error estimates is based on an upper bound of the error between the exact
solution and numerical one with a sum of a local indicators expressed in each element of the mesh. To
get more precision and to minimize the error, the goal is to decrease this indicators by using the adaptive
mesh techniques which consists to refine or coarsen some regions of the mesh. The a posteriori error
estimate is optimal if we can make each one of these indicators bounded by the local error of the solution
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around the corresponding element. We refer for example to the books Verfiirth [16] or Ainsworth and
Oden [1]. For the time dependent problems, we have two types of computable error indicators, the first
one being linked to the time discretization and the second one to the space discretization. We have
to handle the two kinds of indicators, some times, we change the time step and in an other times, we
adapt the mesh. A large amount of work has been made concerning the a posteriori errors. We can
cite for example, Ladeveéze [12] for constitutive relation error estimators for time-dependent nonlinear FE
analysis, Verfurth [15] for the heat equation, Bernardi and Verfiurth [6] for the time dependent Stokes
equations, Bernardi and Siili [4] for the time and space adaptivity for the second-order wave equation,
Bergam, Bernardi and Mghazli [5] for some parabolic equations , Ern and Vohralik [10] for estimation
based on potential and flux reconstruction for the heat equation and Bernardi and Sayah [3] for the time
dependent Stokes equations with mixed boundary conditions, . ...

In this paper, the data of the problem is the initial condition of the unknown at the boundary. We
propose a very standard low cost discretization relying on the Euler’s implicit scheme in time combined
with finite elements in space. Then, we prove optimal a priori and a posteriori error estimates for the
discrete problem. Finally, some numerical simulations are presented based on the proposed algorithm
using the FreeFem++ software.

The outline of the paper is as follows:

Section 2 is devoted to the study of the continuous problem.

In section 3, we introduce the discrete problem and we recall its main properties.
In section 4, we study the a priori errors and derive optimal estimates.

In section 5, we study the a posteriori errors and derive optimal estimates.

In section 6, we show numerical results of validation.

2. ANALYSIS OF THE MODEL

In order to write the variational formulation of the problem (1.1), we introduce the Sobolev spaces:
H™(Q) = {v e L*Q),0% e L*(Q), V|al|<m},

equipped with the following semi-norm and norm :

0 o= Z/\aav(x) 2 dx

le]=m

and
1/2

lolma=q > 1vie

k<m

As usual, we denote by (-,-) the scalar product of L?(Q).

For handling time-dependent problems, it is convenient to consider functions defined on a time interval
Ja,b[ with values in a separable functional space, say Y. In the following, f(¢) represents the function
f(t,.). Let || - ||y denote the norm of Y’ then for any r, 1 < r < co, we define

b
L (a,b:Y) = {/ measurable in}a,b[;/ 170t < oo}
equipped with the norm

| f llzr(apyy= (/: ||f(t)H§}dt)1/T,
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with the usual modifications if r = oco. It is a Banach space if Y is a Banach space.
By the same way, for any integer k, we define

Ck(a,b;Y) = {f measurable in Ja, b[xQ;

sup [If0(t, )|y < oo}
t€la,b[,0<I<k

For the existence and the uniqueness of the solution of problem (1.1), we refer to the theorem 2.1, page
169 in the book [17].

Theorem 2.1. If T is of class C? and for each ug € L*(T'), problem (1.1) has a unique solution
u: [0, 4+00) — HY(Q), satisfying:

(1) w e C([0, +o0); HI(Q)) (| L2([0, +00): H(2);
(2) ulr € C([0,+00); L2(I")) N C*([0, +00); L*(T));
(3) n.Vu € C([0, +00); L*(I")).

Furthermore, we have the following bound:

1
BIVUll 220,400y 22(0)) < §||U0||%2(r)~ (2.1)

If in addition, ug € H%(F), and the unique solution of the problem
—Au=0 in Q
U = U on I’
satisfies n.Vu € L?(T'), then the solution u of the problem (1.1) satisfies
(1) u e CH([0,4+0); HY(Q));

(2) ulr € C*([0,+00); L*(T));
(3) n.Vu € C([0, +00); L2(T)).

Remark 2.2. Unfortunately, to our knowledge, there is no equivalent to the previous theorem in the
case of a polyhedral domain Q2. This will be our next research work.

We suppose that ug € H'/ 2(T") and introduce the following variational problem in the sense of distribu-
tions on 10, T'[:
Find u(t) € H'(Q) such that :

u(0) =up onT,

B/QVu(t,x)Vv(x) dz +%(/Fu(t,s)v(s) ds) =0
Vv e HY Q).

(2.2)

Theorem 2.3. Ifu € L?(0,T; H*(Q)) and u|r € L*°(0,T; L*(T")), the problem (1.1) is equivalent to
the variational one (2.2). Furthermore, we have the following bound

1 1
BHVU\|%2(0,T,L2(Q)2) + 5”“(7)”%2@) < §||UO||%2(F)~

3. THE DISCRETE PROBLEM

From now on, we assume that 2 is a polyhedron. In order to describe the time discretization with
an adaptive choice of local time steps, we introduce a partition of the interval [0, 7] into subintervals
[trn—1,tn], 1 <n < N,such that 0 =ty <t; <--- <ty =T. We denote by 7, the length of [¢,_1,t,], by
7 the N-tuple (71, ...,7n), by |7] the maximum of the 7,,, 1 <n < N, and by o, the regularity parameter

Tn

0r = max .
2<n<N Tp_1
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From now on, we work with a regular family of partitions, i.e. we assume that o, is bounded indepen-
dently of 7.

We introduce an operator 7, by the next definition.

Definition 3.1.  For any Banach space X and any function g continuous from ]0,T] into X, m,rg
denotes the step function which is constant and equal to g(t,) on each interval t,—1,t,], 1 < n < N.
Similarly, with any sequence (¢n)1<n<n i X, we associate the step function m ¢, which is constant and
equal to ¢, on each interval Jt,—1,t,], 1 <n < N.

Now, we describe the space discretization. For each n, 0 < n < N, a regular triangulation of Q (7,5)s is
a set of non degenerate elements which satisfies:

e for each h, Q is the union of all elements of T;

e the intersection of two distinct elements of 7, is either empty, a common vertex, or an entire
common edge;

e the ratio of the diameter of an element x in 7, to the diameter of its inscribed circle is bounded
by a constant independent of n and h.

As usual, h denotes the maximal diameter of the elements of all 7,5, 0 < n < N, while for each n, h,
denotes the maximal diameter of the elements of 7. For each k in Ty, we denote by Pj(k) the space
of restrictions to k of polynomials with two variables and total degree at most one.

In what follows, ¢,c’,C,C’, c1,... stand for generic constants which may vary from line to line but are
always independent of A and n. For a fixed n € N and a given triangulation 7, we define by X, a finite
dimensional space of functions such that their restrictions to any element  of 7T, belong to a space of
polynomials of degree one. In other words,

Xonn = {v € C°(Q), v]|, is affine Vi € T}

We note that for each n and h, X,,;, C H'(Q). There exists an approximation operator, I, € L(H?(Q); X,1)
such that for m =0, 1

Yo € H*(Q), |Ih(v) — v|ma < Ch*™|v

2,Q-

The full discrete implicit scheme associated with the Problem (2.2) is: Given uzfl € Xn—1n, find u} with
values in X,,;, solution of

V1]}1, S th7

1
B/ Vup Vupde +/ —(uff —uf Y vpdo = 0. (3.1)
) r

Tn
by assuming that u{ is an approximation of u(0) in Xop,.

Remark 3.2. [t is a simple exercise to prove ezistence and uniqueness of the solution of problem (3.1)
as a consequence of discrete problem of Poisson’s equation with a Robin condition.

Theorem 3.3. For each m =1, ..., N, the solution u}* of the problem (3.1) satisfies the bound:

m
1
lupllg o + Z Talupli g < m”“gng,n (3.2)

n=1

Proof. For all v, € Xy, let u} be the unique solution of the (3.1). Choosing vi(t,) = u}} in (3.1), we
find

Braled 2 g+ |3 = / W dor (3.3)

By applying the Holder inequality and summing over n from 1 to m, we get (3.2). O
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4. A PRIORI ERROR ESTIMATES

To get the a priori error estimates, we suppose that time step 7, and the mesh 7, don’t change during
time iterations. We denote by k the time step, by h the parameter of the mesh and by X} the discrete
space.

In this section, the discrete variational formulation (3.1) taken in the time step n + 1, becomes
1
Yy, € Xp, B/ Vu ! Voydz +/F k(uZJrl —u})vpdo = 0. (4.1)

To get the a priori error estimate, we need the following the classic Gronwall lemma.

Remark 4.1. < Gronwall’s lemma >>
Let (an)n>05 (bn)n>0 and(cn)n>o three real positive sequences such that (cp)n>0 i an increasing sequence.
We suppose that we have:

(1)

ao + bo < co, (4.2)
(2) there exists A > 0 such that:
n—1
Vnzl,an+bn§cn+)\2am. (4.3)
m=0
Then we have:
V>0, an + by < cpe™. (4.4)

In order to get the a priori error estimate, we begin with the next theorem.

Theorem 4.2. Ifu € L>®(0,T,H*(Q?)) and v’ € L>(0,T, H*(Q)), and for all m = 0,...,N — 1, we
have the bound:

I (u(tmsn)) = wi e e + 288 n(ultnsn) —up i g

n=0
< O (h? + k2 +[Juf, — In(uo)l[3 r),

where C' is a constant independent from h and k.

(4.5)

Proof. We consider the equation (2.2) for ¢ €]t,,t,, 1], take v = vZH, integrate in time between t,, and
tnt1, then take the difference with (4.1) for vy, = v to get

B/TLH/ —u} ™) (@) Vot (2) da dt
/;(( (tns1) — u(tn)) — (upt™ —uf)) vt (s) ds = 0.

We insert =V (I (u(ty+1))) and £V (u(t, 1)) in the first term, and +£1; (u(tp41)) and £ (u(t,)) in the
second term, we denote by a,, = Ij(u(t,)) — uj and we obtain

/(anﬂ —an)(s) vy " (s)ds + kBlan|i o =
r

(4.6)

/ (I (ultas1)) — ultasr)) — n(u(tn)) — u(tn)))(s) ol ds
"H/v tur1) — u()) () VoIt (@) de dt

+ﬂ/"+l/v Ln(u(tns)) — ultnss)) VoIt (2) da dt

We denote by T; and T, respectively the first and second terms of the left hand side, and T3,Ty,T5
respectively the first, second and third terms of the right hand side of the equation (4.7). Then we choose
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v = Q.
The term 77 can be expressed as
1 2 1 2
T = = [ anii(s)ds — = [ ay(s)ds
2 Jr 2 Jr

1

t5 /F(am_l —a,)?(s)ds.

The term T3 can be bounded as

T, - / (I (ultns1)) — ultns1))

In(u(tn)) — u(tn))(s) anta(s) ds

- / / In(u(r)) = a(r))(s)an1(s) dsdr

tnt1
< [T E) @l laleds
t

n

IN

Chk||u'l| Lo 0,1;m2 (@) l|ans1llL2 ()

C2h2k kel

/
< 9e, ' 1z 0,7, 2020 + —5—

We consider the term T;. We have

||an+1||o r-

T, = 8 / T SV ultir, 7) — ult, 2)) (@) Vana () da dt
Q

tn

tn+1 tn+1
< / /Vu (1,2)Vapii(x)dedrdt
t"L
< BRI oo 0,1, 11 (@) [an+1]1,0
k3 52 k82
< 9e ||“ 1F0.1,m1 () T 5 lant1li o

Finally, the term T can be bounded as

L - 8 / [ ¥ttt

—u(tn+1,2))Vanyr(z) de dt

tn41
< 8C [ hlultasn)
tn
< CohBVE|ullL=(07,12(0) VElant1]1,0
CZh%kp? kag
< 22763”“”1;00(0,1}12(9)) +—
Using the previous bounds, we get
1 1
i/Fa%H(s)ds - i/rafl(s)ds
1 2 2
+2 (Ant1 —an)(s)ds + kﬁ|an+l|1,ﬂ
r
C2 k h? ke
=94 |u ||L°° o,1,72(Q) T 5 |
k3 82 ks
+ 9e, [l o.1,H @) T 5 |an+1|19
C2h2k 32 kes
+22THUH%OO(O,T,H2(Q)) +— |an+1|1 Q-

|an+1|1Q
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B

1 B .
ik €2=73 and ez = ) to get the following bound

1 kB
§||am+1||8,r Ty Z lant1lio
n=0

We choice ¢1 =

.o (4.9)
1
< Cs(R* + k) + §||ao||(2),r + 6T nz::O Han+1||g,r~

We write the last term of the previous bound as

k m
16T Z ||an+1||(2),r =
n=0

k m—1 ) k )
= 3 Nonsalir + o llansa
n=0
k 1 .
we suppose that —— < = and then apply the classic Gronwall lemma to get the result. (]

16T — 4
Corollary 4.3. Ifu € L>(0,T, H?(Q)) and u' € L>=(0,T, H*(2)), for all m = 0,...,N — 1, we have
the following bound:

m
lu(tinsr) = ui e + 268 Jultor) —up i g

oy (4.10)
< C (W + K+ [, = Tn(uo)ll5 r);
where C' is a constant independent of h and k.
Proof. For alm=20,...,N —1:
[ultmir) = up ™G+ 258D fultny) —up ™ o
n=0
< u(tmt1) — Ih(u(tM-&-l))Hg,F + [ n(u(tm+1)) — uZH_l |3,F
(4.11)

2k B fultnr1) = In(u(tar1)l o
n=0

+25 83 [T (u(tnta)) — w0
n=0
Based on the theorem 4.2, the second hand of the inequality (4.11) can be bounded by Cj (h? + k?),
where (' is a constant independent of h and k. The properties of I, give the result. |

5. A POSTERIORI ERROR ESTIMATES

We now intend to prove a posteriori error estimates between the exact solution u of Problem (2.2) and
the numerical solution up, of Problem (3.1).

5.1. Construction of the error indicators.

In this section, we will introduce several notations and properties and we will define the indicators.
For every element x in 7,,, we denote by

€ the set of edges of k that are not contained in 0f2,

el the set of edges of k which are contained in 0f2,

A, the union of elements of 7,,;, that intersect x,

A, the union of elements of 7T,;, that intersect the edge e,

h, the diameter of k and h. the diameter of the edge e,

[}
[}
[}
L]
[}
e and [-]. the jump through e for each edge e in an ¢, (making its sign precise is not necessary).
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Also, n,, stands for the unit outward normal vector to x on Ok.

For the proofs of the next theorems, we introduce for an element x of 7, the bubble function ¢, (resp.
1. for the edge e) which is equal to the product of the 3 barycentric coordinates associated with the
vertices of k. We also consider a lifting operator L. defined on polynomials on e vanishing on Jde into
polynomials on the at most two elements k containing e and vanishing on 0k \ e, which is constructed
by affine transformation from a fixed operator on the reference element. We recall the next results from
[16, Lemma 3.3].

Property 5.1. Denoting by P.(k) the space of polynomials of degree smaller than r on k, we have

< Jow?llo.x < ¢lol
Vo€ P cl|vllox < & ok < 0,65 5.1
v r(:‘i)a { |'U|1,m < Ch;1||1}| 0. ( )

Property 5.2. Denoting by P,.(e) the space of polynomials of degree smaller than r on e, we have

VoePe),  clvlloe < llvvd?lloe < ¢lvllo.e,
and, for all polynomials v in P.(e) vanishing on Oe, if k is an element which contains e,
Cevllow + he | Lev [1.x< che/|[v]lo.e-

We also introduce a Clément type regularization operator C,; [8] which has the following properties,
see [2, Section IX.3]: For any function w in H'(Q), C,pw belongs to the space of continuous affine finite
elements and satisfies for any « in 7,5, and e in ¢,

llw = Crnpwl|z2(s) < Ch{a@le,An (5.2)
and ||w = Conw||2(e) < ché?||w]1,a. -

For the a posteriori error studies, we consider the piecewise affine function w;, which take in the interval
[tn—1,t,] the values

o t— tn—l
=

The solutions of Problems (2.2) and (3.1) verify for ¢ in |¢,_1,t,] and for all v(t) € H'(Q) and vy, (t) € Xp:

up(t) (up — uZ’_l) + uZ_l.

O(u — up)
5/9V(u—uh)(t,:1c)VU(t,x) dx —i—/FT(

_ _ﬁ/QV(uh(t,x) W (@))Volt, z) do

t,s)v(t,s)ds

n Ouy,
—B/QVuh(x)Vv(t,a:) dx — 1“ﬁ(t,s)v(t,s) ds

tnT; t /Q V(up —up =) (2)Vo(t,z) de
-y B ; (Vul.n)(x) (v — vp)(t, x) dx

KETnh

=4

n _ ,n—1
—/Ms(v—vh)(t,s)ds.
r

Tn

We introduce, for every edge e of the mesh, the function

1

3 BVup.nl. ife €e,

(bz,n = u — un—l (54)
BVup.n+ “h Th jfe e e,

Tn
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Then, we get the equation
B/ V(u—up)(t,z)Vo(t, z) dx
Q
+/ M(t, s)v(t, s)ds
r

ot
(5.5)
t/QV(uZ — Y (@) Vot 2) da

=4

tn —
Tn

Y Y [t w ) de.

KET,n e€0r ¥ ©

Since, we introduce the indicators: For each k in T,p,

() = TallV (ufy —up ™3
and

(UZ,K)Q = Z h’e ||¢i,'ﬂ|

e€Ok

2
0,e*

5.2. Upper bounds of the error. We are now able to prove the upper bound.

Theorem 5.3. For allm =1,..., N, we have the following upper bound

BIV (w = w2201, p2()) + 1ultm) = uillg r <

Y D )?+D > i) +lluo —uf g r],

n=1kKET,n n=1kKET,n

(5.6)

where C' is a constant independent of h,, and T,.

Proof. We denote by L(v) the right hand side of the equation (5.5) and we introduce the function
w(t,z) = e t(u — up)(t,r) which verify the equation

Ow _,0(u — up)

E(t,x) +w(t,z) =e BN (t, ). (5.7)

We multiply L(v) by e~ and take v = w to obtain

e 'L(w) ﬁ/ |Vw(t,z)|? dz + / w?(t, s) ds
Q r
1 [ ow?
+§ . W(t,S) ds (58)
1 [ ow?

2 il Z
AIve®da+ 3 [

vV

(t,s)ds.

By taking into account that e™* < 1 and remark that L(w) < L(u — uyp), we have

BIVel o+ 5 [ o) ds
<pB /Q V(u—up)(t,z)V(u—up)(t,z) de (5.9)

+/r W(ms)(u —up)(t,s)ds.
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We integrate the last relation in ]t,,_1,%,], sum of n from 1 to m, take into account the relation e=2* >
e 2T to get the following bound

Y [ el

/\u—uhl m,5)ds | (5.10)

and then

2

8 [ 19t O adt + glult) — i
(5.11)

m

tn
<o(X [ pu—wde + o~ b,

n=1""'n-1

where C' is a constant independent of h,, and 7,,.

Next, we have to bound the right hand side of the last inequality. In all the rest of the proof, we denote
v =u — up, and we decompose L(v) = L;1(v) + La(v) and we bound each one separately. First, we have

t, — 1 n e
L) = 82— 3% / V(@) 2) da
S (5.12)
= up — up” ) lo,x | Vo(t)]lo,x-
KETnn

We integrate the last system in ]¢,_1,t,] and we obtain

t"‘b
/ Ll(’U) dt
t

t 2
2 "t 1) 3
< > (BIVQup —up I /t e a— dt )
KETnh n—1 n

( / Ve et 6.13

n—

; 1
7( Z (W;n 2 Z HVUHB(tn 1otn, L2 (K)))2

KETnn KETnh

IN

. €1
< Ci(e1) Z (nn,n)2+5||VU||2L2(tn,1,tn,L2(Q))-

KETnh

Next, we sum over n from 1 to m and get the bound

Z/ Li(u—up)dt <Ci(e1) Z Z nnm
n=1rETun

+5||V(u - Uh)||2L?(O,t7mL2(Q))’

(5.14)
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where C (1) is a constant independent of h,, and 7,,.
Next, by taking vy (t) = Ry, 5 (v(t)), we have

La(v)
-8y Z/mn (v = vn) (¢, 2) da
KETnn e€0K
> o(t) — on(®) e
KETnh e€0K
l 1
<Gy Z (Z he ||¢§L,7l||06 2 Z ||VU 2
KETnn €e€0k e€0kK
l 1
< Co( Z Mhw)?)? Z Z”VU Moa.)?
KETnn KETnh €EOK
<Cs () ) IVe®)oe
KETnn

where C5 and C3 are constants independent of h,, and 7,.
We integrate the last system over |¢,_1,t,] and we have:

tn
/ Lo(v) dt
tn—1

n—

<c3/ ST ()2 dt) 5(/ IVo(®) 2.0 dt )

tn-1 ke T

1
<Cs( Y T )?) P IVl L2t 22 ()
KETnh

< Cul(e2) Z > )

n=1KkETn
€2
+§Hv(u - Uh)||%2(o,tm,L2(Q))’

where Cy(e2) is a constant independent of h,, and 7,,.

The relations (5.11), (5.14) and (5.16) allow us to get the following bound

1 m
BIV(u—un)llizo,,. 1200y + *”U(tm) —up'llo

m

Z Z 7]7m +Z Z Tn nnn +||u0_uh||01"]

n=1kETnn n=1kETnn

(61 + 52)
T||V(u - uh)”%Z(o,tm,L?(Q))’

Jr
where c is a constant independent of h,, and 7,,.
By choosing 1 = g and g9 = g, we get the desired upper bound. 0

( Un) 12

Next, we will bound the term | ———* ||L2(0 ton H=1/2(I))"

Theorem 5.4. For allm =1, ...N, we have the bound:

O(u—un)
| ot 122 (0,0, E-172(1))

<O[Y . > [mm)? 7 (o)1 + lluo = uf 1§ ]

n=1kETnhn

11

(5.15)

(5.16)

(5.17)

(5.18)
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where C' is a constant independent of h,, and .

Proof. Let r(t) € H'/?(T) and consider the problem:

Aw(t,z) = 0 in]0,T[xQ,
(5.19)
w(t,z) = r(t,z) on]0, T[xT.
It admits a unique solution w(t) € H*() which verify
IVw(®)lloe < Cillrlli/2r, (5.20)

where C is a constant.

We consider the equation (5.5), use the relation (5.12) and (5.15), and use the Cauchy Schwartz inequality

to get
1 A(u — up)
t t.5)d
[Vo(t)llo. /p ot (t,s)v(t,s)ds

< BIV(u—un)®)loa+e( 3 ()22 (5.21)
KETnh
Y — " e 1/2
+B|t77t|( > IVup =) 3,5) :
n KETnh

For every v(t) € HY?(I'), we consider it lifting in v(t) € H'(Q) verifying the system (5.19). Using
(5.20), we deduce following bound

! /r O — un) (t,s)v(t,s)ds

[[v(t)]|1/2,r ot
1 O(u — up,)
< t,s)v(t,s)ds
STl A CORCY .
1 .
< BNV (u—up)(t)]|o,0 + ¢ Z (Uﬁ,n)2) ?
KETnn
[tn — 1| n_ n— 1/2
el 0 DAY CHE Y [ 18 R
n KETnh
Then we get
2 ),
ot —1/2,7
1 o(u —
sup / (v uh)(t,s) v(t,s)ds
verr/zry [[V@)[lj2r Jr O
1 (5.23)
< BV (u—up)(t)]o,0 + ¢ Z (Uﬁ,n)2) ?
KETnn
o~ oy )2
Sl O D N CHE Y [
" KE€ETnn
We deduce the desired result after integrating over |t,_i,ty], summing on n from 1 to m for a m €
{1,..., N}, and using the theorem 5.3. O

To conclude the upper bound of our a posteriori error, we bound the term ||V (u — ’/T.,-’Ulh)Hiz(O’tm’Lz(Q)).

Theorem 5.5. For allm =1,...N, we have the bound
IV (u— ﬂ-‘l’uh)H%ﬂ(O,tm,L?(Q))

<C[Y" S 10502 + 7 ()% o — w12 ).

n=1kETnhn

(5.24)
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where C' is a constant independent of h,, and .

Proof. First, we have

IV (u—mrun)|r2(0,t,,,22(02))

(5.25)
<IV(u = un)llL2(0,t,,22(0)) + IV (un — mrun) | 22(0,6,,, 2 ()
The first term of right hand of the last relation can be bounded, using theorem 5.3, as
IV (u = up)l 20,8, 12(0)) < C[Z Z (n7,)?
nELneTn (5.26)
1
+Z Z Tn ( n, )? + lluo — up I3 r] 2

n=1kET

Now, we will bound the second term of the right hand side of (5.25). For t €]t,,_1,t,], we have m up(t) =
up and then
t—t,

Tn

up(t) — mrup(t) = (upf — ™). (5.27)

We obtain the relation )
IV (un, — WTUh)( )Ilo Q<

—tn) 5.28
SO IV - IR ), (5.28)
n KETnn

that we integrate over |t,,_1,t,] and we get

tn 1 .
| I - ma Ol <5 3 670" (529)
tn—1

KETnh

Finally, we conclude the relation

IV (= run) 22 (0,6, 22(2)) < C'] Z Z M)
n=1kETnn

m (5.30)
1
+3 0> Tl )+ lluo — uplle ] ?,
n=1kETnn
where C’ is a constant independent of h,, and 7,,. O
Corollary 5.6. For all m = 1,...N, we have the following upper bound:
[V (u— 7Tr“h)||%z>((m,,,L,L2(s2)) + BlIV(u— “h)||2L2(0,t7mL2(Q))
O(u — up)
2 2
+lultm) — w5, + ”THLQ Oyt H-1/2(D)) = (5.31)
Z Z nnﬁ +Z Z Tn +||u07uh||01"}
n=1k€Tn n=1K€Tnn

where C' is a constant independent of h,, and 7.

Remark: Estimates (5.31) constitutes our a posteriori error estimate.

5.3. Upper bounds of the indicators. In this section, we bound the indicators 7, . and 777}:,5 in order
to satisfy the optimality of the a posteriori error. We begin with the time indicator 7y, ...

Theorem 5.7. For allm =1,...N, the following estimate holds
() < C (I (0 = mrn) 321,y . 2200)

(5.32)
+||V(u — uh)”%Q(t",ht,,L,LQ(H)))’
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where C' is a constant independent of h,, and .

Proof. For t €]t,_1,t,], (5.27) allows us to have
t

RS g ) )
< 21V — ) (6, 2) + [V (0 = mrun) t,2)P).

We integrate the last relation on x and on |¢,_1,t,] to get the following result:

() < 6(]IV(u— Uh)||2L2(tn,1,tmL2(n))
HIV (= mrun) T2, o 220ey)-
(]

In the following, we will bound the indicators 7! .. For ¢ €]t,_1,t,], We have

ﬂ/ V(u(t) — up)(x)Vo(t, z) dz +/ a7)(123)1)(75,3) ds

1
up —up

=4 Z /Vuhthv(tx)dx—/

Tn
KE€ETnh r

=8 3 % [t

KETpn e€0r Y €

(s)v(t,s)ds

Theorem 5.8. For allm =1,...N, the following bound holds
T (0l )? < C(||V<u — mrwn) 21,y e z20am)+
un)
S ol i ):

e€IK

where

5 :{ life€e™Nok

0 elsewhere |

and C' is a constant independent of h,, and T,.

(5.33)

(5.34)

(5.35)

(5.36)

Proof. We consider the equation (5.35), an element k € T, and an edge e of k. We distinguish two cases

(1) e € e, is an interior edge. We set v(t,z) = L(5, ,,¥)(x) in (5.35) and we get
[0 @) d =
[ T ) VL6 ) ) d

By using the Holder inequality and the property 5.2, we get

[ e e

< OV (u - mrun) (1)

€(¢Z,nw€) 1A,
< C'|[V(u—mrun)(#)llo,a he (|65, a0,

where C, C' are constants independent of h,, and 7,,. Then for all interior edge e we have

hell95 nll3.e < ClIV (= mrun)OF .-

(5.37)

(5.38)

(5.39)



ERROR STUDIES FOR A TIME DEPENDENT PROBLEM WITH DYNAMIC BOUNDARY CONDITION. 15

(2) e €l is an edge on I'. We set v(t,x) = Lc(f, 1) () in (5.35) and we get
@@ d =
/ V(u— mrup)(t, v)VL(P} nYe) () dv (5.40)

1 [ O(u—up)
45 [ G 0 @)
By using the Holder inequality and the property 5.2, we get
165nllee < CIV(u—mrun)Ollos [Le(@5, 1)1,

1, 0(u—up) (5.41)
R Y t — 3 € €
+B” En O =1/2,e 10k nell1/2,

where C' is a constant independent of h,, and 7,,. The trace theorem and the property 5.2 allow

us to get

1
hé|¢j, < C'(IV(u — mrun) (t) [,k
Ialloe = C'I90:= ) Ol )
HIF 2 Oll-1/2,)
and then
hel|9nllg.e <2C"(I1V(u = mrupn) (t)][5
O(u — up) 5.43
+a 2, ,). (>:49)
e€OK
We deduce, by using (5.39) and (5.43), the following bound
(1 )” < CLUIV (u = mrun) (D)7 ax
O(u — up) 5.44
I SR A LT TS} o4
e€ok
Finally, by integrating on |¢,_1,t,], we get (5.36). O

6. NUMERICAL RESULTS

To validate the theoretical results, we perform several numerical simulations using the FreeFem+-+ soft-
ware (see [11]). We choose f=1and T =1

6.1. a priori error validations. We begin with the numerical validation of the a priori error estimates.
To perform numerical investigations, we need to know the exact solution of problem (2.2). For that
purpose, we consider instead of a polygon the two-dimensional unit circle with the following exact solution

(@) —(e'y)? . 1

e z

2 e vty

which verifies the system (1.1). In fact, the corresponding mesh is a polygon and we introduce here a

geometrical approximation. Nevertheless, the numerical results given in the end of this section show that
this approximation has not a major influence.

u(t,z,y) = (6.1)

2
Figure 1 represents the mesh with m = 50 segments on I' and a mesh step size h = il We choose k = h
m

and we consider the following numerical scheme

1 1
(Vup ™, Von) + g(u}i“,vh) = E(uﬁvvh)~ (6.2)
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We introduce the error

N
S kfluf — u(ta)lo
n=1
errN = N y
> kluta)lie
n=1

T
Where N = [E] = [zﬁ} ([-] is the integer part).
m

Figure 2 shows in logarithmic scale, the error curve between the exact and the numerical solution for
different values of the mesh step where m takes the values 80,90, 100,110, 120. As k = h, the error must
be of order i and the slope of the straight line must be of order one. The figure 2 gives a straight line

with a slope of 0.9284.

-1.66

*  Error
-1.68 Polyfit
-1.7r
-1.721
-1.741
s
w176t
-1.78
-1.81
-1.821
-1.84 . . .
-1.3 -1.25 -1.2 -1.15

Mesh step

FIGURE 2. A priori error curve.
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6.2. a posteriori error validations. For the numerical validation of the a posteriori error estimates,
we consider the unit square Q =]0, 1[> and the following initial data on ' of problem (1.1)

sin(27x) on the top of T,
0 on the sides and the bottom of I'.
The considered numerical scheme is
1
Yoy, € Xnh, B/ Vup Vop(t)de + [ —uj vp(t)do
Tn
@ r (6.5)

1
= T—uﬁ_l vp(t)do.
I 'n

We introduce the following time and space indicators

_ 1/2
mn=( > mlVs —u I3,
KETnh

= (S nahelighalE )

KETnn e€0K

and

T
We begin the iterations with an initial time step 7 = 2 and an initial mesh corresponding to M = 20

segments on every side of I'. Our goal is to validate the a posteriori error estimates.

We present here an adaptive algorithm based on our a posteriori error estimates which ensures that the
relative energy error between the exact and the approximate solutions is below a prescribed tolerance ¢.
At the same time, it intends to equilibrate the space and time estimators 7" and n7. At each time step,
we aim to have

() + () _
BT P (6.6)
||Uh||1,Q
€
For the adapt mesh (refinement and coarsening), we use routines in FreeFem++. We set e = — and

V2

we introduce the time and space error

h
and eg(up) = T

ex(uf) = 2o _ e
Tzl

 luplhie

The actual algorithm is as follows:

Choose an initial mesh 7y, an initial time
step 71, and set {p =0 Set n =1 Loop in
time: While ¢,<T
tn =th—1+ Tn
Solve up* = SO](UZ_l,Tn, Tah)
calculate ee; = ej(u}*) and eep = ea(uj*)
if ((ee; > ¢e1) or (eey > €71))
if (ee;r > een)
set t, =tp_1 — 7, and T, =T7,/2
else
set t, =tn_1—Tn
refine and coarsen the mesh using
the routine "ReMeshIndicator"
in FreeFem++, and create
new mesh called again T,
end if
else if(ee; is very smaller than e;)
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set 7, =27, up =up* and n=n+1

set Ton = Tn—1n
else
set up =up* and n=n+1
set Ton = Tn—1n
end if
end loop

In this algorithm, if the error does not satisfy the criteria (6.6), the algorithm tests if the time error is
larger than the space error. If so, the algorithm decreases the time step 50%. Otherwise, it adapts the
space mesh using the indicators and the routine ”ReMeshIndicator” in FreeFem++. If the error satisfies
the criteria (6.6), the algorithm performs time iterations either by increasing the time step if the error is

much smaller than e1, or not keeping the same time step .

Figures (3a to 3d) show the evolution of the mesh with time (g4 = 0.01). It is clear that the mesh is

concentrated around the part of the boundary I' where we impose the initial data.

(A) Initial mesh
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(D) Mesh at t=1

FiGURE 3. Evolution of the mesh during the time iterations.

Figures (4a to 4d) show the evolution of the solution with time.
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(¢) Numerical solution for t=0.508984

IsoValue

m0.0470363

m0.81958
916148

(A) Numerical solution for t=0.00273438

IsoValue
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IsoValue

(B) Numerical solution for t=0.140234

IsoValue

(D) Numerical solution for pour t=1

In order to show the adapt time step, we consider 7' = 1 and an initial time step 7 = 0.05. Figure 4
show the evolution of the time step during the time iterations. At ¢t = 0, the algorithm decreases the
time step from 0.05 to 0.0000488 and during the iterations, the time step increases progressively.

0.014 T T

0.012 -

0.01

0.008 -

Time step

0.006 -

0.004 -

0.002 |-

0.5
Time

FIGURE 4. Time with respect to time step.
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These experiments are in very good coherence with the theoretical results. So they prove the interest of
our approach.
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