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We provide a theoretical analysis of some empirical facts about the second order spatiochromatic structure of natural images in color. In particular, we show that two simple assumptions on the covariance matrices of color images yield eigenvectors made by the Kronecker product of Fourier features times the triad given by luminance plus color opponent channels. The first of these assumptions is second order stationarity while the second one is commutativity between color correlation matrices. The validity of these assumptions and the predicted shape of the PCA components of color images are experimentally observed on two large image databases. As a by-product of this experimental study, we also provide novel data to support an exponential decay law of the spatiochromatic covariance between pairs of pixels as a function of their spatial distance.

Introduction

There is a general agreement about the fact that the Human Visual System (HVS from now on) has evolved in order to optimize the elaboration and transmission of visual signals originating from natural scenes by getting rid of redundant information. In fact, there is a hundred million retinal photoreceptors against one million optic nerve neurons, therefore the retinal output must be re-coded to allow the salient visual information passing to subsequent stages.

The origin of redundancy in the interaction between humans and natural scenes is two-fold: on one side, natural scenes contain strong spatial correlation, since nearby points are likely to send similar radiance information to the eyes, unless they lie in the proximity of a sharp edge. On the other side, light signals (in photopic conditions) are absorbed by the three L, M, S-type cones, whose sensitivity is not independent, as can be seen by looking at their spectral sensitivity functions L(λ), M (λ), S(λ), depicted in Figure 1. In particular, the L(λ) and M (λ) have a wide overlap area, thus every broadband visual stimulus will excite both the L and the M -type cones, resulting in a strong chromatic correlation. When both effects are taken into account, one speaks about spatio-chromatic correlation. [START_REF] Buchsbaum | Trichromacy, opponent colours coding and optimum colour information transmission in the retina[END_REF], page 92).

The simplest way to look at spatial redundancy within images is through the second order statistics between pixel values. Two noticeable and wellknown facts are the Fourier-like structure of Principal Component Analysis (PCA), as a result of spatial stationarity, and the power-law decay of the power spectrum, as a possible consequence of scale-invariance. Higher order statistics have also been largely investigated, for instance through wavelets or sparse coding, as recalled in Section 2. On the other hand, several works have been concerned with chromatic redundancy in images, mostly through second order property and in connection with opponent color spaces. However, the spatio-chromatic structure of color images has been less studied. One of the most striking known empirical observation is that the spatio-chromatic covariance matrices resemble a tensor product between a Fourier basis and color opponent channels, as pointed out in section 2. In this work, we focus on this statistical characteristic, both from a theoretical and an experimental perspective. In Section 3 we show that second order stationarity 1 , together with another technical assumption, namely that covariance matrices must commute for any distance between pixels, implies that the eigenvectors of the spatio-chromatic covariance matrix are represented by the tensor product of the 2D cosine Fourier basis and the triad given by the achromatic plus color opponent channels. In Section 4, we show experimentally on two large image databases that these two assumptions hold true and that the tensor structure of covariance matrices is satisfied. One of these bases is made of images gathered from the internet, for which we have no information about the formation process. The other one is made of RAW images that are free of compression artefacts and have not undergone any white balance or gamma correction. As previously said, the second key assumption that guarantees this result is that the spatiochromatic covariance matrices must commute for any distance between pixels. In Section 4, to test this assumption, we will analyze the decay of spatiochromatic covariance matrix elements, showing that it can be modeled through an exponential law, in contrast to the power law decay commonly thought to characterize natural images. In Section 5 we will discuss these theoretical and empirical results and comment about future perspectives for computer vision purposes.

State of the art in natural color image statistics

The literature about natural image statistics is vast and its exhaustive presentation is beyond the scope of this paper. We concentrate here on important achievements that are related to the present paper. In Section 2.1, we recall some classical facts about the covariance structure of gray level images and also quote some related and more involved results on the structure of image patches. In Section 2.2, we present works dealing with the chromatic redundancy of natural images. In Section 2.3, we present results on the spatio-chromatic structure of natural images. In these two last sections, a particular emphasis is given to the results from [START_REF] Buchsbaum | Trichromacy, opponent colours coding and optimum colour information transmission in the retina[END_REF] and from [START_REF] Ruderman | Statistics of cone responses to natural images: implications for visual coding[END_REF], which are both closely related to our results.

Spatial redundancy in natural images

There is a large body of works dealing with spatial statistics in natural images, as e.g. reviewed in [START_REF] Srivastava | On advances in statistical modeling of natural images[END_REF]. In the present work, we will focus on relatively simple second order property of natural images, and mostly on their covariance. Our motivation is that such simple structures are, to the best of our knowledge, not fully understood in the case of spatiochromatic dependency and will be addressed in the remaining of this paper. In particular, we will not consider in this work the non-gaussianity of natural images, although it is related to the most geometric aspects of image structure, see e.g. [START_REF] Mumford | Stochastic models for generic images[END_REF].

Image patches decomposition

Attneave (1954), [START_REF] Mackay | Towards an information-flow model of human behaviour[END_REF] and [START_REF] Barlow | Possible principles underlying the transformations of sensory messages[END_REF] pioneered the idea that the HVS, in order to deal with the great amount of information that it constantly receives, should have developed a scheme to get rid of redundant information. However, they did not quantify these ideas with a computational theory that could provide a coding for natural images. The simplest observations in this direction concern principal component analysis (PCA) on small image patches. These are well known (see for instance the experiments in [START_REF] Olshausen | Emergence of simple-cell receptive field properties by learning a sparse code for natural images[END_REF]) to yield Fourier basis elements. This fact is a simple consequence of spatial stationarity, as will be recalled in Section 3.1. More involved patch decompositions, relying on the minimization of redundancy, as in [START_REF] Atick | Towards a theory of early visual processing[END_REF] and [START_REF] Atick | Could information theory provide an ecological theory of sensory processing?[END_REF], or on sparse decompositions, as in Olshausen andField (1996, 1997), yield localized, band-pass and oriented filters resembling wavelet decompositions. Since these early works, sparse dictionary representations have become a standard tool for image restoration, for their ability to economically represent geometric structures, see e.g. [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF]. Analogous elementary patches have been obtained with the use of Independent Component Analysis (ICA), see e.g. [START_REF] Hyvärinen | Natural Image Statistics: A Probabilistic Approach to Early Computational Vision[END_REF] or from convolutional neural networks, see the experiments in [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF].

Power spectrum

One of the most striking fact about image statistics is that most of them exhibit some form of scale-invariance. Roughly speaking, statistical observations on an image and on a zoomed version of it are qualitatively similar. The most well known among such observations concerns the power spectrum of images. Experiments conducted over different databases of natural images, see e.g. [START_REF] Field | Relations between the statistics of natural images and the response properties of cortical cells[END_REF], [START_REF] Ruderman | Statistics of natural images: Scaling in the woods[END_REF], have shown that, while the power spectra of different images changes considerably, if we compute the average power spectrum over a sufficiently large number of images and over all orientations, then we find a power-law behavior. That is, if we write S(f ) for the power spectrum (the square of the amplitude of the Fourier transform) averaged over all directions, we find that S(f ) ≈ Cf -β , as a function of the frequency magnitude f . The value of β varies roughly from 1.5 to 3, with a cluster of values around 2, depending on the image database used, see [START_REF] Tolhurst | Amplitude spectra of natural images[END_REF], [START_REF] Pouli | Image statistics and their applications in computer graphics[END_REF] for some examples of β values. This decreasing of the power spectrum is usually associated with scale invariance, since the value β = 2 corresponds to this case, see [START_REF] Mumford | Stochastic models for generic images[END_REF].

By Wiener-Khinchin's theorem (see [START_REF] Papoulis | Probability, random variables, and stochastic processes[END_REF]), under the hypothesis of second order stationarity, the power spectrum and the covariance form a Fourier pair. In [START_REF] Ruderman | Origin of scaling in natural images[END_REF], page 3397, it is underlined that if the power spectrum of an image follows a power law S(f ) = A f 2-η , η being the so-called 'anomalous exponent', then the covariance C as a function of the distance d among pixels has the following expression C(d) = a d η -b, a, b > 0, i.e. apart from an offset, the covariance also decreases with a power-law. This power-law decay has been proven to fail at large frequencies and distances, both for the power spectrum, e.g. in [START_REF] Langer | Large-scale failures of 1/f α in natural image spectra[END_REF], and the covariance, see [START_REF] Huang | Statistics of natural images and models[END_REF] and [START_REF] Huang | Statistics of Natural Images and Models[END_REF]. In Section 4, we will confirm the failure of the power-law decay of the covariance at large distances, show that an exponential model is more accurate, and discuss the relation of such a model with the spatiochromatic covariance properties of natural images.

Chromatic redundancy in natural images

The first statistical information about chromatic redundancy has been experimentally obtained in [START_REF] Ohta | Color information for region segmentation[END_REF] in the framework of color segmentation of RGB images. For each picture of a database of 8 RGB images, the authors computed the covariance matrix C of the distribution of the values of R, G and B at each pixel. They found that the eigenvectors of the covariance matrix are approximately the following ones for each image of the database:

     v 1 = 1 3 , 1 3 , 1 3 t v 2 = 1 2 , 0, -1 2 t v 3 = -1 4 , 1 2 , -1 4 t , (1) 
These vectors correspond to the three following uncorrelated color features

     X 1 = R+G+B 3 X 2 = R-B 2 X 3 = 2G-(R+B) 4 . (2) 
This shows that the feature that corresponds to the largest variance is the luminance X 1 (or achromatic channel ) and the other two features are described by the opponent channels X 2 (red-blue) and X 3 (green-violet). [START_REF] Buchsbaum | Trichromacy, opponent colours coding and optimum colour information transmission in the retina[END_REF] approached the problem of finding uncorrelated color features from a purely theoretical point of view. Following the already quoted ideas of Attneave, Barlow and MacKay, they analyzed the problem of an efficient post-retinal information transmission by performing a PCA on the LMS cone activation values. We shall now give a detailed presentation of this work, to which our contributions are closely related.

Buchsbaum and Gottschalk considered the abstract ensemble of all possible visual stimuli (radiances), i.e. S ≡ {S(λ), λ ∈ L}, where L is the spectrum of visible wavelengths. From a given representative S(λ) ∈ S, a weighted integration of S(λ) over the visual spectrum, with weights given by the Vos-Walraven spectral sensitivity functions L(λ), M (λ), S(λ) depicted in Figure 1, yields the three cone activations values:

     L = L S(λ)L(λ) dλ M = L S(λ)M (λ) dλ S = L S(λ)S(λ) dλ.
(3) Assuming that the stimulus S(λ) (coming from a fixed point x of a scene) is a random variable, a convariance matrix can be build from the three random variables L, M, S. This matrix, called the chromatic covariance matrix is defined as:

C =   C LL C LM C LS C M L C M M C M S C SL C SM C SS   , (4) 
where

C LL ≡ E[L • L] -(E[L]) 2 , C LM ≡ E[L • M ] -E[L]E[M ] = C M L
, and so on, E being the expectation operator.

If we introduce the covariance function,

K(λ, µ) = E[S(λ)S(µ)]-E[S(λ)]• E[S(µ)],
then the entries of the covariance matrix can be written as

C LL = L 2 K(λ, µ)L(λ)L(µ) dλdµ, C LM = L 2 K(λ, µ)L(λ)M (µ)
dλdµ, and similarly for the others. This shows that the correlation among the L, M, S cone activations does not depend only on the overlap among the sensitivity curves, but also on the prevalence of certain wavelengths in the ensemble of visual stimuli S with respect to others.

To be able to perform explicit calculations, the analytical form of the covariance function K(λ, µ) must be specified. In the absence of a database of multispectral images, Buchsbaum and Gottschalk used abstract non-realistic data to compute K(λ, µ). They chose the easiest covariance function corresponding to visual stimuli maximally uncorrelated with respect to their energy at different wavelengths, i.e. K(λ, µ) = δ(λ -µ), δ being the Dirac distribution. As the authors observe, this condition is satisfied only if the ensemble S is made of monochromatic signals.

With this choice, the entries of the covariance matrix C are all positives and they can be written as C LL = L L 2 (λ) dλ, C LM = L L(λ)M (λ) dλ, and so on. C is also real and symmetric, so it has three positive eigenvalues λ 1 ≥ λ 2 ≥ λ 3 with corresponding eigenvectors v i , i = 1, 2, 3. If W is the matrix whose columns are the eigenvectors of

C, i.e. W = [v 1 |v 2 |v 3 ], then the diagonalization of C is given by Λ = W t CW = diag(λ 1 , λ 2 , λ 3 ).
The eigenvector transformation of the cone excitation values L, M, S is then

  A P Q   = W t   L M S   .
In the special case of monochromatic stimuli, we can also parameterize with the wavelength λ:

  A(λ) P (λ) Q(λ)   = W t   L(λ) M (λ) S(λ)   .
The transformed values A, P, Q are uncorrelated and their covariance matrix is Λ. A is the achromatic channel, while P and Q are associated to the opponent chromatic channels.

The key point in Buchsbaum and Gottschalk's theory is the application of Perron-Frobenius theorem (see e.g. [START_REF] Berman | Nonnegative Matrices in the Mathematical Sciences[END_REF] for more details), which assures that positive matrices, i.e. matrices whose entries are all strictly greater than zero, have one and only one eigenvector whose entries have all the positive sign, and this eigenvector corresponds to the largest eigenvalue, i.e. λ 1 . So, only the transformed A channel will be a linear combination of the cone activation values L, M, S with positive coefficients, while the channels P and Q will show opponency. This is the theoretical reason underlying the evidence of post-retinal chromatic opponent behavior, following Buchsbaum and Gottschalk. We underline that the positivity of C in Buchsbaum-Gottschalk's theory is a consequence of their non-realistic selection of monochromatic visual stimuli. However, signals coming from real scenes are broad-band, so there is no theoretical guarantee that C has all positive entries. In Section 4, we will see that C is positive also when it is computed through natural RGB images, in which case the HVS sensitivity functions are replaced with the sensitivity functions of cameras. The most prominent cause of positive correlation values is probably the fact that the spectral sensitivity functions of cameras are also highly overlapping, see for instance [START_REF] Jiang | What is the space of spectral sensitivity functions for digital color cameras?[END_REF].

The monochromatic signal energy of the channels has the following property:

L A 2 (λ) dλ : L P 2 (λ) dλ : L Q 2 (λ) dλ = λ 1 : λ 2 : λ 3 .
(5)

The explicit form of the matrices C, W t and Λ within Buchsbaum-Gottschalk's theory are the following: 

C =   77.
Λ = diag(97.2, 2.78, 0.015). ( 8)

The large covariance values between L and M and the very small ones between these two channels and S are a direct consequence of the use of Vos-Walraven's sensitivity functions and the hypothesis K(λ, µ) = δ(λ -µ). In Section 4 we will see that if we compute C from a database of natural images, then the difference among covariance values is rather small. Using the data obtained above, Buchsbaum and Gottschalk could write explicitly the transformation from (L, M, S) to (A, P, Q) as follows:

     A ≃ 0.887L + 0.461M P ≃ -0.46L + 0.88M Q = 0.004L -0.01M + 0.99S,
the energy ratios among A, P and Q being 97.2 : 2.78 : 0.015. Again, we observe that the unrealistic hypothesis of maximally uncorrelated visual signals implies that the achromatic channel accounts for the great majority of the energy transmitted and the blue channel has practically no influence in the computation of the achromatic stimulus.

Spatio-chromatic redundancy in natural images

Buchsbaum also developed the first computational model of spatio chromatic image coding in early vision in the paper [START_REF] Derrico | A computational model of spatiochromatic image coding in early vision[END_REF]. In that paper, only the L and M signals are taken into account, because the authors claim that they contain almost the whole energy of retinal output and the opponent L -M ganglion cell receptive fields2 represent 90% of the total ganglion cells on-off receptive fields. Their model consists in a two-stage process: the first (chromatic) step consists in the same PCA operated in [START_REF] Buchsbaum | Trichromacy, opponent colours coding and optimum colour information transmission in the retina[END_REF] to decorrelate the L and M signals, which gives the achromatic part L + M and the opponent chromatic channel L-M . The second (spatial) step consists in applying a linear predictive coding (similar to that used by [START_REF] Srinivasan | Predictive coding: a fresh view of inhibition in the retina[END_REF]) which optimizes the transmission of the achromatic part by attenuating the low spatial frequencies.

Also [START_REF] Atick | Understanding retinal coding from first principles[END_REF] considered only the L and M signals and, by postulating translation-invariance of natural light stimuli and separability among chromatic and spatial correlation, they built a linear operator able to decorrelate the signals L and M into L + M and L -M (see [START_REF] Atick | Could information theory provide an ecological theory of sensory processing?[END_REF] page 245 and [START_REF] Atick | Understanding retinal coding from first principles[END_REF] page 566).

In [START_REF] Ruderman | Statistics of cone responses to natural images: implications for visual coding[END_REF], Ruderman, Cronin and Chiao proposed a patch-based spatio-chromatic coding and tested Buchsbaum-Gottschalk's theory on a database of 12 multispectral natural images of foliage.

Because of the proximity between our contribution and this work, we now give a detailed account the experiments performed in [START_REF] Ruderman | Statistics of cone responses to natural images: implications for visual coding[END_REF]. Each multispectral image consists of 43 successive images taken at 7-8 nm intervals from 403 to 719 nm, thus they chose L = {403, 410, . . . , 719}. In order to build the cone activation values L, M, S, the authors did not follow the same procedure as Buchsbaum and Gottschalk, but they write

(L, M, S) = λ∈L Q(λ)R(λ)J(λ), where Q = (Q L , Q M , Q S )
are the cone sensitivity functions detailed in [START_REF] Stockman | Spectral sensitivities of the human cones[END_REF], J(λ) is the standard D65 CIE illuminant that models daylight spectrum, and R(λ) is an estimation of scene's reflectance. R(λ) is obtained by placing in each photographed scene a MacBeth chart with known spectral reflectance and re-calibrating the multispectral values in order to match those of the chart. Of course this procedure is approximated, since the illumination of the scene can vary in space and time, for this reason the authors analyzed only the 128×128 central region of each image.

The scatterplots in the LM and LS planes of the L, M, S cone activations values corresponding to 1000 pixels randomly selected in the database show a high degree of correlation (higher in the LM plane than in the LS one due to the overlap of L and M spectral sensitivity functions) but also asymmetry, as can be seen in Figure 2.

The authors decided to study these data by first reducing their asymmetry: they modified the LM S values by taking their decimal logarithm and then they subtracted the average image value in the logarithmic domain. They obtained the so-called Ruderman-Cronin-Chiao coordinates, i.e. L = Log L -Log L , M = Log M -Log M and S = Log S -Log S . This transform is motivated with the fact that, following Weber-Fechner's law, uniform logarithmic changes in stimulus intensity tend to be equally perceptible, see [START_REF] Goldstein | Sensation and Perception, 9th Edition[END_REF]. Moreover, second-order statistics of logtransformed data is similar to that of linear images, see [START_REF] Ruderman | Statistics of natural images: Scaling in the woods[END_REF]. Instead, the motivation for the average substraction is to assess the data independently on the illumination level, analogously to a von Kries procedure (see von [START_REF] Von Kries | Chromatic adaptation[END_REF]).

The choice of logarithmic coordinates is nevertheless questionable. Ruderman, Cronin and Chiao claim that the linear relationship among logarithmic data and Weber-Fechner's contrast metric gives a reason to select the principal component analysis among other non-orthogonal analysis because the orthogonal transformations involved in the PCA preserve the space metric. However, other researcher, e.g. [START_REF] Simoncelli | Natural image statistics and neural representation[END_REF] have criticized this observation, claiming that considering high-level perceptual features, as Weber-Fechner's law, in early vision models is misleading.

Following [START_REF] Ruderman | Statistics of cone responses to natural images: implications for visual coding[END_REF], if L, M , S, are the basis vectors in the logarithmically-transformed space, then the application of the PCA gives the following three principal axes:

     l = 1 √ 3 ( L + M + S) α = 1 √ 6 ( L + M -2 S) β = 1 √ 2 ( L -M ). (9)
The color space spanned by these three principal axes is called lαβ space. The standard deviations of the l, α, β coordinates are σ l = 0.353, σ α = 0.0732 and σ β = 0.00745. Notice that there is an inversion in the importance of opponent channels with respect to [START_REF] Buchsbaum | Trichromacy, opponent colours coding and optimum colour information transmission in the retina[END_REF]: here the L -M channel has the lowest variance.

To study spatiochromatic decorrelated features, Ruderman, Cronin and Chiao considered 3 × 3 patches, with each pixel containing a 3-vector color information, so that every patch is converted in a vector with 27 components that they analyzed with the PCA. The principal axes of these small patches in the logarithmic space are depicted in Figure 3. It can be seen that the first principal axis shows fluctuations in the achromatic channel, followed by blue-yellow fluctuations in the α direction and red-green ones in the β direction. The spatial axes are largely symmetrical and can be represented by Fourier features, in line with the translation-invariance of natural images, as argued in [START_REF] Field | Relations between the statistics of natural images and the response properties of cortical cells[END_REF]. It is important to stress that in Figure 3 no pixel within the patches appear other than the primary gray, blue-yellow or red-green colors, i.e. no mixing of l, α, β has been found in any 3 × 3 patch. These means that not only the single-pixel principal axes l, α, β, but also the spatiallydependent principal axes l(x), α(x), β(x), viewed as functions of the spatial coordinate x inside the patches, are decorrelated.

These results have been confirmed by [START_REF] Párraga | Spatiochromatic properties of natural images and human vision[END_REF]. A strong, but not perfect, spatio-chromatic decorrelation has been confirmed in Hyvärinen et al. (2009) (page 323), where the authors performed experiments on 50000 patches of size 12 × 12 selected in a basis of 20 RGB (and not LMS) images.

The imperfection in the decorrelation is put in evidence by the appearance of mixed colors, as e.g. orange. In Section 4, we will perform similar experiments on much larger databases.

Ruderman, Cronin and Chiao proposed the following separable form for the spatio-chromatic principal axes: p((L, M, S), x) = c(L, M, S) • s(x), i.e. the product of two uncorrelated eigenfunctions, namely c(L, M, S), given by the principal axes l, α, β and s(x), given by the Fourier basis. They also suggest that the lack of spatial dependence of the chromatic components can be a consequence of scale invariance in natural images. Such a separable basis has been recently exploited also in [START_REF] Chakrabarti | Statistics of real-world hyperspectral images[END_REF] in the context of hyperspectral images representation and reconstruction.

In [START_REF] Wachtler | Chromatic structure of natural scenes[END_REF], the authors applied the ICA to study a set of 8 multispectral images of terrestrial natural scenes containing mainly plants and rocks. The measured values of the ICA basis functions for single pixels are coherent with those of Ruderman, Cronin and Chiao, however, they have proven that if one considers patches of 7 × 7 pixels, then colors other than the principal ones can appear.

Relationship between second order stationarity and the decorrelated spatiochromatic features of natural images

In this section we will analyze the consequence of second order stationarity in natural images on their decorrelated spatiochromatic features. For the sake of clarity, we will first start with the simplest case of gray-level images, where stationarity implies that the principal components are Fourier basis functions. We will then extend this result to the color case and show that a supplementary hypothesis on color covariance matrices yields principal components obtained as the tensor product between Fourier basis functions on the one hand, and achromatic plus opponent color coordinates on the other hand.

The gray-level case

Let I be a gray-level natural image of dimension W × H, W being the width (number of columns) and H being the height (number of rows) of I.

If we denote the H rows of I as r 0 , . . . , r H-1 , then we can describe the position of each pixel of I row-wise as follows:

I = {r j k ; j = 0, . . . , H -1, k = 0, . . . , W -1}, (10) 
j is the row index and k is the column index3 . Each row r j = (r j 0 , . . . , r j W -1 ) will be interpreted as a W -dimensional random vector and each component r j k as a random variable.

Let us define the spatial covariance of the two random variables

r j k , r j ′ k ′ : cov(r j k , r j ′ k ′ ) ≡ c j,j ′ k,k ′ = E[r j k r j ′ k ′ ] -E[r j k ]E[r j ′ k ′ ]. ( 11 
)
Due to the symmetry of covariance we have c j,j ′ k,k ′ = c j ′ ,j k ′ ,k . Then, we can write the spatial covariance matrix of the two random vectors r j , r j ′ as cov(r j , r j ′ ) ≡ C j,j ′ , where C j,j ′ is the W × W matrix:

C j,j ′ =      c j,j ′ 0,0 c j,j ′ 0,1 • • • c j,j ′ 0,W -1 c j,j ′ 1,0 c j,j ′ 1,1 • • • c j,j ′ 1,W -1 . . . . . . . . . . . . c j,j ′ W -1,0 • • • • • • c j,j ′ W -1,W -1      . (12) 
Finally, the spatial covariance matrix C of the image I can be written as:

C =      C 0,0 C 0,1 • • • C 0,H-1 C 1,0 C 1,1 • • • C 1,H-1 . . . . . . . . . . . . C H-1,0 • • • • • • C H-1,H-1      . ( 13 
)
Notice that C is a HW × HW matrix because each sub-matrix C j,j ′ is a W × W matrix.

Hypothesis 1. From now on, the covariance of I is assumed to be invariant under translations of the row and column index:

c j,j ′ k,k ′ = c |j-j ′ | |k-k ′ |
. Hypothesis 1 will be tested in section 4.3 and, as said before, it is weaker than the typical definition of second order stationarity because here we do not assume the translation invariance of the mean.

Alongside this hypothesis, we add a technical requirement on the geometry of digital images which is implicitly assumed every time the Fourier transform is considered, i.e. we will consider a symmetrized spatial domain with a toroidal distance, which means that we will perform the identification r j k = r j ′ k ′ when j ≡ j ′ (mod H) and k ≡ k ′ (mod W ), i.e. every time there exist a, b ∈ Z such that j ′ -j = aH and k ′ -k = bW .

As a covariance matrix, C is real, symmetric and positive-definite. Now, as a consequence of the previous hypotheses, the matrix C is also blockcirculant with circulant blocks. Indeed, the C j,j ′ are circulant matrices, i.e. matrices where each row vector is rotated one element to the right relative to the preceding row vector4 . If we use the convenient shorthand notation 'circ( )' to denote a circulant matrix, by specifying only the first row between the round brackets, then C j,j ′ can be written as follows:

C j,j ′ = circ c j,j ′ 0,0 , c j,j ′ 0,1 , . . . , c j,j ′ 0,W -1 . (14) 
Now, if we write C j ≡ C 0,j , j = 0, . . . , H -1 it is straightforward to see that the covariance matrix C is block-circulant and can be explicitly written as:

C = circ C 0 , C 1 , . . . , C H-1 . (15) 
It is well known that an n × n circulant matrix has n eigenvalues corresponding to the DFT of the finite sequence given by the first row of the matrix itself, and its eigenvectors are the Fourier basis functions, see e.g. [START_REF] Gray | Toeplitz and Circulant Matrices: A review[END_REF].

Let us apply this general result to the W × W circulant matrices C j . The set of eigenvalue equations C j e m = λ j m e m , λ j ∈ C and e ∈ C W , m = 0, . . . , W -1, can be written as the following matrix equation C j E W = Λ j E W , where5 :

Λ j = diag(ĉ j m ; m = 0, . . . , W -1), ĉj m = W -1 k=0 c j k e -2πimk W , (16) 
and

E W = [e 0 |e 1 | • • • |e W -1 ] = e m = 1 √ W 1, e -2πim W , . . . , e -2πim(W -1) W t m=0,...,W -1 = 1 √ W       1 1 • • • 1 1 e -2πi W • • • e -2πi(W -1) W . . . . . . . . . . . . 1 e -2πi(W -1) W • • • e -2πi(W -1) 2 W       . ( 17 
)
The following remark will help us understanding how to extend the previous diagonalization procedure to the whole matrix C. Remark 1. Let M = circ(M 0 , . . . , M H-1 ) be a block-circulant matrix and let us assume that the blocks M j can be diagonalized on the same basis

B. If we write E H = [e 0 |e 1 | • • • |e H-1 ]
, with the vectors e j defined as in eq. ( 17) for all j = 0, . . . , H -1, then it can be verified by direct computation that E H ⊗ B is a basis of eigenvectors of M , where ⊗ denotes the Kronecker product.

In the case of our spatial covariance matrix C, all the submatrices C j have the same basis of eigenvectors E W , thus the result stated in the previous remark can be directly applied on the matric C to guarantee that

E H ⊗ E W = e m,l = 1 √ HW 1, e -2πi( m W + l H ) , . . . , e -2πi( m(W -1) W + l(H-1) H ) t m,l , (18) 
for m = 0, . . . , W -1, and l = 0, . . . , H -1 provides a basis of eigenvectors for the matrix C.

Actually, due to the symmetry of covariance matrices, the complex parts of the exponentials involving the sinus function cancel out (see [START_REF] Gray | Toeplitz and Circulant Matrices: A review[END_REF]) and so the 2D cosine Fourier basis also constitute a basis of eigenvectors of C:

e m,l = 1 √ HW 1, cos 2π m W + l H , . . . , cos 2π m(W -1) W + l(H -1) H t . (19) 

The color case

Let u : Ω → [0, 255] 3 be an RGB image function, where Ω is the spatial domain, and, for all (j, k) ∈ Ω, u(j, k) = (R(j, k), G(j, k), B(j, k)) is the vector whose components are the red, green and blue intensity values of the pixel defined by the coordinates (j, k).

We define the spatiochromatic covariance matrix among two pixels of position (j, k) and (j ′ , k ′ ) by extending eq. ( 11) as follows:

c j,j ′ k,k ′ (R, G, B) =   C RR (j, j ′ , k, k ′ ) C RG (j, j ′ , k, k ′ ) C RB (j, j ′ , k, k ′ ) C GR (j, j ′ , k, k ′ ) C GG (j, j ′ , k, k ′ ) C GB (j, j ′ , k, k ′ ) C BR (j, j ′ , k, k ′ ) C BG (j, j ′ , k, k ′ ) C BB (j, j ′ , k, k ′ )   (20)
where we defined

C RR (j, j ′ , k, k ′ ) = E[R(j, k)R(j ′ , k ′ )]-E[R(j, k)]E[R(j ′ , k ′ )], C RG (j, j ′ , k, k ′ ) = E[R(j, k)G(j ′ , k ′ )] -E[R(j, k)]E[G(j ′ , k ′ )],
and similarly for the remaining matrix elements. Of course the matrix

c j,j ′ k,k ′ (R, G, B) is sym- metric because C GR (j, j ′ , k, k ′ ) = E[G(j, k)R(j ′ , k ′ )]-E[G(j, k)]E[R(j ′ , k ′ )] = C RG (j, j ′ , k, k ′ ),
and similarly for all the other off-diagonal elements.

In the particular case defined by j ′ = j and k ′ = k, we will call c j,j ′ k,k ′ (R, G, B) 'chromatic autocovariance' and denote it simply as c 0 (R, G, B). Notice that the matrix analyzed in [START_REF] Buchsbaum | Trichromacy, opponent colours coding and optimum colour information transmission in the retina[END_REF] is the chromatic autocovariance of LMS values.

We then define the spatiochromatic covariance matrix C j,j ′ (R, G, B) among the two random vectors r j , r j ′ given by the j-th and j ′ -the rows of the spatial support of u by extending eq. ( 12) as follows:

C j,j ′ (R, G, B) =      c j,j ′ 0,0 (R, G, B) c j,j ′ 0,1 (R, G, B) • • • c j,j ′ 0,W -1 (R, G, B) c j,j ′ 1,0 (R, G, B) c j,j ′ 1,1 (R, G, B) • • • c j,j ′ 1,W -1 (R, G, B) . . . . . . . . . . . . c j,j ′ W -1,0 (R, G, B) • • • • • • c j,j ′ W -1,W -1 (R, G, B)     
.

(21) Finally, we define the spatiochromatic covariance matrix C(R, G, B) of the RGB image u by extending eq. ( 13) to the 3HW × 3HW matrix defined in this way:

C(R, G, B) =      C 0,0 (R, G, B) C 0,1 (R, G, B) • • • C 0,H-1 (R, G, B) C 1,0 (R, G, B) C 1,1 (R, G, B) • • • C 1,H-1 (R, G, B) . . . . . . . . . . . . C H-1,0 (R, G, B) • • • • • • C H-1,H-1 (R, G, B)      . ( 22 
)
Now, supposing that all the elements of the matrices (20) are positive, thanks to the Perron-Frobenius theorem we can assure that each of these c j,j ′ k,k ′ (R, G, B) matrices has a basis of eigenvectors that can be written as a triad of achromatic plus opponent chromatic channels. If we further assume that the matrices (20) can be diagonalized on the same basis of eigenvectors (A, P, Q), then, thanks to Remark 1, we have that the eigenvectors of the spatiochromatic covariance matrix C(R, G, B) can be written as the following Kronecker product:

(A, P, Q) ⊗ e m,l ∈ R 3HW , ( 23 
)
which is precisely the type of eigenvectors that have been exhibited experimentally in [START_REF] Ruderman | Origin of scaling in natural images[END_REF]. A standard result of linear algebra guarantees that a set of matrices can be diagonalized on the same basis of eigenvectors if and only if they commute6 . Thanks to the hypothesis of translation invariance of covariance, this is verified if and only if the generic covariance matrix c j,j ′ k,k ′ (R, G, B) commutes with the chromatic autocovariance matrix c 0 (R, G, B).

It is convenient to resume all the hypotheses made and results obtained so far in the following proposition.

Proposition 1. Let u : Ω → [0, 255] 3 be an RGB image function, with a periodized spatial domain Ω, and suppose that Proposition 1 defines a mathematical framework where the empirical result shown in Figure 3 can be formalized and understood in terms of statistical properties of natural images. In the following section we will test this framework with the help of two large databases of RGB images.

A direct corollary of Proposition 1 is the following.

Corollary 1. If the hypotheses of Proposition 1 are valid, then the following decomposition formula holds:

u = W -1 m=0 H-1 l=0 u, (A, P, Q) ⊗ e m,l (A, P, Q) ⊗ e m,l , ( 25 
)
where , is the scalar product in R 3HW .

Validations on natural image databases

As stated in the previous section, the validity of Proposition 1, which expresses the spatiochromatic basis as the Kronecker product of the 2D cosine Fourier basis by the triad given by one achromatic plus two opponent color channels, is constrained by some hypotheses. In this section we present the tests that we have performed to check their validity.

To perform our numerical experiences we have selected two databases that are best suited for different scopes. The first one is an excerpt from the database described in [START_REF] Hays | Scene completion using millions of photographs[END_REF], which consists of 2.3 million of 1024×768 copyright-free RGB images taken from the popular website Flickr. The images of the database have been randomly ordered to reduce as much as possible the scene content bias. The advantage of this first database is its large number of images, which enabled us to check that the stability of our results.

The second database is made of personal RAW photographs of 7000 natural scenes. Each 4-neighborhood of pixels in a raw image contains two pixels corresponding to the R and B channels and two pixels corresponding to the G channel. We demosaicked each RAW image to build a subsampled RGB image simply by keeping unaltered the R and B information and averaging the G channel. The advantage of this second database is that RAW images are free from post-processing operations such as gamma correction, white balance or compression, thus, modulo camera noise, they provide a much better approximation of irradiance than the images of the first database.

Before describing our tests, we show in Figure 4 the 64 first principal components obtained by applying a PCA to a packet of 10 5 images from the Flickr database. These components indeed have the shape predicted by Proposition 1. 

Computation of the covariance matrices

Since the test that we have performed are related to covariance matrices, it is logic to start describing how these matrices are obtained from the images of the databases. First of all, in order to simplify their computation, the expectation of the empirical average image of the ensemble has been subtracted to all images.

We first concentrated on the evaluation of the chromatic autocovariance c 0 (R, G, B). Even if the simplest way to compute the covariance is via the Fourier transform, which implicitly assumes periodicity and may lead to biases, we chose the alternative strategy that we are going to describe in detail hereafter. First of all, the expectation operator E involved in its computation has been approximated by randomly selecting a pixel in N different images of the database, storing its RGB values in three N -dimensional row vectors v µ , µ ∈ {R, G, B}, and then estimating the elements of the chromatic autocovariance matrices as follows:

C RR = v R v R t /N , C RG = v R v G t
/N , and so on. Notice that it is possible to compute the covariances in this way because of the initial subtraction of the average image.

We then turned our attention to the spatiochromatic covariance matrices c j,j ′ k,k ′ (R, G, B) with j = j ′ and k = k ′ . To simplify the notation, from now on we will write

c j,j ′ k,k ′ (R, G, B) ≡ c d (R, G, B), where d = (j -j ′ ) 2 + (k -k ′ ) 2 . We compute c d (R, G, B
) by randomly selecting a different point (j, k) ∈ Ω in each image of the packet and considering its four neighbors (j -d, k), (j + d, k), (j, k -d), (j, k + d), we then count how many of these neighbors actually fall in the image domain Ω and we create the vectors v µ and w µ , µ ∈ {R, G, B}: in w µ we store the R, G, B values of the neighbors of (j, k) that fall in Ω, while in v µ we store the R, G, B values of the central pixel (j, k) repeated as many times as the length of v µ . We iterate the procedure for all the images of the packet and we concatenate the values of the random pixels and their neighbors in the vectors v µ and w µ , respectively. The estimation of the matrix elements of c d (R, G, B) can be done as follows:

C d RR = v R w R t /L, C d RG = v R w G t /L
, and so on, where here L denotes the common length of v µ and w µ .

Stability of the covariance computation with respect to the number of

images and the image content As previously stated, the very large Flickr database allows us checking the stability of the covariance matrices computation. We will now introduce the details of the stability tests. If we fix a threshold ε = 10 -D , D ∈ N, then we consider the estimation of c 0 (R, G, B) ε-stable when the relative error defined by c 0

N +1 (R, G, B) -c 0 N (R, G, B) / c 0 N +1 (R, G, B) is smaller than ε, where c 0 N (R, G, B) is the estimation of c 0 (R, G, B) obtained with N images and
is the 2-norm. Due to the law of large numbers, we expect the relative error to decrease proportionally to 1/N . This is confirmed by our experiments, as can be seen in Figure 5. A good trade-off between precision and computational time required to perform the experiments is given by N = 10 5 , which guarantees a 10 -4 -stable estimation of the covariance.

With this value of N fixed, we tested the stability of the computation with respect to the image content by selecting 10 different packets of N pictures and comparing the estimation of c 0 (R, G, B). Our tests have reported differences in the estimation of c 0 (R, G, B) of magnitude 10 -4 , which is the same order as the stability error, this confirms that the bias induced by the image content is negligible.

Testing the spatial invariance of covariance

Here we discuss the tests that we have performed in order to check the translation invariance of the covariance. In Figure 6 we show the spatial distributions of the chromatic autocovariances and their linearly stretched version obtained by setting the minimum to 0 and the maximum to 255 in order to enhance the visibility of the inhomogeneities. Without stretching the images appear perfectly constant. Analogous results have been obtained for the spatiochromatic covariances with distance d > 0.

It can be seen that all covariances are slightly larger in the upper part of the images and smaller in lower parts. We stress again the fact that the pictorial representation of the second column of Figure 6 is exaggerated by the stretching and that the constant pattern shown by the images of the first column confirm that the hypothesis of translational invariance of covariance can be considered verified with a very good degree of approximation. 

which confirm the positivity assumption on c 0 (R, G, B). Notice that the covariances observed on the RAW database are much smaller than those observed on the Flickr database. We believe that this is mostly due to the fact that the contrast of images posted on Flickr is often much higher than the contrast of unprocessed RAW images. Despite this difference, the eigenvectors of the previous matrices are very similar: (

) 29 
We can see that, using a database of real RGB images and not the idealized visual stimuli of Buchsbaum and Gottschalk, the blue channel not only appears in the achromatic direction A, but it is even its dominant component. Observe the similarity between the eigenvectors obtained with the Flickr and RAW database and those reported in [START_REF] Ohta | Color information for region segmentation[END_REF], which where also obtained from RGB camera images.

The exponential decay of spatiochromatic covariance matrix elements

All the spatiochromatic matrices c d (R, G, B) that we have estimated turned out to be positive and their decay with respect to increasing values of d is reported in the linear, bi-logarithmic and semi-logarithmic scale in Figure 7 for the Flickr database and in Figure 8 for the RAW database.

Let us write the generic element of the matrix c d (R, G, B) as c d µν , µ, ν ∈ {R, G, B}. Notice that a power-law behavior for c d µν would be represented by a linear relationship in the bi-logarithmic scale, i.e. log(c d µν ) = α µν + β µν log(d), which, in fact, is equivalent to c d µν = e αµν d βµν . However, as can be seen in Figures 7,8, the graphs in the bi-logarithmic scale show a significant deviation from a linear behavior from d = 100, these distance being expressed in pixels. This confirm in the color case the fact that the power-law decay of the covariance is not valid for large pixels distances, a fact already noticed for gray level images in [START_REF] Huang | Statistics of natural images and models[END_REF].

Moreover, notice that the graphs of Figures 7, 8 in the semi-logarithmic scale show a linear decay for all the distances that we have tested (from 1 to 300 pixels). To quantify this behavior we have performed a linear fit. The graphical and analytical expressions of the straight lines approximating the covariance decay in the semi-logarithmic scale are reported in Figures 9,10. Note that the largest discrepancy with respect to the linear behavior is found at very small distances. Nonetheless, we stress that the linear approximation is very precise, as shown by the value of the coefficient of determination R 2 (which expresses the percentage of empirical data variance that is described by the linear approximation) which is greater than 0.98 for all curves.

A linear behavior in the semilogarithmic domain corresponds to an exponential decay: log(c d µν ) = α µν + β µν d is equivalent to c d µν = e αµν e βµν d . Since c 0 µν = e αµν , we can write

c d µν = c 0 µν e -βµν d , µ, ν ∈ {R, G, B}, (30) 
where c 0 µν is the generic element of the chromatic autocovariance matrix. From the point of view of differential equations, this means that the spatiochromatic covariance c µν (d), interpreted as a function of the pixel distance d, satisfies the following initial value problem:

ċµν (d) = -β µν c µν (d) c µν (0) = c 0 µν (31)
i.e. the speed of decay of c µν (d) is directly proportional to c µν (d) via the coefficient -β µν . The value of these coefficients are listened in Table 1.

Flickr Database

RAW Database β RR = -0.0028 β RR = -0.0023 β GG = -0.0026 β GG = -0.0021

β BB = -0.0022 β BB = -0.0020 β RG = β GR = -0.0028 β RG = β GR = -0.0022 β RB = β BR = -0.0028 β RB = β BR = -0.0022 β GB = β BG = -0.0025 β GB = β BG = -0.0021
Table 1: Slopes of the straight lines which approximate the spatiochromatic covariance graphs in the semilogarithmic scale for the Flickr and the RAW databases.

The explicit representation of the spatiochromatic covariance matrices c d (R, G, B) are the following:

c d Flickr (R, G, B) =  
0.0719e -0.0028 d 0.0651e -0.0028 d 0.0612e -0.0028 d 0.0651e -0.0028 d 0.0713e -0.0026 d 0.0710e -0.0025 d 0.0612e -0.0028 d 0.0710e -0.0025 d 0.0851e -0.0022 d   , ∀d ≥ 0.

(32)

c d RAW (R, G, B) =  
0.0022e -0.0023 d 0.0021e -0.0022 d 0.0021e -0.0022 d 0.0021e -0.0022 d 0.0021e -0.0021 d 0.0022e -0.0021 d 0.0021e -0.0022 d 0.0022e -0.0021 d 0.0024e -0.0020 d   , ∀d ≥ 0.

(33) It can be seen that the spatiochromatic covariance relative to the blue channel decreases less rapidly than that of the red and green channels. This may be explained by the fact that pictures in which the sky is present are characterized by large homogeneous areas dominated by the blue channel.

The explicit analytical expressions of c d (R, G, B) that we have managed to obtain are interesting for two reasons: firstly, they provide an accurate model for the covariance that corrects the power-law decay; secondly, they allow computing the commutators [c 0 (R, G, B), c d (R, G, B)] for every distance d > 0. If the coefficients α µν were all equal, then these commutators would be null matrices, however, the differences in the values of the exponentials make the matrix elements of the commutators different than zero. Figure 11 shows the absolute and normalized 2-norms of the commutators as a function of d. It can be seen that, for small values of d, the commutators can be considered approximately null, however, as d increases, they show deviations from the zero matrix, but they are still small.

Effect of the photochemical transformation on the database of RAW natural images

A further test that we have performed on RAW images is the following: we have transformed the initial data with the so-called Michaelis-Menten (also known as Naka-Rushton) equation, see [START_REF] Shapley | Visual adaptation and retinal gain controls[END_REF]

, i.e. I µ (x) → I γ µ (x)/(I γ µ (x) + m γ µ )
, where m µ is the average intensity value in the chromatic channel µ and γ = 0.74 (the value corresponding to the rhesus monkey retinal photoreceptors). This equation models the photochemical transduction from radiance to action potential performed by retinal photoreceptors.

We then repeated the spatiochromatic covariance computations on this new transformed database and we have found again an exponential decay, but this time with exactly the same coefficients for all the chromatic combinations, i.e. β µν = -0.0033, for all µ, ν ∈ {R, G, B}, implying that a by-product of photoreceptors' photochemical transduction is the rearranging of radiance values so that all the spatiochromatic covariance matrices commute perfectly. Up to our knowledge, this test has never been performed before.

As already remarked, RAW data provide a good approximation of real physical irradiance, thus we believe that this test gives an interesting hint about the consequence of photochemical transduction on covariance of natural visual stimuli. However, a better choice would be to perform this test on multispectral radiance values. This is not yet possible due to the lack of a large database of natural multispectral images. We will turn back to this issue in the discussion section.

The power spectrum

We are now going to analyze the consequence of an exponential model for the covariance decay on the power spectrum. As recalled in Section 2.1, we can theoretically relate the autocovariance decay with the power spectrum S(f ) via the Fourier transform. Using the notation of Section 2.1.2 and applying the Fourier transform to the analytical expression of the spatiochromatic autocovariance given by eq. ( 30) we get that

S µ (f ) ∝ 1 1 + f βµµ 2 , µ ∈ {R, G, B}. (34) 
If (f /β µµ ) 2 ≫ 1, i.e. if f ≫ β µµ , then we can neglect the term 1 at the denominator of S µ (f ) and approximate it with a power law with respect to f . Since the order of magnitude of β µµ is 10 -3 , this means that S µ (f ) can be approximated by a power law for values of f ≫ 10 -3 . The plots of S µ (f ) in the bi-logarithmic scale reported in Figure 12 confirm this fact: for small values of f (which correspond to large values of d for the covariance) the power spectrum deviates from the linear fit, as f increases (corresponding to smaller values of d for the covariance), the linear fit becomes more and more precise. This is coherent with the graph of the covariance in the bi-logarithmic scale reported in Figure 7: for small values of d the graph is linear, but as d increases the curve deviates from linearity.

This explains why the covariance can be thought to have a power-law decay when it is analyzed only by means of the power spectrum.

Discussion and perspectives

We have provided a theoretical analysis of the relationship between translation invariance of the covariance and the decorrelated spatiochromatic features of digital RGB images, supported by several numerical tests.

Our analysis has been motivated by the will to understand the basic mathematical reasons underlying the appearance of a separable spatiochromatic basis of uncorrelated features when the PCA is performed over patches or whole natural images.

In order to investigate this property, we have built the spatiochromatic covariance matrix of an abstract three-chromatic image and we have shown that, under the assumption of spatial invariance and commutativity, their eigenvectors can be written as the Kronecker product of the cosine Fourier basis times an achromatic plus color opponent triad.

The numerical tests that we have conducted have shown that the assumptions are verified with a good degree of approximation, both when we consider the pictures of a large database of a million natural RGB images taken from the popular website Flickr and also those of a smaller database of seven thousand raw images that we have taken.

In particular, the analysis of the commutativity of spatiochromatic covariance matrices have led to a lateral result that it is worth underlying: our tests have shown that the spatial covariance decays exponentially and not following a power law. As recalled in the introduction, the failure of the power law decay has already been reported in the literature of natural image statistics, but our result on the exponential decay is novel. Moreover, we have shown that the decay speed is not the same for all the combinations of chromatic channels: the autocovariance decay of the blue channel being the slowest and the R-B covariance decay being the fastest.

The slower decay of the blue autocovariance can be explained by the fact that many pictures of natural environments contain large homogeneous areas of blue. The faster decay of the red-blue covariance instead is probably due to the fact that the sensitivity curves of red and blue have the smallest overlapping.

Regarding the decay speed, we have performed a test on raw images that we deem interesting for future developments of the research presented in this paper: we have transformed the raw images according to the photochemical transduction formula and we have found that, after this transformation, the spatiochromatic covariance speed decay turns out to be the same for every combination of chromatic channels. This property also implies that all spatiochromatic covariance matrices commute.

We stress that, at this stage of the research, the numerical results that we have obtained cannot be considered wholly exhaustive to infer properties of the HVS. To do that, a large unbiased database of multispectral images should be carefully built in such a way that the camera sensitivity functions have no influence on the data of the database. The multispectral images can be used to generate the LMS cone activation values that will become the new input for our mathematical framework.

Large multispectral databases of natural environments are not yet available because of the difficulty of taking a multispectral image in non-controlled conditions without producing artefacts, a problem similar to the well known 'ghosting effect' in high dynamic range imaging. However, recent advances in camera sensors and post-processing algorithms may allow in the near future the creation of such databases and the generalization of the results of this paper. Notice that the initial bump showed by the power spectra of the images taken by the Flickr database is shared with the graph reported by [START_REF] Pouli | Image statistics and their applications in computer graphics[END_REF], page 68, Figure 10.

Figure 1 :

 1 Figure 1: The Vos-Walraven cone sensitivity functions (adapted from Buchsbaum and Gottschalk (1983), page 92).

Figure 2 :

 2 Figure 2: LM and LS scatterplots of the Ruderman-Cronin-Chiao database (adapted from Ruderman et al. (1998), page 2037).

Figure 3 :

 3 Figure 3: Principal axes of 3 × 3 patches arranged in order of decreasing eigenvalue, from left to right, top to bottom (adapted from Ruderman et al. (1998), page 2041). The color rendering that the authors performed is the following: firstly, the R, G, B values are linearly related to the logarithmic L, M , S values via these formulae R = 128( L + 1), G = 128( M + 1), B = 128( S + 1). Notice that X = 0 if and only if LogX = Log X , for X = L, M, S, so the previous relations set the average image values in the logarithmic domain to 128. Finally, the (R, G, B) values so obtained are linearly stretched to [0,255].

Figure 4 :

 4 Figure 4: The 64 first principal components obtained using a packet of 10 5 images from the Flickr database. These components are perfectly in line with the shape predicted by Proposition 1.

Figure 5 :

 5 Figure 5: Relative error decay in the estimation of the chromatic autocovariance matrix elements.

Figure 6 :

 6 Figure6: First column: distribution of chromatic autocovariances computed through the Flickr (first row) and RAW (second row) databases between the red channels. Second column: the intensity of the images of the first column has been stretched between 0 and 255 to enhance the visibility of the spatial inhomogeneity, that is not possible to perceive with the non-stretched values. We stress that we do not introduce the other color channel combinations because they are very similar to those shown here.
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  Flickr = (0.5483, 0.5761, 0.6061) ←→ λ 1 = 0.2080, P Flickr = (0.7179, 0.0474, -0.6945) ←→ λ 2 = 0.0170, Q Flickr = (0.4289, -0.8160, 0.3876) ←→ λ 3 = 0.0034. RAW = (0.5679, 0.5683, 0.5954) ←→ λ 1 = 0.0065, P RAW = (0.7210, 0.0055, -0.6930) ←→ λ 2 = 0.0002, Q RAW = (0.3971, -0.8228, 0.4066) ←→ λ 3 = 7.8 • 10 -7 .

Figure 7 :

 7 Figure 7: Graphs of the six distinct spatiochromatic covariance matrix elements in the linear, (natural) bi-logarithmic and semi-logarithmic scale, respectively, as a function of the pixel distance d. The values were obtained using the Flickr database.

Figure 8 :

 8 Figure 8: Graphs of the six distinct spatiochromatic covariance matrix elements in the linear, (natural) bi-logarithmic and semi-logarithmic scale, respectively, as a function of the pixel distance d. The values were obtained using the RAW database.

Figure 9 :

 9 Figure9: Graphics of the linear approximations of the spatiochromatic covariance matrix elements in the semi-logarithmic scale (data obtained from the Flickr database). The coefficient of determination R 2 is greater than 0.98 for all the linear approximations.

Figure 10 :

 10 Figure10: Graphics of the linear approximations of the spatiochromatic covariance matrix elements in the semi-logarithmic scale (data obtained from the RAW database). The coefficient of determination R 2 is greater than 0.98 for all the linear approximations.

Figure 11 :

 11 Figure 11: Left: Graph of the 2-norm of the commutators between the spatiochromatic covariance matrices as a function of pixel distance d. Right: Graph of the normalized 2-norm of the commutators, the normalization is done over the mean value of 2-norm of the product matrix performed from left to right and from right to left. First row : data obtained with the Flickr database. Second row : data obtained with the RAW database.

Figure 12 :

 12 Figure 12: Average power spectra. First row : Flickr database, the slopes of the linear approximations are -1.4429, -1.4229, -1.4384, from left to right. Second row : Raw database, the slopes of the linear approximations are -1.6666, -1.7182, -1.6698, from left to right. Notice that the initial bump showed by the power spectra of the images taken by the Flickr database is shared with the graph reported by Pouli et al. (2010), page 68, Figure 10.

Second order stationarity is defined as the invariance under translations of both the mean and the covariance of images. For the results presented in Section 3, only the hypothesis of stationarity of the covariance is needed. Nevertheless, we will use the term 'second order stationarity' to describe the corresponding hypothesis.

The typical representation of a ganglion cell L -M receptive field is given by a center disk surrounded by a ring. The center is excited by the information arriving from the L (resp. M ) cones, but its response is inhibited by the information arriving from the M (resp. L) cones on the surrounding ring.

To avoid cumbersome repetitions of the indexes variability, from now on, we will suppose that j, j ′ ∈ {0, . . . H -1} and k, k ′ ∈ {0, . . . W -1}, unless otherwise specified.

This can be easily verified by noticing that c j,j ′ k,k ′ = c j,j ′ k+1,k ′ +1 .

We have used the simplified notation c j m ≡ c 0,j 0,m to denote the matrix element of position m in the first row of the matrix C j , m = 0, . . . , W -1.

We recall that, given two generic matrices A and B for which the products AB and BA is well defined, [A, B] ≡ AB -BA is called the 'commutator' between them. Of course A and B commute if and only if [A, B] = 0.