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bTélécom ParisTech, LTCI, CNRS, 46 rue Barrault, 75013, Paris, France

Abstract

We provide a theoretical analysis of some empirical facts about the second
order spatiochromatic structure of natural images in color. In particular, we
show that two simple assumptions on the covariance matrices of color im-
ages yield eigenvectors made by the Kronecker product of Fourier features
times the triad given by luminance plus color opponent channels. The first
of these assumptions is second order stationarity while the second one is
commutativity between color correlation matrices. The validity of these as-
sumptions and the predicted shape of the PCA components of color images
are experimentally observed on two large image databases. As a by-product
of this experimental study, we also provide novel data to support an expo-
nential decay law of the spatiochromatic covariance between pairs of pixels
as a function of their spatial distance.

Keywords: Natural image statistics, color images, spatio-chromatic
correlation, second order stationarity, Fourier basis, opponent channels.

1. Introduction

There is a general agreement about the fact that the Human Visual Sys-
tem (HVS from now on) has evolved in order to optimize the elaboration
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and transmission of visual signals originating from natural scenes by get-
ting rid of redundant information. In fact, there is a hundred million retinal
photoreceptors against one million optic nerve neurons, therefore the retinal
output must be re-coded to allow the salient visual information passing to
subsequent stages.

The origin of redundancy in the interaction between humans and natural
scenes is two-fold: on one side, natural scenes contain strong spatial corre-
lation, since nearby points are likely to send similar radiance information to
the eyes, unless they lie in the proximity of a sharp edge. On the other side,
light signals (in photopic conditions) are absorbed by the three L,M, S-type
cones, whose sensitivity is not independent, as can be seen by looking at their
spectral sensitivity functions L(λ),M(λ), S(λ), depicted in Figure 1. In par-
ticular, the L(λ) and M(λ) have a wide overlap area, thus every broadband
visual stimulus will excite both the L and the M -type cones, resulting in a
strong chromatic correlation. When both effects are taken into account, one
speaks about spatio-chromatic correlation.

Figure 1: The Vos-Walraven cone sensitivity functions (adapted from Buchsbaum and
Gottschalk (1983), page 92).

The simplest way to look at spatial redundancy within images is through
the second order statistics between pixel values. Two noticeable and well-
known facts are the Fourier-like structure of Principal Component Analysis
(PCA), as a result of spatial stationarity, and the power-law decay of the
power spectrum, as a possible consequence of scale-invariance. Higher order
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statistics have also been largely investigated, for instance through wavelets or
sparse coding, as recalled in Section 2. On the other hand, several works have
been concerned with chromatic redundancy in images, mostly through second
order property and in connection with opponent color spaces. However, the
spatio-chromatic structure of color images has been less studied. One of
the most striking known empirical observation is that the spatio-chromatic
covariance matrices resemble a tensor product between a Fourier basis and
color opponent channels, as pointed out in section 2. In this work, we focus
on this statistical characteristic, both from a theoretical and an experimental
perspective. In Section 3 we show that second order stationarity 1, together
with another technical assumption, namely that covariance matrices must
commute for any distance between pixels, implies that the eigenvectors of
the spatio-chromatic covariance matrix are represented by the tensor product
of the 2D cosine Fourier basis and the triad given by the achromatic plus
color opponent channels. In Section 4, we show experimentally on two large
image databases that these two assumptions hold true and that the tensor
structure of covariance matrices is satisfied. One of these bases is made of
images gathered from the internet, for which we have no information about
the formation process. The other one is made of RAW images that are free of
compression artefacts and have not undergone any white balance or gamma
correction. As previously said, the second key assumption that guarantees
this result is that the spatiochromatic covariance matrices must commute for
any distance between pixels. In Section 4, to test this assumption, we will
analyze the decay of spatiochromatic covariance matrix elements, showing
that it can be modeled through an exponential law, in contrast to the power
law decay commonly thought to characterize natural images. In Section 5
we will discuss these theoretical and empirical results and comment about
future perspectives for computer vision purposes.

2. State of the art in natural color image statistics

The literature about natural image statistics is vast and its exhaustive
presentation is beyond the scope of this paper. We concentrate here on

1Second order stationarity is defined as the invariance under translations of both the
mean and the covariance of images. For the results presented in Section 3, only the
hypothesis of stationarity of the covariance is needed. Nevertheless, we will use the term
‘second order stationarity’ to describe the corresponding hypothesis.

3



important achievements that are related to the present paper. In Section 2.1,
we recall some classical facts about the covariance structure of gray level
images and also quote some related and more involved results on the structure
of image patches. In Section 2.2, we present works dealing with the chromatic
redundancy of natural images. In Section 2.3, we present results on the
spatio-chromatic structure of natural images. In these two last sections, a
particular emphasis is given to the results from Buchsbaum and Gottschalk
(1983) and from Ruderman et al. (1998), which are both closely related to
our results.

2.1. Spatial redundancy in natural images

There is a large body of works dealing with spatial statistics in natural
images, as e.g. reviewed in Srivastava et al. (2003). In the present work,
we will focus on relatively simple second order property of natural images,
and mostly on their covariance. Our motivation is that such simple struc-
tures are, to the best of our knowledge, not fully understood in the case of
spatiochromatic dependency and will be addressed in the remaining of this
paper. In particular, we will not consider in this work the non-gaussianity of
natural images, although it is related to the most geometric aspects of image
structure, see e.g. Mumford and Gidas (2001).

2.1.1. Image patches decomposition

Attneave (1954), MacKay (1956) and Barlow (1961) pioneered the idea
that the HVS, in order to deal with the great amount of information that it
constantly receives, should have developed a scheme to get rid of redundant
information. However, they did not quantify these ideas with a computa-
tional theory that could provide a coding for natural images. The simplest
observations in this direction concern principal component analysis (PCA)
on small image patches. These are well known (see for instance the experi-
ments in Olshausen and Field (1996)) to yield Fourier basis elements. This
fact is a simple consequence of spatial stationarity, as will be recalled in
Section 3.1. More involved patch decompositions, relying on the minimiza-
tion of redundancy, as in Atick and Redlich (1990) and Atick (1992), or on
sparse decompositions, as in Olshausen and Field (1996, 1997), yield local-
ized, band-pass and oriented filters resembling wavelet decompositions. Since
these early works, sparse dictionary representations have become a standard
tool for image restoration, for their ability to economically represent geo-
metric structures, see e.g. Elad and Aharon (2006). Analogous elementary
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patches have been obtained with the use of Independent Component Anal-
ysis (ICA), see e.g. Hyvärinen et al. (2009) or from convolutional neural
networks, see the experiments in Krizhevsky et al. (2012).

2.1.2. Power spectrum

One of the most striking fact about image statistics is that most of them
exhibit some form of scale-invariance. Roughly speaking, statistical observa-
tions on an image and on a zoomed version of it are qualitatively similar. The
most well known among such observations concerns the power spectrum of
images. Experiments conducted over different databases of natural images,
see e.g. Field (1987), Ruderman and Bialek (1994), have shown that, while
the power spectra of different images changes considerably, if we compute the
average power spectrum over a sufficiently large number of images and over
all orientations, then we find a power-law behavior. That is, if we write S(f)
for the power spectrum (the square of the amplitude of the Fourier trans-
form) averaged over all directions, we find that S(f) ≈ Cf−β, as a function
of the frequency magnitude f . The value of β varies roughly from 1.5 to 3,
with a cluster of values around 2, depending on the image database used,
see Tolhurst et al. (1992), Pouli et al. (2010) for some examples of β values.
This decreasing of the power spectrum is usually associated with scale in-
variance, since the value β = 2 corresponds to this case, see Mumford and
Gidas (2001).

By Wiener-Khinchin’s theorem (see Papoulis (1991)), under the hypothe-
sis of second order stationarity, the power spectrum and the covariance form
a Fourier pair. In Ruderman (1996), page 3397, it is underlined that if the
power spectrum of an image follows a power law S(f) = A

f2−η , η being the
so-called ‘anomalous exponent’, then the covariance C as a function of the
distance d among pixels has the following expression C(d) = a

dη
− b, a, b > 0,

i.e. apart from an offset, the covariance also decreases with a power-law. This
power-law decay has been proven to fail at large frequencies and distances,
both for the power spectrum, e.g. in Langer (2000), and the covariance,
see Huang and Mumford (1999) and Huang (2000). In Section 4, we will
confirm the failure of the power-law decay of the covariance at large dis-
tances, show that an exponential model is more accurate, and discuss the
relation of such a model with the spatiochromatic covariance properties of
natural images.
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2.2. Chromatic redundancy in natural images

The first statistical information about chromatic redundancy has been
experimentally obtained in Ohta et al. (1980) in the framework of color seg-
mentation of RGB images. For each picture of a database of 8 RGB images,
the authors computed the covariance matrix C of the distribution of the val-
ues of R, G and B at each pixel. They found that the eigenvectors of the
covariance matrix are approximately the following ones for each image of the
database:











v1 =
(

1
3
, 1
3
, 1
3

)t

v2 =
(

1
2
, 0,−1

2

)t

v3 =
(

−1
4
, 1
2
,−1

4

)t
,

(1)

These vectors correspond to the three following uncorrelated color features











X1 =
R+G+B

3

X2 =
R−B
2

X3 =
2G−(R+B)

4
.

(2)

This shows that the feature that corresponds to the largest variance is the lu-
minance X1 (or achromatic channel) and the other two features are described
by the opponent channels X2 (red-blue) and X3 (green-violet).

Buchsbaum and Gottschalk (1983) approached the problem of finding
uncorrelated color features from a purely theoretical point of view. Following
the already quoted ideas of Attneave, Barlow and MacKay, they analyzed the
problem of an efficient post-retinal information transmission by performing
a PCA on the LMS cone activation values. We shall now give a detailed
presentation of this work, to which our contributions are closely related.

Buchsbaum and Gottschalk considered the abstract ensemble of all pos-
sible visual stimuli (radiances), i.e. S ≡ {S(λ), λ ∈ L}, where L is the
spectrum of visible wavelengths. From a given representative S(λ) ∈ S, a
weighted integration of S(λ) over the visual spectrum, with weights given by
the Vos-Walraven spectral sensitivity functions L(λ),M(λ), S(λ) depicted in
Figure 1, yields the three cone activations values:











L =
∫

L S(λ)L(λ) dλ

M =
∫

L S(λ)M(λ) dλ

S =
∫

L S(λ)S(λ) dλ.

(3)
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Assuming that the stimulus S(λ) (coming from a fixed point x̄ of a scene) is
a random variable, a convariance matrix can be build from the three random
variables L,M, S. This matrix, called the chromatic covariance matrix is
defined as:

C =





CLL CLM CLS

CML CMM CMS

CSL CSM CSS



 , (4)

where CLL ≡ E[L ·L]− (E[L])2, CLM ≡ E[L ·M ]−E[L]E[M ] = CML, and so
on, E being the expectation operator.

If we introduce the covariance function, K(λ, µ) = E[S(λ)S(µ)]−E[S(λ)]·
E[S(µ)], then the entries of the covariance matrix can be written as CLL =
∫∫

L2 K(λ, µ)L(λ)L(µ) dλdµ, CLM =
∫∫

L2 K(λ, µ)L(λ)M(µ) dλdµ, and simi-
larly for the others. This shows that the correlation among the L,M, S cone
activations does not depend only on the overlap among the sensitivity curves,
but also on the prevalence of certain wavelengths in the ensemble of visual
stimuli S with respect to others.

To be able to perform explicit calculations, the analytical form of the co-
variance function K(λ, µ) must be specified. In the absence of a database of
multispectral images, Buchsbaum and Gottschalk used abstract non-realistic
data to compute K(λ, µ). They chose the easiest covariance function cor-
responding to visual stimuli maximally uncorrelated with respect to their
energy at different wavelengths, i.e. K(λ, µ) = δ(λ − µ), δ being the Dirac
distribution. As the authors observe, this condition is satisfied only if the
ensemble S is made of monochromatic signals.

With this choice, the entries of the covariance matrix C are all positives
and they can be written as CLL =

∫

L L
2(λ) dλ, CLM =

∫

L L(λ)M(λ) dλ, and
so on. C is also real and symmetric, so it has three positive eigenvalues
λ1 ≥ λ2 ≥ λ3 with corresponding eigenvectors vi, i = 1, 2, 3. If W is the
matrix whose columns are the eigenvectors of C, i.e. W = [v1|v2|v3], then
the diagonalization of C is given by Λ = W tCW = diag(λ1, λ2, λ3).

The eigenvector transformation of the cone excitation values L,M, S is
then





A
P
Q



 = W t





L
M
S



 .

In the special case of monochromatic stimuli, we can also parameterize with
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the wavelength λ:




A(λ)
P (λ)
Q(λ)



 = W t





L(λ)
M(λ)
S(λ)



 .

The transformed values A,P,Q are uncorrelated and their covariance matrix
is Λ. A is the achromatic channel, while P and Q are associated to the
opponent chromatic channels.

The key point in Buchsbaum and Gottschalk’s theory is the application of
Perron-Frobenius theorem (see e.g. Berman and Plemmons (1987) for more
details), which assures that positive matrices, i.e. matrices whose entries
are all strictly greater than zero, have one and only one eigenvector whose
entries have all the positive sign, and this eigenvector corresponds to the
largest eigenvalue, i.e. λ1. So, only the transformed A channel will be a linear
combination of the cone activation values L,M, S with positive coefficients,
while the channels P and Q will show opponency. This is the theoretical
reason underlying the evidence of post-retinal chromatic opponent behavior,
following Buchsbaum and Gottschalk.

We underline that the positivity of C in Buchsbaum-Gottschalk’s the-
ory is a consequence of their non-realistic selection of monochromatic visual
stimuli. However, signals coming from real scenes are broad-band, so there is
no theoretical guarantee that C has all positive entries. In Section 4, we will
see that C is positive also when it is computed through natural RGB images,
in which case the HVS sensitivity functions are replaced with the sensitivity
functions of cameras. The most prominent cause of positive correlation val-
ues is probably the fact that the spectral sensitivity functions of cameras are
also highly overlapping, see for instance Jiang et al. (2013).

The monochromatic signal energy of the channels has the following prop-
erty:

∫

L
A2(λ) dλ :

∫

L
P 2(λ) dλ :

∫

L
Q2(λ) dλ = λ1 : λ2 : λ3. (5)

The explicit form of the matrices C, W t and Λ within Buchsbaum-
Gottschalk’s theory are the following:

C =





77.0622 38.6204 0.0649
38.6204 22.8099 0.0646
0.0649 0.0646 0.0151



 , (6)
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W t =





0.887 0.461 0.0009
−0.46 0.88 0.01
0.004 −0.01 0.99



 , (7)

Λ = diag(97.2, 2.78, 0.015). (8)

The large covariance values between L and M and the very small ones be-
tween these two channels and S are a direct consequence of the use of Vos-
Walraven’s sensitivity functions and the hypothesis K(λ, µ) = δ(λ − µ). In
Section 4 we will see that if we compute C from a database of natural images,
then the difference among covariance values is rather small.

Using the data obtained above, Buchsbaum and Gottschalk could write
explicitly the transformation from (L,M, S) to (A,P,Q) as follows:











A ≃ 0.887L+ 0.461M

P ≃ −0.46L+ 0.88M

Q = 0.004L− 0.01M + 0.99S,

the energy ratios among A, P and Q being 97.2 : 2.78 : 0.015. Again,
we observe that the unrealistic hypothesis of maximally uncorrelated visual
signals implies that the achromatic channel accounts for the great majority
of the energy transmitted and the blue channel has practically no influence
in the computation of the achromatic stimulus.

2.3. Spatio-chromatic redundancy in natural images

Buchsbaum also developed the first computational model of spatio chro-
matic image coding in early vision in the paper Derrico and Buchsbaum
(1991). In that paper, only the L and M signals are taken into account,
because the authors claim that they contain almost the whole energy of reti-
nal output and the opponent L−M ganglion cell receptive fields2 represent
90% of the total ganglion cells on-off receptive fields. Their model consists
in a two-stage process: the first (chromatic) step consists in the same PCA
operated in Buchsbaum and Gottschalk (1983) to decorrelate the L and M
signals, which gives the achromatic part L+M and the opponent chromatic

2The typical representation of a ganglion cell L−M receptive field is given by a center
disk surrounded by a ring. The center is excited by the information arriving from the L

(resp. M) cones, but its response is inhibited by the information arriving from the M

(resp. L) cones on the surrounding ring.
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channel L−M . The second (spatial) step consists in applying a linear predic-
tive coding (similar to that used by Srinivasan et al. (1982)) which optimizes
the transmission of the achromatic part by attenuating the low spatial fre-
quencies.

Also Atick et al. (1992) considered only the L and M signals and, by
postulating translation-invariance of natural light stimuli and separability
among chromatic and spatial correlation, they built a linear operator able to
decorrelate the signals L and M into L + M and L −M (see Atick (1992)
page 245 and Atick et al. (1992) page 566).

In Ruderman et al. (1998), Ruderman, Cronin and Chiao proposed a
patch-based spatio-chromatic coding and tested Buchsbaum-Gottschalk’s the-
ory on a database of 12 multispectral natural images of foliage.

Because of the proximity between our contribution and this work, we
now give a detailed account the experiments performed in Ruderman et al.
(1998). Each multispectral image consists of 43 successive images taken at 7-
8 nm intervals from 403 to 719 nm, thus they chose L = {403, 410, . . . , 719}.
In order to build the cone activation values L,M, S, the authors did not
follow the same procedure as Buchsbaum and Gottschalk, but they write
(L,M, S) =

∑

λ∈L
~Q(λ)R(λ)J(λ), where ~Q = (QL, QM , QS) are the cone

sensitivity functions detailed in Stockman et al. (1993), J(λ) is the standard
D65 CIE illuminant that models daylight spectrum, and R(λ) is an estima-
tion of scene’s reflectance. R(λ) is obtained by placing in each photographed
scene a MacBeth chart with known spectral reflectance and re-calibrating
the multispectral values in order to match those of the chart. Of course
this procedure is approximated, since the illumination of the scene can vary
in space and time, for this reason the authors analyzed only the 128×128
central region of each image.

The scatterplots in the LM and LS planes of the L,M, S cone activations
values corresponding to 1000 pixels randomly selected in the database show
a high degree of correlation (higher in the LM plane than in the LS one due
to the overlap of L and M spectral sensitivity functions) but also asymmetry,
as can be seen in Figure 2.

The authors decided to study these data by first reducing their asym-
metry: they modified the LMS values by taking their decimal logarithm
and then they subtracted the average image value in the logarithmic do-
main. They obtained the so-called Ruderman-Cronin-Chiao coordinates, i.e.
L̃ = LogL − 〈LogL〉, M̃ = LogM − 〈LogM〉 and S̃ = LogS − 〈LogS〉.
This transform is motivated with the fact that, following Weber-Fechner’s
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Figure 2: LM and LS scatterplots of the Ruderman-Cronin-Chiao database (adapted
from Ruderman et al. (1998), page 2037).

law, uniform logarithmic changes in stimulus intensity tend to be equally
perceptible, see Goldstein (2013). Moreover, second-order statistics of log-
transformed data is similar to that of linear images, see Ruderman and Bialek
(1994). Instead, the motivation for the average substraction is to assess the
data independently on the illumination level, analogously to a von Kries
procedure (see von Kries (1902)).

The choice of logarithmic coordinates is nevertheless questionable. Rud-
erman, Cronin and Chiao claim that the linear relationship among logarith-
mic data and Weber-Fechner’s contrast metric gives a reason to select the
principal component analysis among other non-orthogonal analysis because
the orthogonal transformations involved in the PCA preserve the space met-
ric. However, other researcher, e.g. Simoncelli and Olshausen (2001) have
criticized this observation, claiming that considering high-level perceptual
features, as Weber-Fechner’s law, in early vision models is misleading.

Following Ruderman et al. (1998), if L̃, M̃ , S̃, are the basis vectors in the
logarithmically-transformed space, then the application of the PCA gives the
following three principal axes:











l = 1√
3
(L̃+ M̃ + S̃)

α = 1√
6
(L̃+ M̃ − 2S̃)

β = 1√
2
(L̃− M̃).

(9)

The color space spanned by these three principal axes is called lαβ space. The
standard deviations of the l, α, β coordinates are σl = 0.353, σα = 0.0732 and
σβ = 0.00745. Notice that there is an inversion in the importance of opponent
channels with respect to Buchsbaum and Gottschalk (1983): here the L−M
channel has the lowest variance.
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To study spatiochromatic decorrelated features, Ruderman, Cronin and
Chiao considered 3 × 3 patches, with each pixel containing a 3-vector color
information, so that every patch is converted in a vector with 27 components
that they analyzed with the PCA. The principal axes of these small patches
in the logarithmic space are depicted in Figure 3. It can be seen that the
first principal axis shows fluctuations in the achromatic channel, followed
by blue-yellow fluctuations in the α direction and red-green ones in the β
direction.

Figure 3: Principal axes of 3× 3 patches arranged in order of decreasing eigenvalue, from
left to right, top to bottom (adapted from Ruderman et al. (1998), page 2041). The
color rendering that the authors performed is the following: firstly, the R,G,B values
are linearly related to the logarithmic L̃, M̃ , S̃ values via these formulae R = 128(L̃+ 1),
G = 128(M̃ + 1), B = 128(S̃ + 1). Notice that X̃ = 0 if and only if LogX = 〈LogX〉,
for X = L,M, S, so the previous relations set the average image values in the logarithmic
domain to 128. Finally, the (R,G,B) values so obtained are linearly stretched to [0,255].

The spatial axes are largely symmetrical and can be represented by Fourier
features, in line with the translation-invariance of natural images, as argued
in Field (1987). It is important to stress that in Figure 3 no pixel within the
patches appear other than the primary gray, blue-yellow or red-green colors,
i.e. no mixing of l, α, β has been found in any 3 × 3 patch. These means
that not only the single-pixel principal axes l, α, β, but also the spatially-
dependent principal axes l(x), α(x), β(x), viewed as functions of the spatial
coordinate x inside the patches, are decorrelated.

These results have been confirmed by Párraga et al. (2002). A strong, but
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not perfect, spatio-chromatic decorrelation has been confirmed in Hyvärinen
et al. (2009) (page 323), where the authors performed experiments on 50000
patches of size 12× 12 selected in a basis of 20 RGB (and not LMS) images.
The imperfection in the decorrelation is put in evidence by the appearance
of mixed colors, as e.g. orange. In Section 4, we will perform similar experi-
ments on much larger databases.

Ruderman, Cronin and Chiao proposed the following separable form for
the spatio-chromatic principal axes: p((L,M, S), x) = c(L,M, S) · s(x), i.e.
the product of two uncorrelated eigenfunctions, namely c(L,M, S), given by
the principal axes l, α, β and s(x), given by the Fourier basis. They also
suggest that the lack of spatial dependence of the chromatic components can
be a consequence of scale invariance in natural images. Such a separable
basis has been recently exploited also in Chakrabarti and Zickler (2011) in
the context of hyperspectral images representation and reconstruction.

In Wachtler et al. (2001), the authors applied the ICA to study a set of
8 multispectral images of terrestrial natural scenes containing mainly plants
and rocks. The measured values of the ICA basis functions for single pixels
are coherent with those of Ruderman, Cronin and Chiao, however, they have
proven that if one considers patches of 7 × 7 pixels, then colors other than
the principal ones can appear.

3. Relationship between second order stationarity and the decor-

related spatiochromatic features of natural images

In this section we will analyze the consequence of second order stationar-
ity in natural images on their decorrelated spatiochromatic features. For the
sake of clarity, we will first start with the simplest case of gray-level images,
where stationarity implies that the principal components are Fourier basis
functions. We will then extend this result to the color case and show that a
supplementary hypothesis on color covariance matrices yields principal com-
ponents obtained as the tensor product between Fourier basis functions on
the one hand, and achromatic plus opponent color coordinates on the other
hand.

3.1. The gray-level case

Let I be a gray-level natural image of dimension W × H, W being the
width (number of columns) and H being the height (number of rows) of I.
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If we denote the H rows of I as r0, . . . , rH−1, then we can describe the
position of each pixel of I row-wise as follows:

I = {rjk; j = 0, . . . , H − 1, k = 0, . . . ,W − 1}, (10)

j is the row index and k is the column index3. Each row rj = (rj0, . . . , r
j
W−1)

will be interpreted as a W -dimensional random vector and each component
rjk as a random variable.

Let us define the spatial covariance of the two random variables rjk, r
j′

k′ :

cov(rjk, r
j′

k′) ≡ cj,j
′

k,k′ = E[rjkr
j′

k′ ]− E[rjk]E[r
j′

k′ ]. (11)

Due to the symmetry of covariance we have cj,j
′

k,k′ = cj
′,j
k′,k. Then, we can

write the spatial covariance matrix of the two random vectors rj, rj
′

as
cov(rj, rj

′

) ≡ Cj,j′ , where Cj,j′ is the W ×W matrix:

Cj,j′ =











cj,j
′

0,0 cj,j
′

0,1 · · · cj,j
′

0,W−1

cj,j
′

1,0 cj,j
′

1,1 · · · cj,j
′

1,W−1
...

...
. . .

...

cj,j
′

W−1,0 · · · · · · cj,j
′

W−1,W−1











. (12)

Finally, the spatial covariance matrix C of the image I can be written as:

C =











C0,0 C0,1 · · · C0,H−1

C1,0 C1,1 · · · C1,H−1

...
...

. . .
...

CH−1,0 · · · · · · CH−1,H−1











. (13)

Notice that C is a HW × HW matrix because each sub-matrix Cj,j′ is a
W ×W matrix.

Hypothesis 1. From now on, the covariance of I is assumed to be invariant

under translations of the row and column index: cj,j
′

k,k′ = c
|j−j′|
|k−k′|.

Hypothesis 1 will be tested in section 4.3 and, as said before, it is weaker
than the typical definition of second order stationarity because here we do
not assume the translation invariance of the mean.

3To avoid cumbersome repetitions of the indexes variability, from now on, we will
suppose that j, j′ ∈ {0, . . . H − 1} and k, k′ ∈ {0, . . .W − 1}, unless otherwise specified.
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Alongside this hypothesis, we add a technical requirement on the geom-
etry of digital images which is implicitly assumed every time the Fourier
transform is considered, i.e. we will consider a symmetrized spatial domain
with a toroidal distance, which means that we will perform the identification
rjk = rj

′

k′ when j ≡ j′ (mod H) and k ≡ k′ (mod W ), i.e. every time there
exist a, b ∈ Z such that j′ − j = aH and k′ − k = bW .

As a covariance matrix, C is real, symmetric and positive-definite. Now,
as a consequence of the previous hypotheses, the matrix C is also block-
circulant with circulant blocks. Indeed, the Cj,j′ are circulant matrices, i.e.
matrices where each row vector is rotated one element to the right relative
to the preceding row vector4. If we use the convenient shorthand notation
‘circ( )’ to denote a circulant matrix, by specifying only the first row between
the round brackets, then Cj,j′ can be written as follows:

Cj,j′ = circ
(

c
j,j′

0,0 , c
j,j′

0,1 , . . . , c
j,j′

0,W−1

)

. (14)

Now, if we write Cj ≡ C0,j, j = 0, . . . , H − 1 it is straightforward to see
that the covariance matrix C is block-circulant and can be explicitly written
as:

C = circ
(

C0, C1, . . . , CH−1
)

. (15)

It is well known that an n × n circulant matrix has n eigenvalues cor-
responding to the DFT of the finite sequence given by the first row of the
matrix itself, and its eigenvectors are the Fourier basis functions, see e.g.
Gray (2006).

Let us apply this general result to the W × W circulant matrices Cj.
The set of eigenvalue equations Cjem = λj

mem, λ
j ∈ C and e ∈ C

W , m =
0, . . . ,W−1, can be written as the following matrix equation CjEW = ΛjEW ,
where5:

Λj = diag(ĉjm; m = 0, . . . ,W − 1), ĉjm =
W−1
∑

k=0

cjke
− 2πimk

W , (16)

4This can be easily verified by noticing that cj,j
′

k,k′ = c
j,j′

k+1,k′+1
.

5We have used the simplified notation cjm ≡ c
0,j
0,m to denote the matrix element of

position m in the first row of the matrix Cj , m = 0, . . . ,W − 1.
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and

EW = [e0|e1| · · · |eW−1]

=

[

em =
1√
W

(

1, e−
2πim
W , . . . , e−

2πim(W−1)
W

)t
]

m=0,...,W−1

=
1√
W













1 1 · · · 1

1 e−
2πi
W · · · e−

2πi(W−1)
W

...
...

. . .
...

1 e−
2πi(W−1)

W · · · e−
2πi(W−1)2

W













.

(17)

The following remark will help us understanding how to extend the pre-
vious diagonalization procedure to the whole matrix C.

Remark 1. Let M = circ(M0, . . . ,MH−1) be a block-circulant matrix
and let us assume that the blocks M j can be diagonalized on the same basis
B. If we write EH = [e0|e1| · · · |eH−1], with the vectors ej defined as in eq.
(17) for all j = 0, . . . , H − 1, then it can be verified by direct computation
that EH ⊗B is a basis of eigenvectors of M , where ⊗ denotes the Kronecker
product.

In the case of our spatial covariance matrix C, all the submatrices Cj

have the same basis of eigenvectors EW , thus the result stated in the previous
remark can be directly applied on the matric C to guarantee that

EH ⊗ EW =

[

em,l =
1√
HW

(

1, e−2πi(m
W

+ l
H ), . . . , e−2πi(m(W−1)

W
+

l(H−1)
H )

)t
]

m,l

,

(18)
for m = 0, . . . ,W − 1, and l = 0, . . . , H − 1 provides a basis of eigenvectors
for the matrix C.

Actually, due to the symmetry of covariance matrices, the complex parts
of the exponentials involving the sinus function cancel out (see Gray (2006))
and so the 2D cosine Fourier basis also constitute a basis of eigenvectors of
C:

em,l =
1√
HW

(

1, cos

(

2π

(

m

W
+

l

H

))

, . . . , cos

(

2π

(

m(W − 1)

W
+

l(H − 1)

H

)))t

.

(19)
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3.2. The color case
Let u : Ω → [0, 255]3 be an RGB image function, where Ω is the spatial

domain, and, for all (j, k) ∈ Ω, u(j, k) = (R(j, k), G(j, k), B(j, k)) is the
vector whose components are the red, green and blue intensity values of the
pixel defined by the coordinates (j, k).

We define the spatiochromatic covariance matrix among two pixels of po-
sition (j, k) and (j′, k′) by extending eq. (11) as follows:

cj,j
′

k,k′(R,G,B) =





CRR(j, j
′, k, k′) CRG(j, j

′, k, k′) CRB(j, j
′, k, k′)

CGR(j, j
′, k, k′) CGG(j, j

′, k, k′) CGB(j, j
′, k, k′)

CBR(j, j
′, k, k′) CBG(j, j

′, k, k′) CBB(j, j
′, k, k′)



 (20)

where we defined CRR(j, j
′, k, k′) = E[R(j, k)R(j′, k′)]−E[R(j, k)]E[R(j′, k′)],

CRG(j, j
′, k, k′) = E[R(j, k)G(j′, k′)]−E[R(j, k)]E[G(j′, k′)], and similarly for

the remaining matrix elements. Of course the matrix cj,j
′

k,k′(R,G,B) is sym-
metric because CGR(j, j

′, k, k′) = E[G(j, k)R(j′, k′)]−E[G(j, k)]E[R(j′, k′)] =
CRG(j, j

′, k, k′), and similarly for all the other off-diagonal elements.

In the particular case defined by j′ = j and k′ = k, we will call cj,j
′

k,k′(R,G,B)
‘chromatic autocovariance’ and denote it simply as c0(R,G,B). Notice that
the matrix analyzed in Buchsbaum and Gottschalk (1983) is the chromatic
autocovariance of LMS values.

We then define the spatiochromatic covariance matrix Cj,j′(R,G,B) among
the two random vectors rj, rj

′

given by the j-th and j′-the rows of the spatial
support of u by extending eq. (12) as follows:

Cj,j′(R,G,B) =











cj,j
′

0,0 (R,G,B) cj,j
′

0,1 (R,G,B) · · · cj,j
′

0,W−1(R,G,B)

cj,j
′

1,0 (R,G,B) cj,j
′

1,1 (R,G,B) · · · cj,j
′

1,W−1(R,G,B)
...

...
. . .

...

cj,j
′

W−1,0(R,G,B) · · · · · · cj,j
′

W−1,W−1(R,G,B)











.

(21)
Finally, we define the spatiochromatic covariance matrix C(R,G,B) of the
RGB image u by extending eq. (13) to the 3HW × 3HW matrix defined in
this way:

C(R,G,B) =











C0,0(R,G,B) C0,1(R,G,B) · · · C0,H−1(R,G,B)
C1,0(R,G,B) C1,1(R,G,B) · · · C1,H−1(R,G,B)

...
...

. . .
...

CH−1,0(R,G,B) · · · · · · CH−1,H−1(R,G,B)











.

(22)
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Now, supposing that all the elements of the matrices (20) are positive,
thanks to the Perron-Frobenius theorem we can assure that each of these
cj,j

′

k,k′(R,G,B) matrices has a basis of eigenvectors that can be written as a
triad of achromatic plus opponent chromatic channels. If we further assume
that the matrices (20) can be diagonalized on the same basis of eigenvectors
(A,P,Q), then, thanks to Remark 1, we have that the eigenvectors of the
spatiochromatic covariance matrix C(R,G,B) can be written as the following
Kronecker product:

(A,P,Q)⊗ em,l ∈ R
3HW , (23)

which is precisely the type of eigenvectors that have been exhibited experi-
mentally in Ruderman (1996). A standard result of linear algebra guarantees
that a set of matrices can be diagonalized on the same basis of eigenvectors
if and only if they commute6. Thanks to the hypothesis of translation in-
variance of covariance, this is verified if and only if the generic covariance
matrix cj,j

′

k,k′(R,G,B) commutes with the chromatic autocovariance matrix
c0(R,G,B).

It is convenient to resume all the hypotheses made and results obtained
so far in the following proposition.

Proposition 1. Let u : Ω → [0, 255]3 be an RGB image function, with a
periodized spatial domain Ω, and suppose that

1. The spatiochromatic covariance matrices matrices cj,j
′

k,k′(R,G,B) defined
in (20) depend only on the distances |j−j′|, |k−k′|, i.e. the covariance
of u is stationary;

2. All matrices cj,j
′

k,k′(R,G,B) are positive, i.e. their elements are strictly
greater than 0;

3. The following commutation property holds:

[c0(R,G,B), cj,j
′

k,k′(R,G,B)] = 0 ∀(j, k), (j′, k′) ∈ Ω. (24)

Then, the eigenvectors of the spatiochromatic covariance matrix C(R,G,B)
defined in (22) can be written as the Kronecker product (A,P,Q)⊗em,l, where
(A,P,Q) is the achromatic plus opponent color channels triad and em,l is the
2D cosine Fourier basis defined in eq. (19).

6We recall that, given two generic matrices A and B for which the products AB and
BA is well defined, [A,B] ≡ AB−BA is called the ‘commutator’ between them. Of course
A and B commute if and only if [A,B] = 0.
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Proposition 1 defines a mathematical framework where the empirical re-
sult shown in Figure 3 can be formalized and understood in terms of statis-
tical properties of natural images. In the following section we will test this
framework with the help of two large databases of RGB images.

A direct corollary of Proposition 1 is the following.

Corollary 1. If the hypotheses of Proposition 1 are valid, then the following
decomposition formula holds:

u =
W−1
∑

m=0

H−1
∑

l=0

〈u, (A,P,Q)⊗ em,l〉(A,P,Q)⊗ em,l, (25)

where 〈 , 〉 is the scalar product in R
3HW .

4. Validations on natural image databases

As stated in the previous section, the validity of Proposition 1, which
expresses the spatiochromatic basis as the Kronecker product of the 2D cosine
Fourier basis by the triad given by one achromatic plus two opponent color
channels, is constrained by some hypotheses. In this section we present the
tests that we have performed to check their validity.

To perform our numerical experiences we have selected two databases
that are best suited for different scopes. The first one is an excerpt from the
database described in Hays and Efros (2007), which consists of 2.3 million of
1024×768 copyright-free RGB images taken from the popular website Flickr.
The images of the database have been randomly ordered to reduce as much
as possible the scene content bias. The advantage of this first database is its
large number of images, which enabled us to check that the stability of our
results.

The second database is made of personal RAW photographs of 7000 natu-
ral scenes. Each 4-neighborhood of pixels in a raw image contains two pixels
corresponding to the R and B channels and two pixels corresponding to the
G channel. We demosaicked each RAW image to build a subsampled RGB
image simply by keeping unaltered the R and B information and averaging
the G channel. The advantage of this second database is that RAW images
are free from post-processing operations such as gamma correction, white
balance or compression, thus, modulo camera noise, they provide a much
better approximation of irradiance than the images of the first database.
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Before describing our tests, we show in Figure 4 the 64 first principal
components obtained by applying a PCA to a packet of 105 images from
the Flickr database. These components indeed have the shape predicted by
Proposition 1.

Figure 4: The 64 first principal components obtained using a packet of 105 images from
the Flickr database. These components are perfectly in line with the shape predicted by
Proposition 1.

4.1. Computation of the covariance matrices

Since the test that we have performed are related to covariance matrices,
it is logic to start describing how these matrices are obtained from the images
of the databases. First of all, in order to simplify their computation, the ex-
pectation of the empirical average image of the ensemble has been subtracted
to all images.

We first concentrated on the evaluation of the chromatic autocovariance
c0(R,G,B). Even if the simplest way to compute the covariance is via the
Fourier transform, which implicitly assumes periodicity and may lead to bi-
ases, we chose the alternative strategy that we are going to describe in detail
hereafter. First of all, the expectation operator E involved in its computation
has been approximated by randomly selecting a pixel in N different images
of the database, storing its RGB values in three N -dimensional row vectors
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vµ, µ ∈ {R,G,B}, and then estimating the elements of the chromatic auto-
covariance matrices as follows: CRR = vRvR

t/N , CRG = vRvG
t/N , and so on.

Notice that it is possible to compute the covariances in this way because of
the initial subtraction of the average image.

We then turned our attention to the spatiochromatic covariance matrices
cj,j

′

k,k′(R,G,B) with j 6= j′ and k 6= k′. To simplify the notation, from now on

we will write cj,j
′

k,k′(R,G,B) ≡ cd(R,G,B), where d =
√

(j − j′)2 + (k − k′)2.

We compute cd(R,G,B) by randomly selecting a different point (j, k) ∈ Ω
in each image of the packet and considering its four neighbors (j − d, k),
(j + d, k), (j, k − d), (j, k + d), we then count how many of these neighbors
actually fall in the image domain Ω and we create the vectors vµ and wµ,
µ ∈ {R,G,B}: in wµ we store the R,G,B values of the neighbors of (j, k)
that fall in Ω, while in vµ we store the R,G,B values of the central pixel (j, k)
repeated as many times as the length of vµ. We iterate the procedure for all
the images of the packet and we concatenate the values of the random pixels
and their neighbors in the vectors vµ and wµ, respectively. The estimation of
the matrix elements of cd(R,G,B) can be done as follows: Cd

RR = vRwR
t/L,

Cd
RG = vRwG

t/L, and so on, where here L denotes the common length of vµ
and wµ.

4.2. Stability of the covariance computation with respect to the number of
images and the image content

As previously stated, the very large Flickr database allows us checking
the stability of the covariance matrices computation. We will now introduce
the details of the stability tests. If we fix a threshold ε = 10−D, D ∈ N,
then we consider the estimation of c0(R,G,B) ε-stable when the relative
error defined by ‖c0N+1(R,G,B) − c0N(R,G,B)‖/‖c0N+1(R,G,B)‖ is smaller
than ε, where c0N(R,G,B) is the estimation of c0(R,G,B) obtained with N
images and ‖ ‖ is the 2-norm. Due to the law of large numbers, we expect
the relative error to decrease proportionally to 1/N . This is confirmed by our
experiments, as can be seen in Figure 5. A good trade-off between precision
and computational time required to perform the experiments is given by
N = 105, which guarantees a 10−4-stable estimation of the covariance.

With this value of N fixed, we tested the stability of the computation
with respect to the image content by selecting 10 different packets of N pic-
tures and comparing the estimation of c0(R,G,B). Our tests have reported
differences in the estimation of c0(R,G,B) of magnitude 10−4, which is the
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Figure 5: Relative error decay in the estimation of the chromatic autocovariance matrix
elements.

same order as the stability error, this confirms that the bias induced by the
image content is negligible.

4.3. Testing the spatial invariance of covariance

Here we discuss the tests that we have performed in order to check the
translation invariance of the covariance. In Figure 6 we show the spatial
distributions of the chromatic autocovariances and their linearly stretched
version obtained by setting the minimum to 0 and the maximum to 255 in
order to enhance the visibility of the inhomogeneities. Without stretching
the images appear perfectly constant. Analogous results have been obtained
for the spatiochromatic covariances with distance d > 0.

It can be seen that all covariances are slightly larger in the upper part
of the images and smaller in lower parts. We stress again the fact that the
pictorial representation of the second column of Figure 6 is exaggerated by
the stretching and that the constant pattern shown by the images of the first
column confirm that the hypothesis of translational invariance of covariance
can be considered verified with a very good degree of approximation.

22



Figure 6: First column: distribution of chromatic autocovariances computed through the
Flickr (first row) and RAW (second row) databases between the red channels. Second
column: the intensity of the images of the first column has been stretched between 0 and
255 to enhance the visibility of the spatial inhomogeneity, that is not possible to perceive
with the non-stretched values. We stress that we do not introduce the other color channel
combinations because they are very similar to those shown here.

4.4. The chromatic autocovariance matrix c0(R,G,B) and its eigenvalues
and eigenvectors

The expressions of the chromatic autocovariance matrices relative to the
Flickr and RAW databases, c0Flickr(R,G,B) and c0RAW(R,G,B), respectively,
that we have obtained are the following:

c0Flickr(R,G,B) =





0.0719 0.0651 0.0612
0.0651 0.0713 0.0710
0.0612 0.0710 0.0851



 (26)

c0RAW(R,G,B) =





0.0022 0.0021 0.0021
0.0021 0.0021 0.0022
0.0021 0.0022 0.0024



 , (27)

which confirm the positivity assumption on c0(R,G,B). Notice that the
covariances observed on the RAW database are much smaller than those ob-
served on the Flickr database. We believe that this is mostly due to the fact
that the contrast of images posted on Flickr is often much higher than the
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contrast of unprocessed RAW images. Despite this difference, the eigenvec-
tors of the previous matrices are very similar:











AFlickr = (0.5483, 0.5761, 0.6061) ←→ λ1 = 0.2080,

PFlickr = (0.7179, 0.0474,−0.6945) ←→ λ2 = 0.0170,

QFlickr = (0.4289,−0.8160, 0.3876) ←→ λ3 = 0.0034.

(28)

and










ARAW = (0.5679, 0.5683, 0.5954) ←→ λ1 = 0.0065,

PRAW = (0.7210, 0.0055,−0.6930) ←→ λ2 = 0.0002,

QRAW = (0.3971,−0.8228, 0.4066) ←→ λ3 = 7.8 · 10−7.

(29)

We can see that, using a database of real RGB images and not the ideal-
ized visual stimuli of Buchsbaum and Gottschalk, the blue channel not only
appears in the achromatic direction A, but it is even its dominant component.
Observe the similarity between the eigenvectors obtained with the Flickr and
RAW database and those reported in Ohta et al. (1980), which where also
obtained from RGB camera images.

4.5. The exponential decay of spatiochromatic covariance matrix elements

All the spatiochromatic matrices cd(R,G,B) that we have estimated
turned out to be positive and their decay with respect to increasing val-
ues of d is reported in the linear, bi-logarithmic and semi-logarithmic scale
in Figure 7 for the Flickr database and in Figure 8 for the RAW database.

Let us write the generic element of the matrix cd(R,G,B) as cdµν , µ, ν ∈
{R,G,B}. Notice that a power-law behavior for cdµν would be represented
by a linear relationship in the bi-logarithmic scale, i.e. log(cdµν) = αµν +
βµν log(d), which, in fact, is equivalent to cdµν = eαµνdβµν . However, as can be
seen in Figures 7, 8, the graphs in the bi-logarithmic scale show a significant
deviation from a linear behavior from d = 100, these distance being expressed
in pixels. This confirm in the color case the fact that the power-law decay of
the covariance is not valid for large pixels distances, a fact already noticed
for gray level images in Huang and Mumford (1999).

Moreover, notice that the graphs of Figures 7, 8 in the semi-logarithmic
scale show a linear decay for all the distances that we have tested (from 1 to
300 pixels). To quantify this behavior we have performed a linear fit. The
graphical and analytical expressions of the straight lines approximating the
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covariance decay in the semi-logarithmic scale are reported in Figures 9, 10.
Note that the largest discrepancy with respect to the linear behavior is found
at very small distances. Nonetheless, we stress that the linear approximation
is very precise, as shown by the value of the coefficient of determination R2

(which expresses the percentage of empirical data variance that is described
by the linear approximation) which is greater than 0.98 for all curves.

A linear behavior in the semilogarithmic domain corresponds to an expo-
nential decay: log(cdµν) = αµν + βµνd is equivalent to cdµν = eαµνeβµν d. Since
c0µν = eαµν , we can write

cdµν = c0µνe
−βµν d, µ, ν ∈ {R,G,B}, (30)

where c0µν is the generic element of the chromatic autocovariance matrix.
From the point of view of differential equations, this means that the spa-

tiochromatic covariance cµν(d), interpreted as a function of the pixel distance
d, satisfies the following initial value problem:

{

ċµν(d) = −βµνcµν(d)

cµν(0) = c0µν
(31)

i.e. the speed of decay of cµν(d) is directly proportional to cµν(d) via the
coefficient −βµν . The value of these coefficients are listened in Table 1.

Flickr Database RAW Database

βRR = −0.0028 βRR = −0.0023
βGG = −0.0026 βGG = −0.0021
βBB = −0.0022 βBB = −0.0020

βRG = βGR = −0.0028 βRG = βGR = −0.0022
βRB = βBR = −0.0028 βRB = βBR = −0.0022
βGB = βBG = −0.0025 βGB = βBG = −0.0021

Table 1: Slopes of the straight lines which approximate the spatiochromatic covariance
graphs in the semilogarithmic scale for the Flickr and the RAW databases.

The explicit representation of the spatiochromatic covariance matrices cd(R,G,B)
are the following:

cdFlickr(R,G,B) =





0.0719e−0.0028 d 0.0651e−0.0028 d 0.0612e−0.0028 d

0.0651e−0.0028 d 0.0713e−0.0026 d 0.0710e−0.0025 d

0.0612e−0.0028 d 0.0710e−0.0025 d 0.0851e−0.0022 d



 , ∀d ≥ 0.

(32)
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cdRAW(R,G,B) =





0.0022e−0.0023 d 0.0021e−0.0022 d 0.0021e−0.0022 d

0.0021e−0.0022 d 0.0021e−0.0021 d 0.0022e−0.0021 d

0.0021e−0.0022 d 0.0022e−0.0021 d 0.0024e−0.0020 d



 , ∀d ≥ 0.

(33)
It can be seen that the spatiochromatic covariance relative to the blue chan-
nel decreases less rapidly than that of the red and green channels. This
may be explained by the fact that pictures in which the sky is present are
characterized by large homogeneous areas dominated by the blue channel.

The explicit analytical expressions of cd(R,G,B) that we have managed to
obtain are interesting for two reasons: firstly, they provide an accurate model
for the covariance that corrects the power-law decay; secondly, they allow
computing the commutators [c0(R,G,B), cd(R,G,B)] for every distance d >
0. If the coefficients αµν were all equal, then these commutators would be
null matrices, however, the differences in the values of the exponentials make
the matrix elements of the commutators different than zero. Figure 11 shows
the absolute and normalized 2-norms of the commutators as a function of d.
It can be seen that, for small values of d, the commutators can be considered
approximately null, however, as d increases, they show deviations from the
zero matrix, but they are still small.

4.6. Effect of the photochemical transformation on the database of RAW nat-
ural images

A further test that we have performed on RAW images is the following: we
have transformed the initial data with the so-called Michaelis-Menten (also
known as Naka-Rushton) equation, see Shapley and Enroth-Cugell (1984),
i.e. Iµ(x) 7→ Iγµ(x)/(I

γ
µ(x) +mγ

µ), where mµ is the average intensity value in
the chromatic channel µ and γ = 0.74 (the value corresponding to the rhesus
monkey retinal photoreceptors). This equation models the photochemical
transduction from radiance to action potential performed by retinal photore-
ceptors.

We then repeated the spatiochromatic covariance computations on this
new transformed database and we have found again an exponential decay,
but this time with exactly the same coefficients for all the chromatic com-
binations, i.e. βµν = −0.0033, for all µ, ν ∈ {R,G,B}, implying that a
by-product of photoreceptors’ photochemical transduction is the rearranging
of radiance values so that all the spatiochromatic covariance matrices com-
mute perfectly. Up to our knowledge, this test has never been performed
before.
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As already remarked, RAW data provide a good approximation of real
physical irradiance, thus we believe that this test gives an interesting hint
about the consequence of photochemical transduction on covariance of nat-
ural visual stimuli. However, a better choice would be to perform this test
on multispectral radiance values. This is not yet possible due to the lack of
a large database of natural multispectral images. We will turn back to this
issue in the discussion section.

4.7. The power spectrum

We are now going to analyze the consequence of an exponential model
for the covariance decay on the power spectrum. As recalled in Section
2.1, we can theoretically relate the autocovariance decay with the power
spectrum S(f) via the Fourier transform. Using the notation of Section
2.1.2 and applying the Fourier transform to the analytical expression of the
spatiochromatic autocovariance given by eq. (30) we get that

Sµ(f) ∝
1

1 +
(

f

βµµ

)2 , µ ∈ {R,G,B}. (34)

If (f/βµµ)
2 ≫ 1, i.e. if f ≫ βµµ, then we can neglect the term 1 at the

denominator of Sµ(f) and approximate it with a power law with respect to
f . Since the order of magnitude of βµµ is 10−3, this means that Sµ(f) can
be approximated by a power law for values of f ≫ 10−3.

The plots of Sµ(f) in the bi-logarithmic scale reported in Figure 12 con-
firm this fact: for small values of f (which correspond to large values of d
for the covariance) the power spectrum deviates from the linear fit, as f in-
creases (corresponding to smaller values of d for the covariance), the linear
fit becomes more and more precise. This is coherent with the graph of the
covariance in the bi-logarithmic scale reported in Figure 7: for small values
of d the graph is linear, but as d increases the curve deviates from linearity.

This explains why the covariance can be thought to have a power-law
decay when it is analyzed only by means of the power spectrum.

5. Discussion and perspectives

We have provided a theoretical analysis of the relationship between trans-
lation invariance of the covariance and the decorrelated spatiochromatic fea-
tures of digital RGB images, supported by several numerical tests.
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Our analysis has been motivated by the will to understand the basic
mathematical reasons underlying the appearance of a separable spatiochro-
matic basis of uncorrelated features when the PCA is performed over patches
or whole natural images.

In order to investigate this property, we have built the spatiochromatic
covariance matrix of an abstract three-chromatic image and we have shown
that, under the assumption of spatial invariance and commutativity, their
eigenvectors can be written as the Kronecker product of the cosine Fourier
basis times an achromatic plus color opponent triad.

The numerical tests that we have conducted have shown that the as-
sumptions are verified with a good degree of approximation, both when we
consider the pictures of a large database of a million natural RGB images
taken from the popular website Flickr and also those of a smaller database
of seven thousand raw images that we have taken.

In particular, the analysis of the commutativity of spatiochromatic co-
variance matrices have led to a lateral result that it is worth underlying: our
tests have shown that the spatial covariance decays exponentially and not
following a power law. As recalled in the introduction, the failure of the
power law decay has already been reported in the literature of natural image
statistics, but our result on the exponential decay is novel. Moreover, we
have shown that the decay speed is not the same for all the combinations of
chromatic channels: the autocovariance decay of the blue channel being the
slowest and the R-B covariance decay being the fastest.

The slower decay of the blue autocovariance can be explained by the
fact that many pictures of natural environments contain large homogeneous
areas of blue. The faster decay of the red-blue covariance instead is probably
due to the fact that the sensitivity curves of red and blue have the smallest
overlapping.

Regarding the decay speed, we have performed a test on raw images that
we deem interesting for future developments of the research presented in this
paper: we have transformed the raw images according to the photochemi-
cal transduction formula and we have found that, after this transformation,
the spatiochromatic covariance speed decay turns out to be the same for ev-
ery combination of chromatic channels. This property also implies that all
spatiochromatic covariance matrices commute.

We stress that, at this stage of the research, the numerical results that
we have obtained cannot be considered wholly exhaustive to infer properties
of the HVS. To do that, a large unbiased database of multispectral images
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should be carefully built in such a way that the camera sensitivity functions
have no influence on the data of the database. The multispectral images can
be used to generate the LMS cone activation values that will become the new
input for our mathematical framework.

Large multispectral databases of natural environments are not yet avail-
able because of the difficulty of taking a multispectral image in non-controlled
conditions without producing artefacts, a problem similar to the well known
‘ghosting effect’ in high dynamic range imaging. However, recent advances in
camera sensors and post-processing algorithms may allow in the near future
the creation of such databases and the generalization of the results of this
paper.
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Figure 7: Graphs of the six distinct spatiochromatic covariance matrix elements in the
linear, (natural) bi-logarithmic and semi-logarithmic scale, respectively, as a function of
the pixel distance d. The values were obtained using the Flickr database.
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Figure 8: Graphs of the six distinct spatiochromatic covariance matrix elements in the
linear, (natural) bi-logarithmic and semi-logarithmic scale, respectively, as a function of
the pixel distance d. The values were obtained using the RAW database.
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Figure 9: Graphics of the linear approximations of the spatiochromatic covariance matrix
elements in the semi-logarithmic scale (data obtained from the Flickr database). The
coefficient of determination R2 is greater than 0.98 for all the linear approximations.
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Figure 10: Graphics of the linear approximations of the spatiochromatic covariance matrix
elements in the semi-logarithmic scale (data obtained from the RAW database). The
coefficient of determination R2 is greater than 0.98 for all the linear approximations.
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Figure 11: Left : Graph of the 2-norm of the commutators between the spatiochromatic
covariance matrices as a function of pixel distance d. Right : Graph of the normalized
2-norm of the commutators, the normalization is done over the mean value of 2-norm of
the product matrix performed from left to right and from right to left. First row : data
obtained with the Flickr database. Second row : data obtained with the RAW database.
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Figure 12: Average power spectra. First row : Flickr database, the slopes of the linear
approximations are -1.4429, -1.4229, -1.4384, from left to right. Second row : Raw database,
the slopes of the linear approximations are -1.6666, -1.7182, -1.6698, from left to right.
Notice that the initial bump showed by the power spectra of the images taken by the
Flickr database is shared with the graph reported by Pouli et al. (2010), page 68, Figure
10.
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