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Abstract. Mobile Context-Aware Recommender Systems can be natu-
rally modelled as an exploration/exploitation trade-off (exr/exp) prob-
lem, where the system has to choose between maximizing its expected
rewards dealing with its current knowledge (exploitation) and learning
more about the unknown user’s preferences to improve its knowledge
(exploration). This problem has been addressed by the reinforcement
learning community but they do not consider the risk level of the cur-
rent user’s situation, where it may be dangerous to recommend items
the user may not desire in her current situation if the risk level is high.
We introduce in this paper an algorithm named R-UCB that considers
the risk level of the user’s situation to adaptively balance between exr
and exp. The detailed analysis of the experimental results reveals several
important discoveries in the exr/exp behaviour.

1 Introduction

User feedback (e.g., ratings and clicks) and situation ( e.g., location, time, near
people) have become a crucial source of data for optimizing Mobile Context-
Aware Recommender Systems (MCARS). Knowledge about the environment
must be accurately learned to avoid making undesired recommendations which
may disturb the user in certain situations considered as critical or risky.

For this reason, the MCARS has to decide, for each new situation, whether
so far learned knowledge should be exploited by selecting documents that appear
more frequently in the corresponding user feedback, or if never seen documents
should be selected in order to explore their impact on the user situation, increas-
ing the knowledge about the environment.

Making exploration prevents from maximizing the short-term reward since
exploration documents may yield to negative rewards, while exploitation of docu-
ments based on an uncertain environment knowledge can prevent from maximiz-
ing the long-term reward because document rating values may not be accurate.

This challenge is formulated as an exploration/exploitation (exr/exp) dilemma.
One smart solution for exr/exp using the ”multi-armed bandit problem” is the
hybrid approach done by [16]. This approach combines the Upper Confident
Bound (UCB) algorithm with the ǫ-greedy algorithm. By introducing random-
ness into UCB, authors reduce the trouble in estimating confidence intervals.
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This algorithm estimates both the mean reward of each document and the
corresponding confidence interval. With the probability 1-ǫ, this algorithm se-
lects the document that achieves a highest upper confidence bound and, with
the probability ǫ, it uniformly chooses any other document. The ǫ parameter es-
sentially controls exr/exp. The problem is that it is difficult to decide in advance
the optimal value of ǫ.

We introduce in this paper an algorithm, named R-UCB, that computes the
optimal value of ǫ by adaptively balancing exr/exp according to the risk of the
user situation. We consider risky or critical a situation where it is dangerous
to recommend uninteresting information for the user; this means that it is not
desired, or even can yield to a trouble, that the user loses time reading a docu-
ment which is not interesting for him in the current situation. In this case, the
exploration-oriented learning should be avoided.

R-UCB extends the UCB strategy with an update of exr/exp by selecting
suitable user’s situations for either exr or exp. We have tested R-UCB in an off-
line evaluation with real data, as well as an on-line evaluation with professional
mobile users.

The remaining of the paper is organized as follows. Section 2 reviews related
works. Section 3 describes the algorithms involved in the proposed approach. The
experimental evaluation is illustrated in Section 4. The last section concludes the
paper and points out possible directions for future work.

2 Related Work

We refer, in the following, a state of the art on MCARS and also techniques
that tackle both making dynamic exr/exp (bandit algorithm) and considering
the risk in the recommendation.

2.1 MCARS

Few research works are dedicated to study MCARS. [4] proposes a method which
consists of building a dynamic user’s profile based on time and user’s experience.
The user’s preferences in the user’s profile are weighted according to the situation
(time, location) and the user’s behavior. To model the evolution on the user’s
preferences according to his temporal situation in different periods (like workday
or vacations), the weighted association for the concepts in the user’s profile is
established for every new experience of the user. The user’s activity combined
with the user’s profile are used together to filter and recommend relevant content.

Another work [15] describes a MCARS operating on three dimensions of
context that complement each other to get highly targeted. First, the MCARS
analyses information such as clients’ address books to estimate the level of social
affinity among the users. Second, it combines social affinity with the spatio-
temporal dimensions and the user’s history in order to improve the quality of
the recommendations.
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In [11], the authors present a technique to perform user-based collaborative
filtering. Each user’s mobile device stores all explicit ratings made by its owner
as well as ratings received from other users. Only users in proximity are able to
exchange ratings and they show how this provides a natural filtering based on
social contexts.

In [4] the authors propose a mobile recommender system for people in leisure
time. The system predicts the current activity (eating,reading or shopping) from
the context (time, location) and the behaviour of the user. The predicted activity
combined with preference models of the user, are used to filter and recommend
relevant content. To provide relevant advertisements to mobile users, authors in
[5] build a profile of each region visited by the user. Statistical techniques are
then used to extract information from the visited regions, like ”the frequency of
visits”, ”duration and time of typical visits”, and the user’s profile is built on
the basis of questionnaires.

Each work cited above tries to recommend interesting information to users
taking account their contextual situation; however, they do not consider the
exr/exp trade-off on their recommendations.

2.2 Multi-armed Bandit Problem

Very frequently used in reinforcement learning to study exr/exp, the multi-armed
bandit problem was originally described by [19]. The ǫ-greedy is one of the most
used strategies to solve this problem. It chooses a random document with ǫ-
frequency, and chooses otherwise the document with the highest estimated mean,
the estimation being based on the observed rewards. The ǫ is chosen by the user
in the open interval ]0, 1[.

The first variant of the ǫ-greedy strategy is what [3, 14] refer to as the ǫ-
beginning strategy. This strategy makes exploration all at once at the beginning.
For a given number I of iterations, documents are randomly selected during
the ǫI first iterations; during the rest (1-ǫ)I iterations, the document of highest
estimated mean is selected. Another variant of the ǫ-greedy strategy is what [14]
calls the ǫ-decreasing. In this strategy, the document with the highest estimated
mean is always selected except when a random document is selected instead with
ǫi frequency, where ǫi = ǫ0/ i, ǫ0 ∈]0,1] and i is the index of the current round.
Besides ǫ-decreasing, four other strategies was presented in [11].

In contrast to the unguided exploration strategy adopted by ǫ-greedy, another
class of algorithms, known as UCB, use a smarter way to balance exr and exp.
We can cite UCB methods in [2] for rewards bounded in [0, 1] and the Price Of
Knowledge Expected Reward (POKER) strategy [22] for normally distributed
rewards.

Both strategies construct a reward estimate for each document, which is the
mean observed reward added to an additional coefficient of confidence intervals
that is inversely related to the number of times the document has been selected.
The document with the highest estimated reward is selected. This way of reward
estimation encourages exploration of documents that have been infrequently
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selected. Another class of bandit algorithms based on Bayes rules (e.g., [13]) has
good performance but they are computationally exorbitant [1].

Few research works are dedicated to study the contextual bandit problem in
recommender systems, considering the user’s behaviour as the context.

In [15], assuming the expected reward of a document is linear, they perform
recommendation based on contextual information about the users’ documents.
To maximize the total number of user’s clicks, this work proposes the LINUCB
algorithm which is computationally efficient if the expected rewards of docu-
ments are linear which is not always the case.

In [16], the authors propose to solve bandit problem in dynamic environment
by combining the UCB with the ǫ-greedy strategy and they dynamically update
the ǫ exploration value. At each iteration, they run a sampling procedure to
select a new ǫ from a finite set of candidates. The probabilities associated to
the candidates are uniformly initialized and updated with the Exponentiated
Gradient (EG) [4]. This updating rule increases the probability of a candidate
ǫ if it leads to a user’s click. Compared to both ǫ-beginning and ǫ-decreasing,
this technique gives better results. [15, 16] describe a smart way to balance
exr/exp, but do not consider the user’s situation and its associated risk during
the recommendation.

We have already considered a part of these problems in [7, 6, 8] by mod-
elling the MCARS as a contextual bandit algorithm. The proposed algorithm
(contextual-ǫ-greedy) classify the situations in two types: critical situations where
the algorithm performs exploitation and non critical situations where the algo-
rithm performs exploration. However, we have not considered the risk level of
the situations in exr/exp trade-off.

2.3 The Risk-aware Decision

To the best of our knowledge, the risk-aware decision is not yet studied in rec-
ommender systems.

However, it has been studied for a long time in reinforcement learning, where
the risk is defined as the reward criteria that takes into account not only the ex-
pected reward, but also some additional statistics of the total reward, such as its
variance or standard deviation [10]. The risk is measured with two types of un-
certainties. The first, named parametric uncertainty, is related to the imperfect
knowledge of the problem parameters. For instance, in the context of Markov de-
cision processes (MDPs), [18] propose to use the percentile performance criterion
to control the risk sensitivity.

The second type, termed inherent uncertainty, is related to the stochastic
nature of the system, like [12], who consider models where some states are error
states representing a catastrophic result. More recently, [20] developed a policy
gradient algorithm for criteria that involves both the expected cost and the
variance of the cost, and demonstrated the applicability of the algorithm in a
portfolio planning problem. However, this work does not consider the risk of the
situations in the exr/exp problem.
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A recent work, [21], treated the risk and proposed the VDBE algorithm
to extend ǫ-greedy by introducing a state-dependent exploration probability,
instead of hand-tuning a global parameter. The system makes exploration in
situations when the knowledge about the environment is uncertain, which is
indicated by fluctuating action values during learning. In contrast, the amount
of exploration is reduced as far as the system’s knowledge becomes certain, which
is indicated by very small or no value differences.

We observe that the most common approach to define risk is through vari-
ance related criteria or the standard deviation adjusted reward; however, no
work studied a more semantic definition of the risk nor studied the problem in
MCARS.

2.4 Main Contributions

As shown above, none of the mentioned works tackles the exr/exp problem con-
sidering the semantic risk level of the situation. This is precisely what we intend
to do by exploiting the following new features:

1) Handling semantic concepts to express situations and their associated
risk level. The risk level is associated to a whole situation and/or the concepts
composing the situation;

2) Considering the risk level of the situation when managing exr/exp, which
helps the MCARS adaptation to its dynamic environment. High exploration
(resp. high exploitation) is achieved when the current user situation is ”not
risky” (resp. ”risky”);

3) Using off-line and on-line evaluations to measure the performances of the
algorithm.

We improve the extension of UCB with ǫ-greedy (called here ǫ-UCB) be-
cause it gives the best result in an off-line evaluation done by [16]; however, our
amelioration can be applied to any bandit algorithm.

3 The Proposed MCARS Model

This section focuses on the proposed model, starting by introducing the key
notions used in this paper.

Situation: A situation is an external semantic interpretation of low-level
context data, enabling a higher-level specification of human behaviour. More
formally, a situation S is a n-dimensional vector, S = (Oδ1 .c1, Oδ2 .c2, ..., Oδn .cn)
where each ci is a concept of an ontology Oδi representing a context data dimen-
sion. According to our need, we consider a situation as a 3-dimensional vector
S = (OLocation.ci, OTime.cj , OSocial.ck) where ci, cj , ck are concepts of Location,
Time and Social ontologies.

User preferences: User preferences UP are deduced during the user nav-
igation activities. UP ⊆ D×A× V where D is a set of documents, A is a set of
preference attributes and V a set of values. We focus on the following preference
attributes: click, time and recom which respectively correspond to the number
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of clicks for a document, the time spent reading it and the number of times it
was recommended.

The user model : The user model is structured as a case base composed
of a set of situations with their corresponding UP , denoted UM = {(Si;UP i)},
where Si ∈ S is the user situation and UP i ∈ UP its corresponding user prefer-
ences.

We propose MCARS to be modelled as a contextual bandit problem including
user’s situation information. Formally, a bandit algorithm proceeds in discrete
trials t = 1...T . For each trial t, the algorithm performs the following tasks:

Task 1: Let St be the current user’s situation, and PS the set of past
situations. The system compares St with the situations in PS in order to choose
the most similar one, Sp:

Sp = argmaxSi∈PSsim(St, Si) (1)

The semantic similarity metric is computed by:

sim(St, Si) =
1

|∆|

∑

δ∈∆

simδ(c
t
δ, c

i
δ) (2)

In Eq. 2, simδ is the similarity metric related to dimension δ between two con-
cepts ctδ and ciδ, and ∆ is the set of dimensions (in our case Location, Time and
Social). The similarity between two concepts of a dimension δ depends on how
closely ctδ and ciδ are related in the corresponding ontology. To compute simδ,
we use the same similarity measure as [17]:

simδ(c
t
δ, c

i
δ) = 2 ∗

depth(LCS)

depth(ctδ) + depth(ciδ)
(3)

In Eq. 3, LCS is the Least Common Subsumer of ctδ and ciδ, and depth is the
number of nodes in the path from the current node to the ontology root.

Task 2: Let Dp be the set of documents recommended in situation Sp. After
retrieving Sp, the system observes rewards in previous trials for each document
d ∈ Dp in order to choose for recommendation the one with the greatest reward,
which is the Click Through Rate (CTR) of a document. In Eq. 4, the reward of
document d, r(d), is the ratio between the number of clicks (vi) on d and the
number of times d is recommended (vj).

∀d ∈ Dp, UP i=(d, click, vi) ∈ UP and UP j=(d, recom, vj) ∈ UP we have:

r(d) =
vi

vj
(4)

Task 3: The algorithm improves its document selection strategy with the new
observation: in situation St, document d obtains a reward r(d). Depending on
the similarity between the current situation St and its most similar situation Sp,
two scenarios are possible:
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(1) If sim(St, Sp) 6= 1: the current situation does not exist in the case base;
the system adds this new case composed of the current situation St and the
current user preferences UP t;

(2) If sim(St, Sp) = 1: the situation exists in the case base; the system up-
dates the case having premise the situation Sp with the current user preferences
UP t.

The ǫ-UCB Algorithm. For a given situation, the algorithm recommends a
predefined number of documents, specified by parameter N using Eq. 5. Specif-
ically, in trial t, this algorithm computes an index b(d) = r(d) + c(d) for each
document d, where: r(d) (Eq. 4) is the mean reward obtained by d and c(d) is

the corresponding confidence interval, so that c(d) =
√

2×log(t)
vj

and vj is the

number of times d was recommended. With the probability 1-ǫ, ǫ-UCB selects
the document with the highest upper confidence bound dt = argmaxd∈Dpb(d);
and with the probability ǫ, it uniformly chooses any other document.

dt =

{

argmaxd∈(Dp−RD)b(d) if q > ǫ

Random(Dp −RD) otherwise
(5)

In Eq. 5, Dp is the set of documents included in the user’s preferences UP p

corresponding the most similar situation (Sp) to the current one (St); RD is
the set of documents to recommend; Random() is the function returning a ran-
dom element from a given set; q is a random value uniformly distributed over
[0, 1] which controls exr/exp; ǫ is the probability of recommending a random
exploratory document.

The R-UCB Algorithm To improve the adaptation of the ǫ-UCB algorithm
(Alg. 5) to the risk level of the situations, the R-UCB algorithm computes the
probability of exploration ǫ, by using the situation risk level R(St), as indicated
in Eq. 6. A strict exploitation (ǫ=0) leads to a non optimal documents selection
strategy, this is why R is multiplied by (1 − ǫmin), where ǫmin is the minimum
exploration allowed in CS and ǫmax is the maximum exploration allowed in all
situations (these metrics are computed using a cross-validation).

ǫ = ǫmax −R(St) ∗ (ǫmax − ǫmin) (6)

Note that we still consider an ǫmin random exploration indispensable to avoid
that document selection in CS become less optimal.

Algorithm 1 The R-UCB algorithm

Input: St, Dt, Dp, RD = ∅, N, ǫmin, , ǫmax

Output: RD
ǫ = ǫmax −R(St) ∗ (ǫmax − ǫmin) //R(St) is computed as described in Sec. 3.1
RD=ǫ-UCB(ǫ,Dp, Dt, RD, N)
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To summarize the algorithm R-UCB, the system makes a low exploration
when the current user’s situation is critical; otherwise, the system performs high
exploration. In this case, the degree of exploration decreases when the risk level
of the situation increases.

3.1 Computing the Risk Level of the Situation

In a contextual environment, the exploration-exploitation trade-off is directly
related to the risk to upset the user (the risk level of the situation), this is why
computing the risk level of the situation is indeed indispensable.

As we observe from the state of the art, the best approach to compute the
risk is from a hybrid approach that combines both the variance of the cost and
the expected environment cost. However, hybrid approaches considers neither
the similarity between states nor a semantics description of the states, where de-
scribing states using concepts and computing the similarity between them using
ontologies can contribute to improve the detection of similar danger situations.
To this end, we have aggregated three approaches for computing the risk. As it

Fig. 1. Risk modelling

is shown in Figure 1, the first one is computing the risk Rc using concepts. This
approach permits to get the risk of the situation directly from the risk of each of
its concepts. The second approach is computing the risk Rm using the semantic
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similarity between the current situation and situations stocked in the system.
Rm comes from the assumption that similar situations have the same risk level.
The third approach is computing the risk Rv using the variance of the reward.
In this case, we assume that risky situations get very low number of user’s clicks.

In what follows, we describe the three approaches and their aggregation.

Risk Computed using the Variance of the Reward To compute the risk of
the situation using the variance of the reward, we suppose that the distribution of
the Click Through Rate (the CTR is the number of clicks per recommendation) of
the situations follows a normal distribution. From this assumption, and according
to confidence interval theory [9], we compute the risk using Eq. 7. The idea here
is that, more the CTR of situations is low (low number of user’s clicks) more the
situation is risky.

Rv(S
p) =

{

1− CTR(Sp)−V ar

1−V ar
if CTR(Sp) > V ar

1 Otherwise
(7)

In Eq. 7, the risk threshold V ar is computed as follows :

V ar = E(CTR(S))− α ∗ σ(CTR(S)) (8)

In Eq. 8, σ is the variance of CTR(S) and α is constant fixed to 2 according
to Gauss theory [9]. The CTR(S) is computed as follows :

CTR(S) =
click(S)

rec(S)
(9)

In Eq. 9, click(S) gives the number of times that the user clicks in documents
recommended in S and rec(S) gives the number of times that the system has
made recommendation in the situation S.

Risk Computed using Concepts Computing the risk using concepts gives a
weighted mean of the risk level of the situation concepts:

Rc(S
t) =

∑

δ∈∆

µδcv
t
δ if CV 6= ∅ (10)

In Eq. 10, cvtδ is the risk level of dimension δ in St and µδ is the weight
associated to dimension δ, set out by using an arithmetic mean as follows:

µδ =
1

|CS|
(
∑

Si∈CS

cviδ) (11)

The idea in Eq. 11 is to make the mean of all the risk levels associated to concepts
related to the dimension δ in CS.
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Risk Computed using Semantic Similarity between the Current Situa-

tion and Past Situations The risk may also be computed using the semantic
similarity between the current situation and CS stocked in the system. This
permits to give the risk of the situation from the assumption that a situation is
risky if it is similar to a pre-defined CS.

The risk Rm(St) obtained this way is computed using Eq. 12

Rm(St) =

{

1−B + sim(St, Sm) if sim(St, Sm) < B

1 otherwise
(12)

In Eq. 12, the risk is extracted from the degree of similarity between the current
situation St and the centroid critical situation Sm (Eq. 13). B is the similarity
threshold and it is computed using an off-line simulation. From Eq. 12, we see
that the situation risk level Rm(St) increases when the similarity between St

and Sm increases. The critical situation centroid is selected from CS as follows:

Sm = argmaxSf∈CS

1

|CS|

∑

Se∈CS

sim(Sf , Se) (13)

Risk Computed using the Different Risk Approaches The risk complete
level R(St) of the current situation is computed by aggregating the Rc, Rv and
Rm as follows:

R(St) =
∑

j∈J

λjRj(S
t) (14)

In Eq. 14, Rj is the risk metric related to dimension j ∈ J , where J = {m, c, v};
λj is the weight associated to dimension j and it is set out using an off-line
evaluation.

Updating the Risk Value After the recommendation process and the user’s
feedback, the system propagates the risk to the concepts of the ontology using
Eq. 15 and propagates the risk in CS using Eq. 16 :

∀cv ∈ St cv =
1

|CVcv|
(

∑

Si∈CVcv

cv
η
i ) (15)

The idea in Eq. 15 is to make the mean of all the risk levels associated to concepts
cv related to situations Si in the user’s situation historic for the dimension η. In
Eq. 15, CVcv gives the set of situations where cv has been computed.

R(St) =
1

T
(

k=T
∑

k=1

R(St
k)) (16)

The idea in Eq. 16 is to make the mean of all the risk levels associated to the
situation St in the user’s situation historic. In Eq. 16, k ∈ [0, T ] gives the number
of times that the risk of St is computed.
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4 Experimental Evaluation

In order to empirically evaluate the performance of our approach, and in the
absence of a standard evaluation framework, we propose an evaluation framework
based on a diary set of study entries. The main objective of the experimentation
is to evaluate the performance of the proposed algorithm using an off-line and on-
line evaluation. In the following, we present our experimental datasets, describe
how to find the optimal parameters of our algorithm and then present and discuss
the obtained results.

4.1 Evaluation Framework

We have conducted a diary study with the collaboration of a software company.
This company provides a history application, which records the time, the cur-
rent location, the social and navigation information of its users during their
application use.

The diary study lasted 2 months and has generated 356 738 diary situation
entries. Each diary situation entry represents the capture of contextual time,
location and social information. For each entry, the captured data are replaced
with more abstracted information using time, spatial and social ontologies Table
1 illustrates three examples of such transformations’ results.

Table 1. Diary situation

IDS Users Time Place Client

1 Paul Workday Paris Finance client
2 Fabrice Workday Roubaix Social client
3 John Holiday Paris Telecom client

From the diary study, we have obtained a total of 5 518 566 entries concern-
ing the user’s navigation (number of clicks and time spent), expressed with an
average of 15.47 entries per situation. Table 2 illustrates examples of such diary
navigation entries.

Analysing the distribution of situations with risk levels To analyse the
different risk levels of situations in our dataset, we have computed the risk of each
situation using Eq. 14. Then, we manually group situations depending on their
risk levels in five intervals [1%, 20%], ]20%, 40%], ]40%, 60%], ]60%, 80%], ]80%,
100%], where 1% corresponds to the less risky situations and 100% corresponds
to the most risky situations.
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Table 2. Diary navigation entries

IdDoc IDS Click Time

1 1 2 2’
2 1 4 3’
3 2 1 5’

Fig. 2. Distribution of situations in 5 intervals of risk levels

We plotted the situation distribution in 5 sectors (one for each interval) in
the pie chart of Figure 2. As illustrated in the figure, we can notice that the
studied domain is risky in 43% of the situations. To better understand the risk
distribution among the situations, we further studied each interval according
to features taken from Location, Time and Social context as well as personal
information like age, gender and number of clicks.

The results are depicted in Fig. 3 as a heat map graph. Each square’s gray
level indicates the rate of a feature on the corresponding interval, from white
(low number of situations) to black (high number of situations).

Situations of the interval ]80%,100%] are mostly situations where the user is
in his/her office. The interval ]60%, 80%] corresponds mainly to business lunch
situations; mainly home situations are in ]40%,60%]; ]20%, 40%] mostly corre-
spond to holidays situations. We also observe that women have less situations
with high risk level than men, and users with age between 20 and 35 are involved
in few high risk level situations.

One interesting finding in Fig. 3 is that the number of user’s click is very low
in situations with high risk level. This finding suggests some advice for content
management, such as reducing recommendation in risky situations because the
number of user’s clicks decreases considerably.
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Fig. 3. Information concerning situations w. r. t. their risk level

4.2 Finding the Optimal B Threshold Value

Computing the B threshold is very important because misclassifying non-CS as
CS can be tolerated, but the opposite may be with a negative impact.

To this end, we use a manual classification as a baseline and we compare it
with the results obtained by our strategy.

We first take a random sampling of 891 situations, which corresponds to
0.05% of the situation entries, and manually group similar situations; then, we
compare the constructed groups with the results obtained by our similarity al-
gorithm, with different threshold values.

Figure 4 shows the effect of varying B in the interval [0, 1] on the overall
accuracy. Results show that the best performance is obtained when B has the
value 0.7 achieving an accuracy of 0.769. Consequently, we use the identified
optimal threshold value (B = 0.7) of the situation similarity measure for testing
our MCARS.

4.3 Finding the Optimal ǫmin and ǫmax Value

In order to set out the ǫmin and ǫmax value, we take a sampling of 50% of the
critical situation entries; then we run the ǫ-UCB algorithm with different ǫ values
on the data.

Figure 5 shows how the average CTR varies for ǫ-UCB with the respective
ǫ. The CTR for a particular iteration is the ratio between the total number of
clicks and the total number of displays. When ǫ < 0.1, there is an insufficient
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Fig. 4. Effect of B threshold on the similarity accuracy

exploration; consequently the algorithm have failed to identify interesting docu-
ments, and have got a smaller number of clicks (average CTR). Moreover, when
ǫ > 0.5, the algorithm seems to over-explore and thus loses a lot of opportunities
to increase the number of clicks.

We observe from the evaluation that the best ǫmin and ǫmax are respectively
0.1 and 0.5. We have expected this results due to our critical situations sampling.

4.4 Off-line Experimental Results

To test the R-UCB algorithm, in our experiments, we have collected, from the
Nomalys’ historic, a collection Cas of 100000 cases Casi. The testing step con-
sists of running the algorithm by confronting it at each iteration to a case ran-
domly selected from Cas.

For each iteration i the algorithm need to select or recommend 10 documents
d ∈ Di, note that the algorithm is only confronted to the case Cas where |D| >
20 and D ∈ Cas.

We compute the average CTR (click feedback) every 1000 iterations and we
have run the simulation until the number of iterations reaches 10000, which is
the number of iterations where all the tested algorithms have converged. Note
that, due to our goal on evaluating the RS in a periods of time or in iterative
process, we have used the average CTR rather than traditional Recall used in
information retrieval that do not allowed this kind of evaluation.

In the first experiment, in addition to a pure exploitation baseline, we have
compared the R-UCB algorithm to the algorithms described in the related work
: ǫ-UCB and beginning-UCB, decreasing-UCB, VDBE-UCB, EG-UCB, which
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Fig. 5. Effect of ǫ value on the average CTR

correspond to ǫ-UCB using respectively decreasing exploration, beginning ex-
ploration, VDBE exploration and EG exploration. In Figure 6, the horizontal
axis represents the number of iterations and the vertical axis is the performance
metric. We have parametrized the different algorithms as follows: ǫ-UCB was
tested with two parameter values: 0.5 and 0.1; decreasing-UCB and EG-UCB
use the same set ǫi = 1- 0.01 * i, i = 1,...,100; decreasing-UCB starts using the
highest value and reduces it by 0.01 every 100 iterations, until it reaches the
smallest value. We have several observations regarding the different exploration-
exploitation algorithms.

For the decreasing-UCB algorithm, the converged average CTR increases as
the ǫ decreases (exploitation augments). For the 0.1-UCB and 0.5-UCB, neither
a small exploration of 10% for 0.1-UCB nor a big exploration of 50% for 0.5-UCB
give good results. This confirms that a static exploration is not interesting in this
dynamic environment. While the EG-UCB algorithm converges to a higher av-
erage CTR, its overall performance is not as good as the VDBE-UCB algorithm
that considers the uncertainty of its knowledge for each situation.

The R-UCB and VDBE-UCB algorithms effectively have the best conver-
gence rate, increasing the average CTR by a factor of 1.5 over the baseline
for VDBE-UCB and 2 for R-UCB. This improvement comes from a dynamic
exploration-exploitation trade-off, controlled by considering the situations.

Finally, as we expect, the R-UCB outperforms VDBE-UCB, which is ex-
plained by the good estimation of the risk based on our semantic approach. The
R-UCB algorithm takes full advantage of exploration when the situations are
not dangerous (non-CS), giving opportunities to establish good results when the
situations are critical (CS).
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Fig. 6. Average CTR for exploration-exploitation algorithms

Risk Level of the Situations To compare the algorithms in situations with
different risk levels, we run the tested algorithms in the groups of situations with
different risk level described in Section 4.1.

To better visualize the comparison results, Fig. 7 shows algorithms’ average
CTR graphs with the previous referred risk levels. Our first observation is that
the R-UCB algorithm outperforms all other exploration-exploitation algorithms,
at every levels. We notice that, in high risk situations, low exploration (0.1-
UCB) is better than high exploration (0.5-UCB). The gap between the R-UCB
results and the other algorithms increases with the risk of the situations. This
improvement comes from the safety exploration made by the R-UCB.

Size of Data To compare the algorithms when the case base is sparse in our
experiments, we reduce the case base size of 50%, 30%, 20%, 10%, 5%, and 1%,
respectively.

To better visualize the comparison results, Fig. 8 shows algorithms’ average
CTR graphs with the previous referred data sparseness levels. Our first obser-
vation is that all algorithms are useful at every level. We notice that decreasing
data size does not significantly improve the performance of 0.5-UCB and 0.1-
UCB. Except for exploitation baseline, beginning-UCB seems to have a rather
poor performance. Its results are worse than any other strategy independently
of the chosen parameters. The reason lies in the fact that this algorithm makes
the exploration only at the beginning.
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Fig. 7. Average CTR of exploration-exploitation algorithms in situations with different
risk levels

4.5 On-line Evaluation Results

Based on the results from our off-line evaluations, we have selected the most
promising techniques, R-UCB, VDBE-UCB and EG-UCB, and tested them with
real users in their real working environments. We use the 3000 users of Nomalys
application in full time. To qualify, participants are required to use Nomalys for
more than 1 hour/week.

To this end, we have randomly split the users in three groups. During the first
week of the study, the system records the documents used by each participant
without recommendation. During the second week of the study, we have equipped
the first group with the RS system running the R-UCB algorithm, the second
group running the VDBE-UCB, and the last group running EG-UCB algorithm.

New Document Exploration With a large number of users, we can not easily
follow the average CTR of each user. For this reason, we use a metric to see how
the usage of the RS impacted the user’s usage of documents that they had not
previously seen (new documents). An increase in the usage of such documents
would indicate that the system was recommending documents that were useful.

By comparing the number of new documents with and without recommen-
dation in the 1st, 2nd and 3rd groups, we got the impact that recommendations
had on the use of new documents. Figure 9 illustrates this comparison by week
and by group. Figure 9 shows a main effect for the week on the number of visited
new documents. The average number of new documents used in the first week
has been 17.12, 16.31 and 16.63 for groups 1, 2 and 3 respectively, and 29, 23.21
and 22.12 for groups 1, 2 and 3 respectively on the second week. Moreover, group
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Fig. 8. Average CTR for different data size

1 has significantly more new documents used than groups 2 and 3 in the second
week.

Based on the results illustrated in Fig. 9, we can estimate the proportion of
new visited documents used in the second week due to the introduction of the
recommender system, and the proportion of new documents that would have
been used by chance (without recommendation).

In the second week, with groups 1, 2 and 3 respectively, an average of 6.3, 4.7
and 4.3 documents actually appeared in the recommender list before being used
(i.e. new recommended documents), which represents a very good improvement
w. r. t. the first week without recommendation.

Another interesting finding is that, excluding the average of 16.68 new docu-
ments without recommendation (first week) from the number of new documents
with recommendation (second week), for groups 1, 2 and 3, and also excluding
the average number of new recommended documents, we get an average num-
ber of 6.01, 1.82 and 1.13 new documents in the second week with groups 1, 2
and 3, respectively. We believe that the majority of these extra documents were
discovered through the use of exr/exp in MCARS.

The improvement on the number of visited new documents, on one hand, cor-
responds most of all to recommended documents; on the other hand, an impor-
tant part is discovered during recommendations, which shows an unintentional
benefit of the exr/exp which promotes document discovery.

R-UCB, VDBE-UCB and EG-UCB Comparison To compare the R-UCB,
VDBE-UCB and EG-UCB algorithms, we look at the number of recommended
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Fig. 9. Average number of new documents used in three groups without and with
recommendation

documents that have been used multiple times (i. e. more than twice) in each
session and the time spent in each document. Figure 10 shows the results.

Fig. 10. Average number of recommended documents have used multiple times for
each navigation session
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We observe, from the figure, that the time spent in each document does
not significantly change in the three groups, which means that the exploration-
exploitation trade-off does not impact the user’s time spent. However, it has
shown that group 1 has used more new documents than groups 2 and 3, which
confirms that our exploration-exploitation trade-off have allowed more explo-
ration of documents from the users than the other strategies.

5 Conclusion

In this paper, we have studied the problem of exploitation and exploration in
mobile context-aware recommender systems and propose a new approach that
adaptively balances exr/exp regarding the risk level of the situation.

We have validated our work with a series of both off-line and on-line studies
which offered promising results. Moreover, this study yields to the conclusion
that considering the risk level of the situation on the exr/exp strategy signif-
icantly increases the performance of the recommender system. In considering
these results, we plan to investigate public benchmarks.
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