
HAL Id: hal-01054041
https://hal.science/hal-01054041

Submitted on 5 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A fresh look at Forwarding Information Base
compression via mathematical analysis

Tong Yang, Gaogang Xie, Kavé Salamatian

To cite this version:
Tong Yang, Gaogang Xie, Kavé Salamatian. A fresh look at Forwarding Information Base compression
via mathematical analysis. Network Operations and Management Symposium (NOMS), 2014 IEEE,
May 2014, Krakow, Poland. pp.1-4, �10.1109/NOMS.2014.6838342�. �hal-01054041�

https://hal.science/hal-01054041
https://hal.archives-ouvertes.fr


A Fresh Look at Forwarding Information Base 
Compression via Mathematical Analysis  

Tong Yang1,2, Gaogang Xie1, Kavé Salamatian3 
1Institute of Computing Technology, Chinese Academy of Sciences (CAS), China. 

2DNSLAB, China Internet Network Information Center, Beijing 100190.     3University of Savoie, France. 

Abstract 1—With the fast development of Internet, the size of 
routing table in the backbone router continues to grow rapidly. 
Forwarding Information Base (FIB), which is derived from 
routing table, is stored in line-card to conduct routing lookup. 
Since the line-card’s memory is limited, it would be worthwhile 
to compress the FIB for consuming less storage. Therefore, 
various FIB compression algorithms are proposed [2-7]. However, 
there is no well-presented mathematical support for the 
feasibility of the FIB compression solution, nor any mathematical 
derivation to prove the correctness of these algorithms. To 
address these problems, we propose a universal mathematical 
method based on the Group 2  theory. By defining a Group 
representing the Longest Prefix Matching Rule (LPM), the 
bound of the worst case of FIB compression solution can be 
figured out. Furthermore, in order to guarantee the ultimate 
correctness of FIB compression algorithms, Routing Table 
Equation Test (RTET) is proposed and implemented to verify the 
equivalence of the two routing tables before and after 
compression by traversing the 32-bit IP address space.  

I. INTRODUCTION 
The backbone routing table has been growing at an 

exponential rate, driven mainly by multi-homing and the rapid 
development of mobile communication [1]. The fast increasing 
routing table incurs fast increasing FIB. For the routing lookup 
schemes based on software [8-10], FIB compression can be 
used to reduce their memory requirements; for the routing 
lookup algorithms based on TCAM [11-13], FIB compression 
can be used to reduce the hardware cost and power 
consumption. Therefore, a variety of FIB compression 
algorithms are proposed [2-7]. These algorithms compress the 
routing table by transforming the binary trie structure. 

In addition, the routing tables’ prefixes are overlapped, 
which means that some prefixes are a part of others. This 
brings many negative effects on the performance of routing 
lookup and incremental update [15]. There are mainly two 
overlap elimination algorithms: Leaf-pushing [14] and ONRTC 
[15] algorithm. They can totally eliminate the overlap also by 
transforming the binary trie3. 

However, is FIB compression solution feasible? What’s the 
worst case of the FIB compression solution? How to guarantee 

1 This work is supported by NSFC (61202489), and the National Science & 
Technology Pillar Program No.2012BAH01B03, and the Instrument 
Developing Project of CAS under Grant No.YZ201229. 
2Group (mathematics) [20] is a set together with a binary operation satisfying 
certain algebraic conditions. 
3 Both FIB compression and overlap elimination algorithms transform the 
binary trie, thus they are called trie-transformation algorithms in this paper. 
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the correctness of trie-transformation algorithm? Current FIB 
compression algorithms just compress the routing table, 
regardless of the size and structure of the routing table. In 
contrast, the feasibility, effectiveness and correctness of FIB 
compression algorithms are emphasized and well-studied in 
this paper. 

a) Feasibility and effectiveness. According to the
information theory, it is definite that the compressed routing 
table holds the information equivalent to the original one. 
Therefore, if and only if there is redundancy in the original 
routing table, the FIB compression solution is feasible. Then is 
there redundancy in the routing table? What’s the premise of 
the existence of redundancy? After data mining of the routing 
tables, we find that although the routing table is rapidly 
growing (some backbone routers have more than 400K FIB 
entries today), the port number of a router is very limited 
(ranging from 3 to 80) and almost static. This observation 
intuitionally gives a positive answer to the existence of 
redundancy. Fortunately, the redundancy caused by the 
almighty gap between the prefix number and port number in 
the routing table can be quantized by Pigeonhole Principle. 
Based on this observation, we also deduce the bound of the 
worst case of the FIB compression solution in this paper. 

b) Correctness. After a profound study, we find that the
LPM rule can be well expressed by the regular expression 
syntax. We also find that the LPM rule can be well expressed 
by the Group theory. Based on these two advancements, two 
basic equivalent atomic models are induced -- election model 
and representative model. We insist that all the trie-
transformation algorithms can be proven by these two 
fundamental atomic models. 

Actually, FIB compression algorithm is a tough task and is 
error-prone during the algorithm design and implementation. In 
order to guarantee the ultimate correctness of FIB compression 
algorithms, we propose Routing Table Equation Test (RTET) 
to verify the equivalence of the two routing tables before and 
after compression by traversing the 32-bit IP address space. 

Specifically, the main contributions of this paper lie in the 
following aspects: 

 We propose a universal mathematical method based on 
a new defined Group, and apply this method to four 
classical FIB compression algorithms.  

 We compute the bound of the worst case of FIB 
compression solution. 

 We propose and implement Routing Table Equation 
Test (RTET) for the first time, to verify the 



equivalence of the two tries before and after binary trie 
transformation by traversing the 32-bit IP address 
space.  

II. MATHEMATIC PROOF 

A. Group Definition 
Prefixes are a series of bits. It can be well represented by 

regular expression syntax [19], and the symbols frequently 
used in this paper are defined below: 

 A is a node in the trie, while (A) represents node A's 
prefix. Solid nodes have next-hop, while hollow nodes 
haven’t. 

 (AB) represents the bit string of the path between node 
A and B, while no solid nodes appear in the path.  

 If A is an ancestor of B, then B 
 L(A) represents the prefix length of node A.  
 P represents a trie, and (A) represents a prefix, then 

P(A) means the next-hop of prefix (A) in trie P.  
Definition 1. LPM Group.  

Let G be the LPM Group, and G=Z. The operation on LPM 
Group is XOR:  

 

 

As shown in Figure 1, the function  is plotted in 
three-dimensional space. 

 
Figure 1.  LPM Group in three-dimensional space. 

Condition 1. Closure 
Proof. 

 
Therefore, LPM Group satisfies Closure.              
Condition 2. Associativity 
Proof. 
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Therefore, LPM Group satisfies Associativity.            
Condition 3. Identity 
Proof. 

 

0 is the identity. 

Therefore, LPM Group satisfies Identity.             
Condition 4. Invertibility 
Proof. 

 

Therefore, -x is the inverse of x.              

According to the above four conditions, it can be 
concluded that G is a Group.                

LPM Group is used to describe the matching process and 
results of prefixes in this paper, and thus we define the next-
hop and induce Theorem 1 in the following. 

Definition 2. P(R) 
IP address R, R=[0,1]{32}, the match result of each bit is 

 for IPv4, ; for IPv6, ; 
According to the Longest Prefix Matching rule, the next-hop of 
R is . 

Theorem 1. If the match results of every section of two prefixes 
are same, then the next-hops of the two prefixes are same. 

Proof. 

 

 

Suppose , then 

 



 

 

Therefore, .               

This theorem can be used to prove the equivalence of the 
next-hop of two tries section by section with regard to one IP 
address. 

Theorem 2. Decision Theorem 
The necessary and sufficient condition that two tries are 

equivalent is the next-hops are equal in the two trie for any IP 
addresses by LPM rule. 

Obviously, this Decision Theorem naturally holds. 
Combining Theorem 1 and Theorem 2, we can prove the 
equivalence of two trie (or two models) section by section.  

B. Election and Representative Models 
We insist that all the trie-transformation algorithms can be 

proven by two basic transformation models: election model and 
representative model. 

1) Election Model 
Election Model: two or more nodes elect their common 

ancestor node, and no solid node appears in the path from the 
candidate nodes to the common ancestor node. Any candidates 
can be elected as representative, resulting in different 
compression ratio. 

 
(a) The original trie                 (b) Trie after election 

Figure 2.  Election Model. 

Election models can work on both binary trie and multi-bit 
trie. As shown in Figure 2, the next-hop of Node Xi is Ni, the 
count of Ni is Ci.  

Election result: if such t exists:  holds, then 
Xt is the elected representative. If such t doesn’t exist, election 
fails. Then the common ancestor’s next-hop is set to NULL, 
and participates in the next round election. In this way, an 
optimal compression ratio can be achieved. 

Proof. 

 IP address R, obviously,  
Suppose . 

Step1: match  

 

 

Step2: match  
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Step3: match  

 

 

 

According to step1, step2, and step3,  

 

 

 

 

 

 

0, according to the associative law,  

 

 

                                  

According to Theorem 1 and Theorem 2, .         

If P2 is the election model of P1, we say . 
Actually, any node can be elected as representative, resulting in 
different compression ratio, and the proof method is similar. 

2) Representative Model  

Step3

Step2

Step1

 
(a)The original trie   (b) the trie after transformation (c) three steps to match 

Figure 3.  Representative model. 

Representative: after a successful election, the common 
ancestor will exercise the right of representative immediately: 
set the next-hop of its voters (those candidates which own the 
same next-hop with representative) to 0. As shown in Figure 3, 
the next-hop of A and B is same, and A is the nearest ancestor 



of B. In this case, B’s next-hop is set to zero. The proof is 
similar to that of election model, thus is ignored. 

If P2 is the representative model of P1, we say
. We insist that all models can be proved by election 

model and representative model. 

III. THE WORST CASE OF FIB COMPRESSION SOLUTION 
In this section, the bound of the worst case of FIB 

compression solution is computed, so as to prove the feasibility 
and effectiveness of FIB compression algorithms. 

A) Pigeonhole Principle 
In mathematics, the Pigeonhole Principle states that if n+1 

objects are distributed into n boxes, then at least one box 
contains two or more of the objects [21]. This is a simple but 
very useful principle. For example, if there are five people 
from four countries, there are at least two people from the same 
country. 

B) The Worst Case for Full IP Address Space 
For IPV4 the space is . Suppose there are 30 ports and 
 prefixes with the length of 32 (full IP address space) in a 

routing table. At level 32, every 32 nodes elect their common 
ancestor. At least two ports are the same according to the 
Pigeonhole Principle. Therefore, at least two nodes of 32 
nodes can be compressed into one, and thus  
nodes are reduced. At level 27 of the trie, there are  nodes. 
Similarly, 32 nodes select their common ancestor. According to 
the Pigeonhole Principle, at least two nodes can be 
compressed into one, and  nodes are reduced. 
Therefore, the number of left nodes is at least 

 

This worst case exists – if the preorder traverse results are 
Ni (i=1, 2, 3…), and the next-hop of Ni is represented by P(Ni), 
which satisfies:  

P(Ni)= i mod(32) 

In this case, the number of compressed routing table by 
optimal algorithm is R in equation .  

IV. ROUTING TABLE EQUATION TEST 
The mathematical proof method has been elaborated above, 

but there might be flaws in the process of mathematical 
derivation and coding. How to guarantee the ultimate 
correctness of these algorithms? The ultimate correctness 
refers to that for any IP address, the compressed routing table 
tells the same next-hop with the original table. Therefore, we 
propose Routing Table Equation Test (RTET) to judge the 
equivalence of the two routing tables. RTET firstly builds two 
tries, then traverses 32-bit IP address space, and compares the 
next-hop of two tries by using the same IP address. If and only 
if all are equal, the two routing tables are equivalent. Otherwise, 
RTET stops and tells the prefix and the different next-hop of 
the two tries. One comparison of two routing tables by using 
RTET takes about 16 minutes. The algorithms [2-5] are all 
implemented and verified by RTET, using the routing tables 
downloaded from [22].  

V. CONCLUSIONS 
FIB compression has been a hot topic of scientific research 

for years. There are many FIB compression and overlap 
elimination algorithms, but there isn’t a formal and universal 
mathematical method to guarantee their correctness. Therefore, 
we propose a universal mathematical method for trie-
transformation algorithms based on a new defined Group.  
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