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Existence result for degenerate cross-diffusion system with constraint: application to seawater intrusion in confined aquifer

We consider a strongly-coupled nonlinear parabolic system which arises from seawater intrusion in confined aquifers. The global existence of a nonnegative solution is obtained after establishing a suitable entropy estimate.

Introduction

Seawater intrusion is one of the major concerns commonly found in coastal aquifers. It is the movement of seawater into the freshwater aquifers. In the modelling of such phenomenon, Jazar and Monneau proposed in [START_REF] Jazar | Derivation of seawater intrusion models by formal asymptotics[END_REF] two reduced models in confined and unconfined aquifers, where the freshwater and the saltwater are assumed to be immiscible and one of the dimension is negligible with respect to the tow others. In this paper, we are concerned with the confined case (see Figure 1): we consider {z = 0} the interface between the saltwater and the bedrock, {z = g(t, x)} the interface between the saltwater and the freshwater and {z = h(t, x) + g(t, x) = 1} the interface between the freshwater and the impermeable layer. Then the confined model reads

   ∂ t h = div {h∇ (p + ν(h + g))} in [0, ∞) × R N , ∂ t g = div {g∇ (p + νh + g)} in [0, ∞) × R N , h + g = 1 in [0, ∞) × R N , (1.1) 
where N = 2, 3, p is the pressure on the top confining rock and ν = 1 -ε 0 ∈ (0, 1) with

ε 0 = γ s -γ f γ s
and γ s and γ f are the specific weight of the saltwater and freshwater respectively. In this paper, we show existence result for a more generalized model of the form

         ∂ t u i = div u i ∇ p + m j=1 A ij u j in Ω T , for i = 1, . . . , m, m i=1 u i (t, x) = 1 in Ω T , (1.2) 
where Ω T := (0, T ) × Ω with T > 0 and Ω := T N = (R/Z) N , with N ≥ 1. Here, p appears as a Lagrange multiplier of the constraint on u = (u i ) 1≤i≤m , given by the second line of (1.2). This system has been studied in [START_REF] Alkhayal | Existence result for degenerate cross-diffusion system with application to seawater intrusion[END_REF] without the constraint and with p = 0. We will follow the strategy proposed in [START_REF] Alkhayal | Existence result for degenerate cross-diffusion system with application to seawater intrusion[END_REF] to which we will often refer. Note that, a different kind of seawater intrusion model in confined aquifers, which consists in a coupled system of an elliptic and a degenerate parabolic equation, has been studied in [START_REF] Najib | On the global existence for a degenerate elliptic-parabolic seawater intrusion problem[END_REF].

In a more general setting, we should replace the second equation of (1.2) by m i=1 u i (t, x) = f (x) on Ω T . Here, we considered f ≡ 1 for the sake of simplicity, though the same result holds true with some additional conditions of f . Namely, we think that a nondecreasing condition on f in the direction of the freshwater flux is sufficient. The strategy of the proof and the organization of the paper are as follow: after discretizing in time and regularizing we will consider a modified linear elliptic model to which we can apply Lax-Milgram theorem in Subsection 2.1. Then, in Subsection 2.2 we apply a fixed point theorem to get the existence of a solution of the nonlinear problem and we establish an entropy estimate. Finally, in Subsection 2.3, we pass to the limit in all added parameters in order to recover the expected result.

Main result

To introduce our main result, some definitions and assumptions are given. The space H 1 (Ω)/R: We define H 1 (Ω)/R as the space of functions of H 1 (Ω), up to addition of constants. A natural norm is

p (H 1 (Ω)/R) = inf c∈R p -c H 1 (Ω) = p - 1 |Ω| Ω p H 1 (Ω)
.

(1.

3)

The function Ψ:

We define the nonnegative function Ψ as

Ψ(a) - 1 e =  
 a ln a for a > 0, 0 for a = 0, +∞ for a < 0, (1.4) which is minimal for a = 1 e .

The positivity condition:

The real m × m matrix A = (A ij ) 1≤i,j≤m is not necessarily symmetric and satisfies the following positivity condition: there exists δ 0 > 0, such that we have

ξ T A ξ ≥ δ 0 |ξ| 2 , for all ξ ∈ R m . (1.5) 
This condition, as in [START_REF] Alkhayal | Existence result for degenerate cross-diffusion system with application to seawater intrusion[END_REF], can be weaken: there exist two positive definite diagonal m × m matrices L and R and δ 0 > 0, such that we have

ζ T LAR ζ ≥ δ 0 |ζ| 2 , for all ζ ∈ R m . (1.6)
In the core of this paper we will assume (1.5) for the sake of simplicity. Now we state our main result.

Theorem 1.1 (Existence for (1.2)) Assume that A satisfies (1.5). For i = 1, . . . , m, let

u i 0 ≥ 0 in Ω satisfying m i=1 Ω Ψ(u i 0 ) < +∞, (1.7) 
where Ψ is given in (1.4). Then there exists a function u 

= (u i ) 1≤i≤m ∈ (L 2 (0, T ; H 1 (Ω)) ∩ C([0, T ); (W 1,∞ (Ω)) )) m ,
m i=1 Ω Ψ(u i (t 2 )) + δ 0 m i=1 t 2 t 1 Ω |∇u i | 2 ≤ m i=1 Ω Ψ(u i 0 ), (1.8) 
and p satisfies:

Ω T |∇p| 2 ≤ m A 2 m i=1 Ω T ∇u i 2 .
(1.9)

Here A is the matrix norm defined as

A = sup |ξ|=1 |Aξ| .
(1.10)

Notice that (1.8) also allows us to define the products u i m i=1

A ij ∇u j and u i ∇p in (1.2).

Remark 1.2 (Decreasing energy)

If A is a symmetric matrix then a solution (u, p) of system (1.2) satisfies

d dt m i=1 m j=1 Ω 1 2 A ij u i u j = - Ω   m i=1 u i q i 2 - m i=1 u i q i 2   ,
where

q i = m j=1 A ij ∇u j .

Existence result

In order to get the existence of (1.1) and an entropy estimate we introduce the following modified linear discretized in time system (see [START_REF] Alkhayal | Existence result for degenerate cross-diffusion system with application to seawater intrusion[END_REF] for details)

         u i,n+1 -u i,n ∆t = div T , (v i,n+1 ) ∇p n+1 + m j=1 A ij ∇ρ η ρ η u j,n+1 + δ∇u i,n+1 , m j=1 u i,n+1 = 1, (2.1) 
where a is a given function in

H 1 (Ω), ∆t = T /K is the time step with K ∈ N * , η, δ > 0, 0 < ε < 1 < < +∞, T ε, is the truncation operator defined by T ε, (a) :=    ε if a ≤ ε, a if ε ≤ a ≤ , if a ≥ , (2.2) 
and the mollifier

ρ η (x) = η -N ρ (x/η) with ρ ∈ C ∞ c (R N ), ρ ≥ 0, R N ρ = 1, R N ∇ρ = 1 and ρ(-x) = ρ(x)
. Note that we consider the Z N -periodic extension on R N of u j,n+1 . We will look for fixed points solutions v i,n+1 = u i,n+1 of (2.1). Finally, we will recover the existence result by passing to the limit in all parameters.

Existence for the linear elliptic problem (2.1)

In this subsection we prove the existence, via Lax-Milgram theorem, of the unique solution for the linear elliptic confined system (2.1). Let us recall our linear elliptic confined system: Assume that A is any m × m real matrix.

Let v n+1 = (v i,n+1 ) 1≤i≤m ∈ (L 2 (Ω)) m and u n = (u i,n ) 1≤i≤m ∈ (H 1 (Ω)) m . Set F i , ,η,δ (v n+1 , u n+1 , p n+1 ) = T , (v i,n+1 ) ∇p n+1 + m j=1 A ij ∇ρ η ρ η u j,n+1 + δ∇u i,n+1 , (2. 
3) where T ε, is given in (2.2). Then for all ∆t, ε, , η, δ > 0, with ε < 1 < and ∆t < τ where τ is given in (2.5), we look for the solution (u n+1 , p n+1 ) = ((u i,n+1 ) 1≤i≤m , p n+1 ) of the following system:

           u i,n+1 -u i,n ∆t = div F i , ,η,δ (v n+1 , u n+1 , p n+1 ) in D (Ω), m i=1 u i,n+1 (x) = 1 in Ω, (2.4) 
where F i , ,η,δ is given in (2.3).

Proposition 2.1 (Existence for system (2.4)) Assume that A is any m × m real matrix. Let ∆t, ε, , η, δ > 0, with ε < 1 < such that ∆t < δεη 2 2 A 2 := τ.

(2.5) (2.4). Moreover, this solution (u n+1 , p n+1 ) satisfies the following estimate

Then for n ∈ N, for a given v n+1 = (v i,n+1 ) 1≤i≤m ∈ (L 2 (Ω)) m and u n = (u i,n ) 1≤i≤m ∈ (H 1 (Ω)) m , there exists a unique function (u n+1 , p n+1 ) = ((u i,n+1 ) 1≤i≤m , p n+1 ) ∈ (H 1 (Ω)) m × H 1 (Ω)/R solution of system
δ - δ∆t τ u n+1 2 (L 2 (Ω)) m + εδ 2 ∆t ∇u n+1 2 (L 2 (Ω)) m + mε∆t ∇p 2 L 2 (Ω) ≤ δ u n 2 (L 2 (Ω)) m . (2.6)
Proof of Proposition 2.1.

We use Lax-Milgram theorem to prove the existence result. First of all, let us define for all (u n+1 , p n+1 ) = ((u i,n+1 ) 1≤i≤m , p n+1 ) and (ϕ,

q) = ((ϕ i ) 1≤i≤m , q) ∈ (H 1 (Ω)) m × H 1 (Ω)/R, the following bilinear continuous form b (u n+1 , p n+1 ), (ϕ, q) = δ m i=1 Ω u i,n+1 ϕ i + ∆t m i=1 Ω T ε, (v i,n+1 )∇p n+1 (δ∇ϕ i + ∇q) +∆t m i=1 Ω T ε, (v i,n+1 ) m j=1 A ij ∇ρ η ρ η u j,n+1 (δ∇ϕ i + ∇q) +δ∆t m i=1 Ω T ε, (v i,n+1 )∇u i,n+1 (δ∇ϕ i + ∇q),
and the following linear continuous form:

K(ϕ, q) = δ m i=1 Ω u i,n ϕ i .
Note that we have

m i=1 Ω u i,n+1 -u i,n q = 0.
Step 1: Existence by Lax-Milgram It remains to prove the coercivity of b to get the existence, by Lax-Milgram theorem, of a unique solution for system (2.4). For all (ϕ, q) = ((

ϕ i ) 1≤i≤m , q) ∈ (H 1 (Ω)) m × H 1 (Ω)/R, we have that b((ϕ, q), (ϕ, q)) = δ m i=1 Ω |ϕ i | 2 + ∆t m i,j=1 Ω T ε, (v i,n+1 )(δ∇ϕ i + ∇q) 2 +∆t m i=1 Ω T ε, (v i,n+1 ) m j=1 A ij ∇ρ η ρ η ϕ j ∇q +δ∆t m i=1 Ω T ε, (v i,n+1 ) m j=1
A ij ∇ρ η ρ η ϕ j ∇ϕ i = b 0 ((ϕ, q), (ϕ, q)) + b 1 ((ϕ, q), (ϕ, q)),

where b 0 ((ϕ, q), (ϕ, q)) = δ m i=1 Ω |ϕ i | 2 + ∆t m i=1 Ω T ε, (ϕ i,n+1 )(δ∇ϕ i + ∇q) 2 ,
and

b 1 ((ϕ, q), (ϕ, q)) = ∆t m i=1 Ω T ε, (ϕ i,n+1 ) m j=1 A ij ∇ρ η ρ η ϕ j ∇q + δ∆t m i=1 Ω T ε, (ϕ i,n+1 ) m j=1 A ij ∇ρ η ρ η ϕ j ∇ϕ i .
On the one hand, since m i=1 Ω ∇q • ∇ϕ i = 0, we already have the coercivity of b 0 :

b 0 ((ϕ, q), (ϕ, q)) ≥ δ ϕ 2 (L 2 (Ω)) m + mε∆t ∇q 2 L 2 (Ω) + εδ 2 ∆t ∇ϕ 2 (L 2 (Ω)) m .
On the other hand, we have

|b 1 (ϕ, ϕ)| ≤ ∆t A √ m ∇ρ η ρ η ϕ (L 2 (Ω)) m ∇q L 2 (Ω) +δ∆t A ∇ρ η ρ η ϕ (L 2 (Ω)) m ∇ϕ (L 2 (Ω)) m ≤ ∆t A √ m 1 2d ∇ρ η ρ η ϕ 2 (L 2 (Ω)) m + d 2 ∇q 2 L 2 (Ω) +δ∆t A 1 2c ∇ρ η ρ η ϕ 2 (L 2 (Ω)) m + c 2 ∇ϕ 2 (L 2 (Ω)) m ≤ εδ 2 ∆t 2 ∇ϕ 2 (L 2 (Ω)) m + mε∆t 2 ∇q 2 L 2 (Ω) + ∆t 2 A 2 εη 2 ϕ 2 (L 2 (Ω)) m ,
where in the second line we have used Young's inequality, and chosen c = εδ A and d = ε √ m A in the third line, with A is given in (1.10).

So we get that b((ϕ, q), (ϕ, q)) ≥ δ -

δ∆t τ ϕ 2 (L 2 (Ω)) m + εδ 2 ∆t 2 ∇ϕ 2 (L 2 (Ω)) m + mε∆t 2 ∇q 2 L 2 (Ω) , (2.7)
is coercive, since ∆t < τ .

Step 2: Proof of estimate (2.6) Using (2.7) and the fact that b((u n+1 , p), (u n+1 , p)) = K((u n+1 , p)) we get

δ - δ∆t τ u n+1 2 (L 2 (Ω)) m + εδ 2 ∆t 2 ∇u n+1 2 (L 2 (Ω)) m + mε∆t 2 ∇p 2 L 2 (Ω) ≤ δ 2 u n 2 (L 2 (Ω)) m + δ 2 u n+1 2 (L 2 (Ω)) m ,
which gives us the estimate (2.6).

Existence for the nonlinear time-discrete problem

In this subsection we prove the existence, using Schaefer's fixed point theorem, of a solution for the nonlinear time discrete confined system (2.10) given below.

For this purpose, let the function

Ψ ε, (b)- 1 e =            b 2 2ε + b ln ε -ε 2 if b ≤ ε, b ln b if ε < b ≤ , b 2 2 + b ln -2 if b > , (2.8) 
which is continuous, convex and satisfies that Ψ ε, (x) = 1 T ε, (x)

, where T ε, is given in (2.2).

Let us introduce our nonlinear time discrete system: Assume that A satisfies (1.5). Let u 0 = (u i,0 ) 1≤i≤m := u 0 = (u i 0 ) 1≤i≤m that satisfies

C 1 := m i=1 Ω Ψ ε, (u i 0 ) < +∞, (2.9)
such that u i 0 ≥ 0 in Ω for i = 1, . . . , m. Then for all ∆t, ε, , η, δ > 0, with ε < 1 < and ∆t < τ , for n ∈ N, we look for a solution (u n+1 , p n+1 ) = ((u i,n+1 ) 1≤i≤m , p n+1 ) of the following nonlinear system:

       u i,n+1 -u i,n ∆t = div F i ε, ,η,δ ((u n+1 , u n+1 ), p n+1 ) in D (Ω), m i=1 u i,n+1 = 1 in Ω, (2.10) 
where F i , ,η,δ is given in (2.3).

Proposition 2.2 (Existence for system (2.10))

There exists a sequence of functions u n+1 = (u i,n+1 ) 1≤i≤m ∈ (H 1 (Ω)) m and a function p n+1 ∈ H 1 (Ω)/R such that (u n+1 , p n+1 ) is a solution of system (2.10), that satisfies the entropy estimate

m i=1 Ω Ψ ε, (u i,n+1 )+δ∆t n k=0 ∇u k+1 2 (L 2 (Ω)) m +δ 0 ∆t n k=0 ∇ρ η u k+1 2 (L 2 (Ω)) m ≤ m i=1 Ω Ψ ε, (u i 0 ), (2.11) and ∆t ∇p n+1 2 L 2 (Ω) ≤ C 2 , (2.12)
where

C 2 = 2 m( A + δ) 2 C 1 δ , ( 2 

.13)

where C 1 is given in (2.9).

Proof of Proposition 2.2

Step 1: Existence of a solution for (2.10) We define, for a given w :

= u n = (u i,n ) 1≤i≤m ∈ (L 2 (Ω)) m and v := v n+1 = (v i,n+1 ) 1≤i≤m ∈ (L 2 (Ω)) m , the map θ as: θ : (L 2 (Ω)) m → (L 2 (Ω)) m v → u where u := u n+1 = (u i,n+1 ) 1≤i≤m = θ(v n+1 ) ∈ (H 1 (Ω)) m is such that (u, p n+1
) is the unique solution of system (2.4), given by Proposition 2.1. Moreover, we can prove that θ is continuous, compact mapping and the set {u ∈ X, u = λΦ(u) for some λ ∈ [0, 1]} is bounded. Then θ has a fixed point u n+1 on (L 2 (Ω)) m by the Schaefer's fixed point theorem [2, Theorem 4 page 504]. This implies the existence of a solution (u n+1 , p n+1 ) for system (2.10).

Step 2: Proof of estimate (2.11)

Since Ψ ε, is convex we have m i=1 Ω Ψ ε, (u i,n+1 ) -Ψ ε, (u i,n ) ∆t ≤ m i=1 Ω u i,n+1 -u i,n ∆t Ψ ε, (u i,n+1 ) = - m i=1 Ω T ε, (u i,n+1 )∇p n+1 + δT ε, (u i,n+1 )∇u i,n+1 +T ε, (u i,n+1 ) m j=1 A ij ∇ρ η ρ η u j,n+1 Ψ ε, (u i,n+1 )∇u i,n+1 = - m i=1 - Ω ∇p n+1 • ∇u i,n+1 + δ Ω |∇u i,n+1 | 2 + Ω m j=1 ∇ρ η u i,n+1 A ij ∇ρ η u j,n+1 ≤ - m i=1 δ Ω |∇u i,n+1 | 2 -δ 0 m i=1 Ω |∇ρ η u i,n+1 | 2 ,
which, after a reccurence, gives us (2.11). Now, taking the sum on i of system (2.10) then by multiplying by p n+1 we get

0 = m i=1 Ω T ε, (u i,n+1 ) ∇p n+1 2 + m i=1 Ω T ε, (u i,n+1 ) m j=1 A ij ∇ρ η ρ η u j,n+1 • ∇p n+1 + δ m i=1 Ω T ε, (u i,n+1 )∇u i,n+1 • ∇p n+1 .
Thus we have that

∇p n+1 2 L 2 (Ω) ≤ A √ m ∇ρ η ρ η u n+1 (L 2 (Ω)) m ∇p n+1 L 2 (Ω) + δ √ m ∇u n+1 (L 2 (Ω)) m ∇p n+1 L 2 (Ω) ≤ √ m (δ + A ) ∇u n+1 (L 2 (Ω)) m ∇p n+1 L 2 (Ω) ≤ √ m (δ + A ) 1 2d ∇u n+1 2 (L 2 (Ω)) m + d 2 ∇p n+1 2 L 2 (Ω) ≤ 1 2 ∇p n+1 2 L 2 (Ω) + 2 m( A + δ) 2 2 ∇u n+1 2 (L 2 (Ω)) m ,
where we have used in the fourth line the Young's inequality, chosed in the fifth line

d = 1 √ m( A + δ)
. Moreover using, from the entropy estimate (2.11), the fact that

∆t ∇u n+1 2 (L 2 (Ω)) m ≤ C 1 δ
we get estimate (2.12).

Proof of Theorem1.1 Passage to the limit in all parameters

The techniques used here are very similar to [START_REF] Alkhayal | Existence result for degenerate cross-diffusion system with application to seawater intrusion[END_REF].

Step 1: Passage to the limit when (∆t, ε) → (0, 0) ([3, Proposition 3.3]) For all n ∈ {0, . . . , K -1} set t n = n∆t and let the piecewise continuous in time functions: The first term on the left-hand side of (2.11) implies that u i,∆t ∈ L ∞ (0, T ; L 1 (Ω)) for i = 1, • • • , m. Now, using (2.11) with a suitable interpolation we can find q > 2 and a constant C independent of ε and ∆t such that

u ∆t (t, x) = (u i,
u i,∆t L q (0,T ;L 2 (Ω)) + u i,∆t L 1 (0,T ;H 1 (Ω)) + u i,∆t Var([0,T );H -1 (Ω)) ≤ C, where u i,∆t Var([0,T );H -1 (Ω)) = K-1 n=0 u i,∆t (t n+1 ) -u i,∆t (t n ) H -1 (Ω)
. Therefore, by a variant of Simon's Lemma [START_REF] Alkhayal | Existence result for degenerate cross-diffusion system with application to seawater intrusion[END_REF]Theorem 2.4] there exists a function u = (u i ) 1≤i≤m ∈ (L 2 (0, T ; H 1 (Ω)))

m such that u ∆t → u strongly in (L 2 (0, T ; L 2 (Ω))) m . Moreover, (2.12) and Poincarré-Wirtinger's inequality imply that there exists a function p ∈ L 2 (0, T ; H 1 (Ω)/R) such that p ∆t → p weakly in (L 2 (0, T ; H 1 (Ω)/R)) m . Passing to the limit as (∆t, ε) → (0, 0) in (2.10), by using in particular the weak L 2 -strong L 2 convergence in the products, we obtain that (u, p) is a solution of the following system

         ∂ t u i = div F i 0, ,η,δ (u, p) in D (Ω T ), m i=1 u i (t, x) = 1 in Ω T , u i (x, 0) = u i 0 (x) in Ω, (2.16) 
where Moreover, the boundedness on the entropy function due to (2.11) implies the nonnegativity of the limit u and then together with m i=1 u i = 1 imply that 0 ≤ u i ≤ 1 and T 0, (u i ) = u i . So we do not need to pass to the limit as → ∞. Therefore, taking the lim inf as (ε, ∆t) → (0, 0) in (2.11) we obtain that (u, p) satisfies the following entropy estimate for a.e.

F i 0, ,η,δ (u, p) = T 0, (u i ) ∇p + m j=1 A ij ∇ρ η ρ η u j + δ∇u i ,
t 1 , t 2 ∈ (0, T ) Ω m i=1 Ψ(u i (t 2 )) + δ m i=1 ∇u i 2 L 2 (t 1 ,t 2 ;L 2 (Ω)) + δ 0 m i=1 ∇ρ η u i 2 L 2 (t 1 ,t 2 ;L 2 (Ω)) ≤ Ω m i=1 Ψ(u i 0 ).
(2.17) The same calculation leading to (2.12), but with integration in time and space, yields us to

∇p 2 L 2 (0,T ;L 2 (Ω)) ≤ C 4 , (2.18) 
where

C 4 := m( A + δ) 2 C 0 δ and C 0 := m i=1 Ω Ψ(u i 0 ) < +∞.
Step 2: Passage to the limit when η → 0 ([3, Proposition 3.5]) Let u η a solution of (2.16). By (2.17) and a suitable interpolation we can find q > 2 such that u i,η L q (0,T ;L 2 (Ω)) + u i,η L 1 (0,T ;H 1 (Ω)) + ∂ t u i,η L 1 (0,T ;(W 1,∞ (Ω)) ) ≤ C. Then, by Simon's Lemma [START_REF] Simon | Compact sets in the space L p (0, T, B)[END_REF] we can find a function u = (u i ) 1≤i≤m ∈ (L 2 (0, T ; H 1 (Ω)))

m and a function p ∈ L 2 (0, T ; H 1 (Ω)/R) such that, as (η) → (∞, 0), u η → u in (L 2 (0, T ; L 2 (Ω))) m , ∇u η → ∇u weakly in (L 2 (0, T ; L 2 (Ω))) m and p ε → p weakly in L 2 (0, T ; H 1 (Ω)/R). Note that u i ≥ 0 a.e. in Ω T . Therefore, passing to the limit as η → 0 in (2.16) we get that (u, p) is a solution of the following system

               ∂ t u i = div u i ∇p + m j=1 A ij ∇u j + δ∇u i in D (Ω T ), m i=1 u i (t, x) = 1 in Ω T u i (x, 0) = u i 0 (x)
in Ω, (2.19) where the initial condition is recovered by [3, Proposition 5.1] since we have that ∂ t u η is uniformly bounded in L s (0, T ; (W where C 5 := m A C 0 δ 0 .

Step 3: Passage to the limit when δ → 0 ([3, Theorem 1.1]) Similarly, we pass to the limit when δ → 0 in system (2.19) to get the existence result, announced in Theorem 1.1, of a solution for system (1.2) that satisfies (1.8) and (1.9).
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