Direct laser-driven ramp compression studies of iron: A first step toward the reproduction of planetary core conditions
Résumé
The study of iron under quasi-isentropic compression using high energy lasers, might allow to understand its thermodynamical properties, in particular its melting line in conditions of pressure and temperature relevant to Earth-like planetary cores (330e1500 GPa, 5000e8000 K). However, the iron alphaepsilon solidesolid phase transition at 13 GPa favors shock formation during the quasi-isentropic compression process which can depart from the appropriate thermodynamical path. Understanding this shock formation mechanism is a key issue for being able to reproduce Earth-like planetary core conditions in the laboratory by ramp compression. In this article, we will present recent results of direct laser-driven quasi-isentropic compression experiments on iron samples obtained on the LULI 2000 and LIL laser facilities