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Using ab initio molecular dynamics simulations, we calculate the equation of state of iron in the solid phase
for both the hcp and bcc structures as well as the high-pressure melting curve up to 15 Mbars. We first find that
the melting temperature increases up to 11 000 K at the highest pressures investigated following a semiempirical
melting law over the entire pressure domain. We also investigate the stability of the bcc phase of iron beyond
Earth’s core conditions (3 Mbars) and find that the temperature at which the bcc phase is mechanically stabilized
increases with density. Finally, we provide simple fits of these results for convenient use in the modeling of Earth-
like exoplanets up to ten Earth masses, which requires accurate knowledge of the properties of iron up to 15 Mbars.
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I. INTRODUCTION

Several exoplanets with an average density similar to that
of the Earth have been detected1 in the past few years.
Several studies have speculated2,3 on the state of the iron
core in these extrasolar objects, the so-called super-Earths.
In order to better constrain the internal dynamics of these
exoplanets, an accurate knowledge of the iron properties
such as the equation of state (EOS) and melting curve is
required. Previous theoretical studies on the high-pressure
properties of iron focused on the Earth’s core conditions4–11

between 136 and 360 GPa and little is known in the domain
relevant for super-Earths where internal pressures extend
over 1500 GPa with temperatures remaining below 1 eV
(1 eV = 11 604 K).2,12,13 Properties of pure iron, which is a
main component of these planetary cores, are thus needed
under such extreme conditions.14 Recently, calculations have
been performed to study the relative stability of different
crystal structures for pure Fe up to 100 TPa at 0 K
(Refs. 15 and 16) and of temperature using the quasiharmonic
approximation.3

The high-pressure melting curve of iron at conditions
ranging from a few GPa to pressures relevant to the Earth’s
center (360 GPa) has previously been studied using shock
waves (see e.g., Refs. 17–19) and laser-heated diamond anvil
cells (see e.g., Refs. 20 and 21). The significant uncertainties
in the experimental results obtained at such extreme pressures
have generated intense activity on the theoretical side. Several
predictions of the high-pressure melting curve of iron have
been published over the past ten years using either classical
potentials or a full quantum description of the electrons based
on density functional theory (DFT).22–27

At pressures found at the Earth inner-core boundary (ICB),
i.e., 330 GPa, Alfè et al.23 obtained a melting temperature of
6400 K using thermodynamic integration. This initial calcu-
lation was later confirmed using the coexistence approach22.
Recently, using Monte Carlo free-energy simulations, Sola and
Alfè24 obtained a melting temperature of 6900 K. We also note
that using classical potentials fitted on ab initio simulations,
Belonoshko et al.25 predicted a melting point of 7100 K at this
pressure. These predictions based on DFT, however, remain
limited to the ICB conditions.

Using full ab initio molecular dynamics (AIMD) simula-
tions based on DFT, we extend the high-pressure melting curve
and the equation of state of iron over the entire pressure range
relevant to the modeling of a super-Earth up to ten Earth masses
(1500 GPa). We paid particular attention to the dynamical
stability of the bcc phase at high pressures as this potentially
affects the predictions regarding the melting temperatures. We
also provide simple analytical fits to these results to facilitate
their use in planetary modeling.

II. SIMULATION METHOD

Simulations were performed using the ab initio package
ABINIT.28–30 The calculations used the projector augmented
wave method31,32 for the calculation of the electronic structure
and the generalized gradient approximation according to the
parametrization of Perdew, Burke, and Ernzerhof for the
exchange-correlation energy and potential.33 Details of
the pseudopotential generation as well as a comparison for
the 300-K isotherm with experimental data can be found in
Ref. 34. We generated two pseudopotentials with 3s, 3p, 3d,
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and 4s states as valence electrons and cutoff radii of 2.1 and
1.7 Ha. The pseudopotential with the lowest radius was used at
high pressure to avoid overlapping between the atomic spheres.
At the highest density considered in this work (20 g/cm3) the
interatomic distance between first nearest neighbors is about
3.44 and 3.51 for bcc and hcp (with c/a = 1.6), respectively.

The AIMD simulations were performed using a cutoff en-
ergy for the plane-wave basis chosen equal to 350 and 540 eV
for the 2.1- and 1.7-Ha radius pseudopotentials, respectively.
We performed simulations in the isokinetics ensemble where
the number of particles, volume, and temperature are held
fixed during the simulation. In this simulation ensemble, the
temperature is kept constant by rescaling the velocities at each
time step. For the EOS, we performed simulations on both the
hcp and bcc structures as these two phases are candidates for
the stable phase of iron at high pressure.11,35,36 For both hcp
and bcc phases, we performed simulations with supercells of
128 (4 × 4 × 4 unit cells) atoms at the � point. The former
simulation parameters correspond to the ones previously used
to calculate the elastic constants with the AIMD method.37

As will be shown below, we find that simulations need to
be performed using at least 128 atoms in order to obtain
convergence of the various physical properties calculated in
the present work. For the hcp phase, we used 128 atoms in the
simulation cell and, as for the bcc phase, checked convergence
of the physical quantities against particle number by using up
to 512 atoms. The two radius pseudopotentials were tested at
the highest density to estimate the effect of the overlapping
on the pressure; the difference was around 0.8%. To obtain
the melting curve of bcc iron we used a heat until it melts
(HUM) approach with supercells of 128 atoms and a two-phase
approach38 with supercells of 108 and 256 atoms.

III. THE AIMD SIMULATIONS FOR hcp AND bcc

In Fig. 1 we show the span in pressure and temperature
over which we performed the AIMD simulations for both the
hcp and bcc phases. We simulated properties along several
isochores for densities ρ ranging from 10 to 20 g/cm3

and for temperatures extending from 500 to 14 000 K. We
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FIG. 1. (Color online) Pressure-temperature span over which
AIMD simulations have been performed. The symbols indicate the
different simulation runs. See the text for details.

focused on four isochores at ρ = 13.5, 16, 18, and 20 g/cm3.
For the hcp phase we used a c/a ratio of 1.6. There has
been some debate about the temperature dependence of this
value. Earlier findings show a strong increase, with values
up to 1.7 at ICB conditions,5,39 which is later contradicted
by AIMD simulations10 and linear response calculations.9

At chosen pressure-temperature points we looked at the
stress components and changed the c/a ratio to obtain the
equilibrium value. Even at the highest pressures considered
here we find only a small dependence on temperature of the
c/a ratio (less than 1%), with no effect on the pressure. This
confirms and extends the previous results at ICB conditions.9,10

All the hcp pressure-temperature points in Fig. 1 are given for
a c/a ratio of 1.6.

A. Elastic bcc stability

Several ab initio studies performed so far at the ICB
conditions point to a possible stable bcc phase for temperatures
approaching melting.11,25,37,40,41 At normal conditions, the
stable phase of iron is a magnetically stabilized bcc phase.
Iron turns into a nonmagnetic fcc phase above 1000 K, a
temperature comparable to the Curie temperature. Upon a
pressure increase, the bcc phase is stabilized by magnetism up
to 14 GPa. Above this pressure and for moderate temperature
(below 1000 K), iron turns into a nonmagnetic hcp phase up
to the highest pressure explored so far experimentally. The
situation is more controversial at higher pressures and temper-
atures. Various experimental measurements performed using
either static or dynamic compression have been interpreted
as evidence for a double hcp (dhcp) phase at temperatures
between 2000 and 4000 K and pressures above 20 GPa and a
nonmagnetic bcc phase at pressure close to the ICB conditions
and temperatures above 5000 K.11 It is important, however, to
note that these experimental results lack reproducibility and
thus no post hcp phase has been unambiguously identified.42

The situation has been barely clarified using ab initio simu-
lations. It is well known that at 0 K, the phonon spectrum of iron
exhibits soft modes11,43 and is unstable towards a tetragonal
distortion.44 While AIMD simulations have indicated that the
bcc phase is stabilized at temperatures above 4000 K at ICB
conditions,11 it has not been possible to identify the most
stable phase between the hcp and bcc phases. The difficulty
directly comes from the methods available to obtain the free
energy of these two phases combined with the instability
of the bcc phase at zero temperature. This issue has been
investigated in great details by Vocadlo et al.40 For conditions
corresponding to the ICB, they found that the difference in
free energy between the two phases remains within the error
bar of the method. To obtain this result, Vocadlo et al.40 used
thermodynamics integration. This uncertainty, which in turn
results in maintaining a deep mystery about the iron solid
phase present in the Earth;s inner core, is somewhat tempered
by the fact that the Earth’s core is likely not composed of pure
iron but rather of an iron-nickel alloy for which a bcc phase is
anticipated at these conditions.40,45–47 However, the presence
of other elements such as silicon or oxygen does not allow
that major issue to really be resolved. Moreover, complicating
the issue of relative stabilities of bcc and hcp phases, there are
questions about the intrinsic stability of the bcc phase of iron.37
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FIG. 2. (Color online) Variation of the stress components as a
function of temperature along six isochores of bcc iron.

In order to study the elastic stability of the bcc phase, we
extracted the stress components in that phase at various temper-
atures and densities, as calculated in the AIMD simulations.
As pointed out in Refs. 11 and 40, inspection of the stress
components can give an indication of the density-temperature
range over which a given phase is mechanically stable. Figure 2
shows the variation of the stress components in temperature
over six different isochores (ρ = 10, 12, 13.15, 16, 18, and
20 g/cm3). The values of the stress components given in Fig. 2
correspond to averages obtained over the whole molecular
dynamics trajectories. The minimum temperature for stability
of the bcc phase has been reported as a function of pressure in
Fig. 1. At the lowest density, we see that the bcc cell is in hydro-
static equilibrium for temperatures above 3000 K and above
4500 K at the ICB conditions (330 GPa, ρ = 13.15/g/cm3).
This confirms earlier findings11 that the bcc cell becomes stable
above temperatures of about 3000 K at conditions of the ICB.
Using self-consistent ab initio lattice dynamical calculations
that go beyond the quasiharmonic approximation by taking
into account the temperature effects on the phonon spectra,
Luo et al.48 reached similar conclusions. Recently Kong et al.49

extracted the phonon spectrum of pure iron using molecular
dynamics and an embedded-atom method (EAM) empirical
potential. They also found that the bcc structure becomes stable
close to the melting temperature.

Inspection of Fig. 1 shows that the temperature at which the
bcc phase is stable increases as a function of pressure, a result
in agreement with recent calculations of Kong et al.,49 which
studied the dynamical stability of pure iron using molecular
dynamics and an EAM empirical potential. We see that the bcc
phase remains unstable up to a temperature of 7000 K at the
highest density investigated (ρ = 20 g/cm3). This also shows
that the situation up to 1500 GPa (15 Mbars) remains rather
similar to the one found at ICB conditions with a bcc phase
stabilizing as temperature approaches the melting temperature.
This also suggests that the instability of the bcc phase may
become even more pronounced as the density increases, thus
requiring higher electronic temperatures to stabilize it. While
this formally needs to be verified by calculating the electronic
temperature dependence of the phonon spectrum, this may be
reminiscent of what was already found for other metals such as

Al and Au.50 For these systems, it was shown that an increase in
the electronic temperature correlated with the hardening of the
phonon spectrum. A scenario compatible with the data at hand
for iron would thus be that a significant increase in electronic
temperature could stabilize the bcc phase at high temperature,
with higher temperatures being required as density increases
and the instability at 0 K being more pronounced.

The variations of the stress components as a function of
pressure thus indicate that the bcc phase becomes elastically
stable above a given temperature over the entire pressure
range considered. They do not indicate, however, which is
the most stable phase of iron at those conditions. This would
formally require the calculation of the free energy,40 which
is beyond the scope of the present study. For super-Earth
modeling the questions regarding the stability of the bcc phase
are first whether the nonmagnetic bcc phase becomes the
most stable phase as pressure increases by up to five times
the ones found at ICB conditions and second whether this
phase should be considered when calculating the high-pressure
melting curve of iron. It is potentially determinant to use the
proper phase for the calculation of the high-pressure melting
curve as the substitution of a metastable phase in its calculation
could lead to a significant underestimation of the melting
temperature. To address these issues, we thus calculate bulk
melting temperatures for both phases over the entire pressure
domain investigated.

B. High-pressure melting curve

To extend the calculation of the high-pressure melting curve
of iron to pressures encountered in super-Earths of up to ten
Earth masses, we employed direct AIMD simulations. We
performed both direct bulk melting, i.e., the HUM approach,
and two-phase simulations. In the former, a simulation cell ini-
tially corresponding to a single solid phase is gradually heated
until melting occurs. In the latter, liquid and solid simulation
cells are initially brought into contact. The simulation is then
performed in the isokinetics ensemble where the temperature
is held fixed and until the sample equilibrates in either the
liquid or the initial solid phase. We favored this simulation
method over thermodynamic integration as the latter requires
finding a reference system to extract the free energy of the
phase at hand.10,51

Figure 3 shows the melting temperatures obtained with the
HUM method when considering the bcc or hcp phases with
varying numbers of atoms. When considering only 54 atoms
and four k points as used in previous studies,36,37 we obtain
significantly different melting temperatures between the two
phases. These differences disappear as soon as the number of
atoms used in the simulation cell is increased up to 128 atoms
and more. This suggests that AIMD simulations should be
performed with at least 128 atoms in the simulation cell when
considering two-phase simulation. This also indicates that
the high-pressure melting temperature does not significantly
depend on the solid phase used. This result is consistent with
the small free-energy difference found between the two phases
at ICB conditions.11,35,41 The result shown here goes a step
further and suggests that the difference in free energy between
the two phases remains modest up to the highest pressures
considered. This shows that the high-pressure melting tem-
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FIG. 3. (Color online) Bulk melting temperature as a function of
pressure for the hcp and bcc phases. The number of atoms used in the
simulation cell is indicated on the graph.

perature will not depend on the solid phase chosen in the
two-phase simulation approach for the entire pressure domain
investigated here.

Due to the only small differences found by the HUM
method between melting curves of the hcp and bcc phases
(see also Ref. 27), we used the bcc structure in two-phase
simulations. The results are shown in Fig. 4 and compared to
previous calculations performed at conditions corresponding
to the ICB. Alfè et al.10 used thermodynamic integration,
while Belonoshko et al.25 used the two-phase method with an
EAM potential fitted at high pressure to ab initio calculations.
Although differences exist between the results obtained by
these two groups, Alfè et al.51 have shown how to reconcile
the EAM results with results based on free energy.

We thus used the two-phase approach with cells containing
108 (2 × 54) and 256 (2 × 128) atoms. As noted previously
for aluminum,52 the discrepancies between the results obtained
using cells of two different sizes increase with pressure.
We find a difference of about 7% in the resulting melting
temperature at the highest pressure considered here, while for
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FIG. 4. (Color online) Variation of the melting temperature of bcc
iron as a function of pressure using two-phase simulations.

the lowest pressures the difference is within the error bars. At
the terrestrial ICB conditions, the melting point is in excellent
agreement with the most recent calculations obtained using the
coexistence approach and a larger supercell of 1000 atoms.22

This gives us strong confidence in the reliability of the melting
curve calculated using this approach with 256 atoms in the
simulation cell, in spite of the resulting larger error bar on the
melting temperature calculated. As an hcp structure was used
in Ref. 22, the result found at ICB conditions also confirms
that the melting temperatures obtained using either a bcc or
hcp structure are within the error bar of the simulation method.

The two-phase approach leads to melting temperatures
almost constantly increasing as a function of pressure. As
expected, we observe a strong reduction of the melting
temperature between the HUM and the two-phase approach.
The slope, however, is slightly smaller when calculated with
the two-phase approach and yields a melting temperature at
1500 GPa of about twice the one obtained at terrestrial ICB
conditions. This contrasts with findings in systems such as Na
and H where maxima in the melting curve were identified
at high pressures.53,54 The melting curve obtained in the
present study can be compared usefully with existing models
of planetary cores.55 The melting curve exhibits a significantly
steeper slope than planetary adiabatic temperature profiles
currently calculated for super-Earths. As explained by Morard
et al.,27 this suggests that the presence of liquid iron in the
cores of super-Earths is not likely in planets of masses superior
to Earth’s mass.27 The calculated melting curve of iron has
also been reported in Fig. 1 together with the domain of
elastic stability of the bcc phase. To estimate the effect of
the overlapping between atomic spheres, HUM and two-phase
approach calculations were performed with the 2.1-Ha radius
pseudopotential. We do not find a difference in the melting
temperature with the HUM method, but with the two-phase ap-
proach the melting temperature is 2000 K higher at 20 g/cm3.
This is certainly a direct consequence of the wrong description
of the liquid part where the overlapping is the largest.

In order to facilitate further planetary modeling, we fitted
the melting temperatures obtained in the present study above
3 Mbars and together with the results of Alfe et al.10,51 below
3 Mbars using the semiempirical Simon melting law,14 which
links melting temperature to pressure according to

P − P0

a
=

(
Tm

T0

)c

− 1, (1)

where a and c are empirical parameters. Simulations results
are well reproduced over the entire pressure range using
a = 31.3 GPa and c = 1.99. Murphy et al.56 used a measured
phonon density of states at 300 K between 30 and 151 GPa
to determine the vibrational free energy and mean-square
displacement of atoms. Then they determine the melting
temperature and proposed a Simon law. We extrapolated their
results to the pressure domain considered here for comparison
(see Fig. 4).

C. Thermodynamic properties extracted directly from AIMD

The variation of pressure P and internal energy U as a
function of temperature allows us to calculate the specific heat
CV and αKT , the product of the isobaric thermal expansivity

094102-4



Ab INITIO EQUATION OF STATE OF IRON UP . . . PHYSICAL REVIEW B 87, 094102 (2013)

4000 8000 12000

Temperature (K)

15

20

25

30

35

C
V

 (J
m

ol
-1

K
-1

)

13.15 g/cm3

16 g/cm3

18 g/cm3

20 g/cm3

4000 8000 12000

10

15

20

αK
T 

(1
0-3

G
Pa

/K
)

FIG. 5. (Color online) Specific heat at constant volume CV (left)
and αKT (right) for hcp (continuous curves) and bcc (dashed curves)
iron along four isochores as a function of temperature (up to the
melting temperature). For the bcc phase we only report the values in
the elastic stability domain defined in Fig. 1.

and the isothermal bulk modulus. They are defined as CV =
(∂U/∂T )V and αKT = (∂P/∂T )V , respectively. They are
reported in Fig. 5 for the four isochores reported in Fig. 1.

The specific heat CV shows an almost linear increase
with temperature in the hcp phase, while in the bcc phase
a maximal value close to the classical value of 25 J mol−1 K−1

is reached. As pressure is increased at a given temperature,
CV decreases due to the suppression of electronic excitations
and anharmonicity. The same behavior is observed for αKT .
This quantity is sometimes considered to be independent of the
temperature, which means that the thermal pressure is linear
in T .57 We clearly observe this quasiharmonic behavior for the
bcc phase, but not for the hcp phase. Similar values for αKT

are reported by Alfe et al.10 at the ICB pressure range.
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FIG. 6. (Color online) Grüneisen parameter γ for hcp (continuous
curves) and bcc (dashed curves) iron along four isochores as a
function of temperature (up to the melting temperature). For the bcc
phase we only report the values in the elastic stability domain defined
in Fig. 1.

From these two quantities, it is easy to obtain the thermo-
dynamic Grüneisen parameter γ defined as

γ = αKT V

Cv

. (2)

The variation of the Grüneisen parameter is reported in Fig. 6.
For both structures, γ decreases as density increases. At
high temperatures, where the bcc phase is elastically stable,
the temperature dependence of γ is really weak. We find
similar values for both structures, ranging from 2.0 at the
lowest densities to 1.7 at the highest. Using a measured
phonon density of states, Murphy et al.58 found an ambient
pressure vibrational Grüneisen parameter γvib = 2.0 ± 0.1 for
hcp iron. Using the quasiharmonic approximation, Sha and
Cohen9 show a rapid decrease in temperature of the Grüneisen
parameter for ε-Fe with values lower than reported here,
between 2.2 and 1.0, depending on temperature and density.

IV. EQUATIONS OF STATE OF hcp AND bcc IRON AT
VERY HIGH PRESSURES

In the past decade, ab initio calculations have been
extensively used to study the thermal properties of iron and
build reliable equations of state of iron at the temperature
and pressure of the Earth’s core. Sha and Cohen8,9 used the
quasiharmonic approximation to study bcc and hcp structures
of iron. Alfè et al. used the quasiharmonic approximation and
thermal integration to take into account the anharmonic effect
to study hcp Fe. Belonoshko et al.36 used AIMD simulations
to build an equation of state of bcc iron. In the adiabatic
approximation, the Helmholtz free energy F (V,T ) for a solid
can be expressed as59

F = E(V ) + Fharm(V,T ) + Fanh(V,T ) + Fel(V,T ), (3)

where E is the potential part of the free energy at zero temper-
ature. Here Fharm(V,T ) is the harmonic part of the vibrational
free energy that can be obtained using linear response theory
and the quasiharmonic approximation for the ion motion,
Fanh(V,T ) represents the correction due to anharmonicity, and
Fel(V,T ) represents the electronic contribution. The adiabatic
approximation is useful when using, for example, lattice dy-
namics. When using AIMD simulations as in the work here, we
calculate the total pressure for the relaxed structure at any given
density and temperature. As the ions are propagated using the
classical equation of motion, this is justified only for tempera-
tures above the Debye temperature where the ionic motion can
be considered as classical. In contrast, anharmonic effects are
directly included in the calculations of the total pressure. As
the simulations are performed using finite-temperature density
functional theory, the effect of the electronic contribution on
the resulting pressure is also directly included.

Several functional forms are used to parametrize the zero-
temperature EOS also referred to as the cold curve. Here
we used the Holzapfel form60 as it provides the correct
Thomas-Fermi limit at infinite compression.36 As such, it is
formally more appropriate than the Vinet or Birch-Murnaghan
functionals to cover the compression range studied here.
Within this parametrization, the pressure is given as

P (V ) = 3K0X
5(1 − X)exp[c0(1 − X)][1 + c2X(1 − X)],

(4)
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with X = (V/V0), c0 = −ln(3K0/PFG0), PFG0 =
1003.6(Z/V0)5/3, and c2 = 3/2(K ′ − 3) − c0, where V0

and K0 are the molar volume and bulk modulus at
normal conditions. Here PFGO is given in GPa and V0 in
cm3/mole.

Similarly to Ref. 36, we choose the Einstein model to
describe the harmonic contribution to the pressure. The thermal
contribution to the pressure can thus be parametrized as

Pharm = γEharm/V, (5)

with

Eharm = 3nR

[
�/2 + �

exp(�/T ) − 1

]
, (6)

γ = γ∞ + (γ0 − γ∞)(V/V0)β, (7)

� = �0(V/V0)−γ∞ exp

[
γ0 − γ∞

β
[1 − (V/V0)β]

]
, (8)

where γ is the Grüneisen parameter, γ0 and γ∞ are its values
at ambient conditions and infinite compression following the
Al’tshuler et al. form,61 � is the Einstein temperature, R is the
gas constant, and n is the number of atoms, one in the present
case. In these two relations and as for the cold curve, �0, γ∞
γ0, and β are fitting parameters and formally do not carry any
physical meaning. Following Refs. 62 and 36, we used for the
anharmonic and electronic terms Pa and Pe, respectively,

Pa = 3R

2V
ma0x

mT 2 (9)

and

Pe = 3R

2V
ge0x

gT 2. (10)

Since these two terms have the same temperature dependence,
we finally used only one expression Pae, which thus contains
both contributions. This has no impact on the quality of the
fitting procedure.

To fit all the (P,V,T ) points shown in Fig. 1, we considered
first fitting globally the data using the sum of the Holzapfel,
Einstein, and electronic-anharmonic forms. We also consid-
ered removing the cold curve contribution first and fitting the
thermal pressure on the remaining pressure in a second step.
Overall, as our primary concern here is to summarize our data
in a simple analytical form, we find that a global fit provides
the desired accuracy. Note that for the bcc phase we used
only the V and T points where the phase is considered to be
dynamically stable.

Over the whole pressure and temperature range explored
here, the ab initio pressures are reproduced within less than
1% when using the set of parameters presented in Table I
(see Fig. 7). To check the quality of the fit, we performed
additional AIMD calculations for various values of V and T ;
the difference between the calculated pressures and the fitted
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FIG. 7. (Color online) Difference (in percent) between computed
pressures (AIMD) and fitted ones for hcp and bcc phases. The inset
shows the result of our bcc fit with the P,V,T points of Ref. 36.

ones was less than 1%. While it is customary to associate
physical quantities with these fitting parameters, we stress that
the values obtained here are relevant only within the complete
set of parameters used to fit the input data within a given
error bar. As such, these parameters do not bear any physical
meaning when taken individually as several parameter sets can
provide the required fit within a few percent.

We now compare our EOS with the previous one proposed
by Belonoshko et al.36 for the bcc phase at conditions close to
the ICB. This EOS was also obtained using AIMD simulations,
but used smaller supercells containing 54 atoms. We used our
EOS to reproduce the pressures obtained in these calculations
(see the inset of Fig. 7). We observe large discrepancies
between the computed and fitted pressures at low pressures,
around 7%. The differences drop to around 2% at 400 GPa.
This can be explained by the fact that there is a difference of
several GPa between supercells of 54 and 128 atoms simulated
in the same conditions as indeed discussed by Belonoshko
et al.36 The pressure differences between simulations cells
of 128 and 250 atoms are less than 1%, which stresses
that a supercell of at least 128 atoms is necessary. We also
note that to obtain our EOS, we only used P,V,T points
in the stability domain of bcc, starting above 4000 K at
250 GPa. It is therefore not surprising to find the largest
discrepancies in a domain of pressures not covered by our input
data.

As also noticed by Belonoshko for inner core P -T
conditions, we also observe that the anharmonic-electronic
contribution to the pressure is almost negligible for the bcc
phase (see the value of a0 in Table I) in spite of the high
temperatures considered here. This contrasts with the hcp

TABLE I. Set of parameters resulting from our fitting procedure for bcc and hcp iron.

Structure V0 (cm3/mole) K0 (GPa) K ′
0 (GPa) �0 (K) γ0 β γ∞ a0 (K−1) m

bcc 6.544 199.520 5.070 451.500 2.418 0.491 0.561 7.623 × 10−8 3.394
hcp 6.290 253.844 4.719 44.574 1.408 0.826 0.827 2.121 × 10−4 1.891

094102-6



Ab INITIO EQUATION OF STATE OF IRON UP . . . PHYSICAL REVIEW B 87, 094102 (2013)

phase, where anharmonic effects are more important and
contribute significantly to the pressure. This is in agreement
with the behavior shown in Fig. 5, where the classical limit is
recovered in bcc iron and not in hcp iron.

V. OTHER THERMODYNAMIC QUANTITIES OF bcc AND
hcp IRON AT VERY HIGH PRESSURES

The fit obtained in the preceding section allows us to deduce
several thermodynamic quantities such as the isothermal bulk
modulus and the isobaric volume expansion coefficient defined
as

KT = −V

(
∂P

∂V

)
T

, (11)

α = 1

V

(
∂V

∂T

)
P

. (12)

We further note that these quantities are derivative of P ,
V , and T and do not depend on the individual parameters
obtained from the fit. Figure 8 shows the behavior of these
quantities for bcc iron in its elastic stability domain and for
hcp iron. The isothermal bulk moduli obtained for the bcc
and hcp phases are rather close over the whole range of
pressure and temperature considered here. Similar conclusions
can be obtained for the isobaric thermal expansivity. The
temperature dependence, however, is much more pronounced
for the hcp phase than in the bcc phase. The isobaric thermal
expansivity decreases strongly with increasing pressure in both
structures. This behavior was observed in diamond-anvil-cell
experiments63 for the hcp phase at lower pressures. For
comparison, we also show the values obtained by Alfe et al.10

In the present work, the Helmholtz free energy was obtained
by calculating separately the cold curve and the harmonic
and anharmonic contributions. Despite the fact that we used
a different approach to deduce the free energy, we obtain
rather similar results. We also find good agreement at 200 and
300 GPa with the values obtained with the EOS of Dewaele
et al.62 for the hcp phase. This EOS is based on experimental
compression data at room temperature, Hugoniot data,64 and
ab initio modeling.10 The close agreement that we observe at
low pressures for the thermal expansivity gives confidence in
our high-pressure predictions.
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FIG. 8. (Color online) Isothermal bulk modulus and volume
expansion coefficient of hcp and bcc iron as a function of temperature
and for several pressures (left panels, 200–400 GPa; right panels,
600–1400 GPa). The dotted curves are the results of Ref. 62, the
squares are the results of Ref. 10, and the dot dashed line is the result
of Ref. 9 for the volume expansion coefficient of hcp Fe.

VI. CONCLUSION

Using ab initio molecular dynamics simulations, we calcu-
lated the equation of state of iron in the solid phase for both hcp
and bcc structures as well as the high-pressure melting curve
up to 15 Mbars. We also investigated the elastic stability of
the bcc phase and found that the temperature above which the
bcc phase is mechanically stabilized increases with density.
Finally, we provided simple fits of these results for convenient
use in the planetary modeling.
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