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We show that the identity component of the group of homeomorphisms that preserve all leaves of a R d -tilable lamination is simple. Moreover, in the one dimensional case, we show that this group is uniformly perfect. We obtain a similar result for a dense subgroup of homeomorphisms.

Introduction

In this paper it is shown that the connected component of the identity of the group Homeo L (Ω) of all leaf-preserving homeomorphisms of a minimal tilable lamination Ω in any dimension is a simple group. We also prove that this group is equal to the group of homeomorphisms that are isotopic to the identity and that is open in Homeo L (Ω).

Similar results were obtained in the 60's by G. Fisher [START_REF] Fisher | On the group of all homeomorphisms of a manifold[END_REF] for the group of all homeomorphisms of a closed topological manifold of dimension smaller or equal than three. The algebraic simplicity for groups of homeomorphisms and diffeomorphisms of manifolds has been widely studied in the literature: In 1961, R. Anderson [START_REF] Anderson | On homeomorphisms as products of conjugates of a given homeomorphism and its inverse. Topology of 3-manifolds and related topics[END_REF], generalizing the work of G. Fisher [START_REF] Fisher | On the group of all homeomorphisms of a manifold[END_REF], showed the group of stable homeomorphisms of a manifold is simple. Later, D. Epstein [START_REF] Epstein | The simplicity of certain group of homeomorphisms[END_REF] established sufficient conditions on a group of homeomorphisms, for the commutator subgroup to be simple. This means that a group satisfying Epstein's conditions is simple if and only if it is perfect (i.e. its commutators subgroup is the whole group).

It is also worth mentioning the works of M. Herman [START_REF] Herman | Sur le groupe des difféomorphismes du tore[END_REF], W. Thurston [START_REF] Thurston | Foliations and groups of diffeomorphisms[END_REF] and J. Mather [START_REF] Mather | Commutators of diffeomorphisms[END_REF] who provided a nearly complete classification for the simplicity of diffeomorphism groups on manifolds.

Given a smooth foliation F over a manifold M , T. Rybicki [START_REF] Rybicki | The identity component of the leaf preserving diffeomorphism group is perfect[END_REF] and T. Tsuboi [START_REF] Tsuboi | On the group of foliation preserving diffeomorphisms[END_REF] studied the simplicity and perfectness of the identity component of the group G F (M ) of all leaf preserving diffeomorphisms of (M, F ). Notice here that these groups do not satisfy Epstein's conditions.

On the other hand, tilable laminations have been recently introduced as a geometric model for the study of non-periodic tilings [START_REF] Bellissard | Spaces of tilings, finite telescopic approximations and gap-labeling[END_REF]. They also appear as suspensions of minimal Cantor Z d -actions, like minimal subshifts. In addition, they include some classical laminated spaces as the dyadic solenoid. These spaces are locally homeomorphic to the product of an open set in R d and a Cantor set. In other words, these are laminated spaces with a Cantor transversal. They are also endowed with a natural R d -action, which we we call the translation flow. Like in the case of foliations of manifolds, groups of homeomorphisms on tilable laminations in general do not satisfy Epstein's conditions.

We denote by D(Ω) the group of deformations, that is, D(Ω) is the path connected component of the identity in Homeo(Ω) endowed with the C 0 -topology. We conjointly consider the following class of homeomorphisms, which arises naturally in the context of non-periodic tilings, namely the group of homeomorphisms preserving the vertical structure (see the precise definition in Section 2) denoted Homeo vsp (Ω). Roughly speaking, such homeomorphisms map any small Cantor transversal into a Cantor transversal. Notice that Homeo vsp (Ω) is a dense subgroup of Homeo L (Ω). Let D vsp (Ω) denote the path connected component of the identity in Homeo vsp (Ω). Our aim is to show the simplicity of these groups.

Another motivation for studying these groups comes from topological orbit equivalence theory: two tilable laminations Ω 1 , Ω 2 are orbit equivalent if there is a homeomorphism between the spaces mapping any orbit onto an orbit. Because of the totally disconnected transversal structure, Ω 1 and Ω 2 are orbit equivalent if and only if they are homeomorphic. A difficult result of Rubin [START_REF] Rubin | Locally Moving Groups and Reconstruction Problems, Ordered Groups and Infinite Permutation Groups[END_REF] asserts that the group Homeo(Ω) is a complete invariant of the orbit equivalence class of the lamination Ω: Any algebraic group isomorphism of these groups is induced by an homeomorphism on the topological laminations. It follows that the group D(Ω) is an invariant of flow equivalence.

For a topological group G, we denote by G 0 the connected component of the identity in G. The proof of Theorem 1.1 follows the same strategy as in [START_REF] Fisher | On the group of all homeomorphisms of a manifold[END_REF] for the triangulated manifolds (see [START_REF] Bounemoura | Simplicité des groupes de transformations de surfaces[END_REF] for a recent survey). In the next section we recall basic properties of tilable laminations and their homeomorphisms. By using a generalization of the Schoenflies Theorem due to R. Edwards and R. Kirby, we show, in Section 3, the groups under consideration satisfy the partition property (called also fragmentation property), and we prove Proposition 1.2 and the items (1), (2) of Theorem 1.1. We give in Section 4 a sufficient condition for a commutator subgroup of Homeo L (Ω) to be simple. Next, we prove in Section 5 that the groups Homeo L (Ω) and Homeo vsp (Ω) are perfect and we conclude the proof of Theorem 1.1 with the main result of Section 4. In the last section, we show, for the one-dimensional case, that these groups are uniformly perfect: more precisely, any element can be written as a product of two commutators in the group. This last result is similar to [START_REF] Fukui | Commutator Length of Leaf Preserving Diffeomorphisms[END_REF] for C ∞ leaf preserving diffeomorphisms of C ∞ foliations.

Preliminaries

2.1. Background on tilable lamination. We recall here some basic properties of tilable laminations and we refer to [START_REF] Bellissard | Spaces of tilings, finite telescopic approximations and gap-labeling[END_REF] for a more detailed exposition. Let Ω be a compact metric space. Assume that there exist a cover of Ω by open sets U i and homeomorphisms called charts h i : U i → D i × C i where C i is a topological space and D i is an open set of R d . These open sets and charts define an atlas of a flat lamination if the transition maps

h j • h -1 i read on their domains of definition (1) h i,j (t, c) = (t + a i,j , γ i,j (c)),
where the a i,j 's are elements of R d and the maps γ i,j are continuous. Two atlases are equivalent if their union is also an atlas.

A flat lamination is the data of a compact metric space Ω together with an equivalence class of atlases L. A box is the domain of a chart in the maximal atlas of L. For any point x in a box B with coordinates (t x , c x ) in the chart h, the set h -1 (D × {c x }) is called the slice and the set h -1 ({t x } × C) is called the vertical of x in B. Since a transition map transforms slices into slices and verticals into verticals, these definitions make sense. As usual, a leaf of Ω is the smallest connected set that contains all the slices it intersects. From (1), it is clear that each leaf is a manifold with a flat Riemannian metric.

Definition 2.1. A tilable lamination (Ω, L) (or a R d -solenoid) is a flat lamination such that • every leaf of L is isometric to R d .
• There exists a transversal Ξ (a compact subset of Ω such that for any leaf L of L, L ∩ Ξ is non empty and a discrete subset with respect the manifold topology of the leaf L) which is a Cantor set.

For short, we will speak about Ω as a tilable lamination when there is no confusion. If every leaf is dense in Ω, we say that the lamination is minimal. By (1), the action by translations on R d can be transported to a local action (also by translations) along the slices. In fact, these local translations induce a continuous and free R d -action T over Ω, see [START_REF] Bellissard | Spaces of tilings, finite telescopic approximations and gap-labeling[END_REF] for details. We refer to this action as the translation flow over Ω. To simplify the notations we write ωt := T (t, ω) for ω in Ω and t in R d . It is easy to see that the leaves of the lamination coincide with the orbits of the translation flow. Again by [START_REF] Aliste-Prieto | Translation numbers for a class of maps arising from one-dimensional quasicrystals[END_REF], the canonical orientation on R d induce an orientation on each leaf of Ω. Given a box B that reads Basic examples of minimal tilable laminations are given by the suspensions of minimal Z d action on a Cantor set with locally constant ceiling functions. The tilable lamination structure also appears in the dynamical systems associated to non-periodic repetitive tilings and Delone sets of the Euclidean space, see [START_REF] Bellissard | Spaces of tilings, finite telescopic approximations and gap-labeling[END_REF]. In these examples, the translation flow is expansive in the following sense (see [START_REF] Frank | Fusion tilings with infinite local complexity[END_REF]). Definition 2.2. Let η > 0. The translation flow of a tilable lamination Ω is said to be η-expansive if when one has points x, y ∈ Ω and a homeomorphism h : R d → R d satisfying h(0) = 0 and d(xt, yh(t)) < η for all t ∈ R d , then there must exist t 0 ∈ B η (0) such that xt 0 = y.

h -1 (D × C) in a chart h,
The translation flow is said expansive, if it is η-expansive for some constant η.

This last property will allow us to show, in the next section, that any homeomorphism that is close enough to the identity must by leaf-preserving.

A box in Ω is said to be internal if its closure is included in another box of Ω. In all the rest of the paper, any box will be supposed to internal. An internal box B is said to be of ball type if it can be written as

B = C -D, where D is an open ball in R d . Instead, if D is a d-cube (a 1 , b 1 ) × • • • × (a d , b d ) in R d ,
then B is said to be a box of cubic type. In this case, and if f is a ℓ-face (0 ≤ ℓ ≤ d) of the cube D, then the set Cf is said to be an ℓ-vertical boundary of B. A box cover of Ω is a cover {B i } i of Ω, where each B i is a box. Box covers of ball type and cubic type are defined in the same way.

Definition 2.3. A collection of boxes B = {B i } t i=0
in Ω is a box decomposition, if the following assertions hold:

(1) the B i 's are pairwise disjoint, (2) the closures of the B i 's form a cover of Ω. Also, if the boxes B i are of cubic type, then B is a box decomposition of cubic type.

Box decompositions were introduced in [START_REF] Bellissard | Spaces of tilings, finite telescopic approximations and gap-labeling[END_REF] as a tool in the study of tilable laminations. The key lemma (see bellow) asserts that any box cover of cubic type can be turned into a box decomposition of cubic type. It follows that every tilable lamination admits a box decomposition of cubic type.

Lemma 2.4 ([3]).

Let Ω be a tilable lamination and {B i } t i=0 be a box cover of cubic type of Ω. Then, there exists a box decomposition of cubic type

B ′ = {B ′ i } n i=0
, such that, for all i, whenever B ′ i intersects B j for some j, then it is included in B j . The union of all the ℓ-vertical boundaries (0 ≤ ℓ ≤ d) of all the boxes of a box decomposition of cubic type B is called the ℓ-skeleton of B.

Homeomorphisms of tilable laminations.

Let Ω be a tilable lamination and denote by Homeo(Ω) the set of homeomorphisms of Ω. We endow it with the C 0 -topology, which is induced by the distance

δ(f, g) = sup x∈Ω d(f (x), g(x)) + sup x∈Ω d(f -1 (x), g -1 (x)), f, g ∈ Homeo(Ω).
The support of a homeomorphism f in Homeo(Ω) is defined by

supp f = {x ∈ Ω | f (x) = x}. It is easy to see that supp f is f -invariant and supp φf φ -1 = φ(supp f ) for every φ ∈ Homeo(Ω).
Since the verticals of a tilable lamination Ω are totally disconnected, the pathconnected components coincide with the leaves of the lamination. Thus, every element of Homeo(Ω) maps each leaf onto a (possibly different) leaf. We define Homeo L (Ω) be the group of all leaf-preserving homeomorphisms of Ω. Recall that a homeomorphism f of Ω is homotopic to the identity, if there exists a continuous map

F : [0, 1] × Ω → Ω such that F (0, •) = Id and F (1, •) = f . If, in addition, F (t,
•) is a homeomorphism of Ω for each t ∈ Ω, then we say that f is isotopic to the identity or a deformation. The set D(Ω) denotes the group of all the deformations. Clearly, homeomorphisms that are homotopic to the identity belong to Homeo L (Ω).

If Ω is minimal, then the converse is also true. Theorem 2.5 ([1], [START_REF] Kwapisz | Topological friction in aperiodic minimal R m -actions[END_REF]). Let Ω be a minimal tilable lamination. Then every f ∈ Homeo L (Ω) is homotopic to the identity. In particular, for every f ∈ Homeo L (Ω), there is a continuous map Φ f : Ω → R d , called the displacement of f , which is uniquely defined by the equation

f (ω) = ω -Φ f (ω) for all ω ∈ Ω.
We say the displacement of f is smaller than ε when ||Φ|| ∞ < ε. When the translation flow is expansive, we get the following refinement.

Proposition 2.6. Let Ω be tilable lamination. Suppose its translation flow is ηexpansive. Then, Homeo L (Ω) is open in Homeo(Ω).

Proof. Define B = {f ∈ Homeo(Ω) | δ(f, Id) < η} and take any f ∈ B. Since the translation flow is free and homeomorphisms map leaves onto leaves, for every ω ∈ Ω there is a continuous map h :

R d → R d such that f (ω) -s = f (ω -h(s)) for all s ∈ R d .
Thus,

d(f (ω) -s, ω -h(s)) ≤ δ(f, Id) < η for all s ∈ R d .
It follows from the expansivity of Ω that there exists a t 0 ∈ R d such that f (ω) = ωt 0 . Since ω was arbitrary, this means that f preserves each leaf and thus f ∈ Homeo L (Ω), which means that B ⊂ Homeo L (Ω). The fact that Homeo L (Ω) is open now follows from a standard argument. Proof. Since the connected component is the greatest connected set containing the identity, we have Homeo 0 L (Ω) ⊂ Homeo 0 (Ω). By Proposition 2.6 and the connexity property, we get Homeo 0 (Ω) ⊂ Homeo L (Ω) and so Homeo 0 (Ω) ⊂ Homeo 0 L (Ω), which concludes the proof.

In the context of laminations arising from the study of non-periodic tilings, an important class of homeomorphisms is given by homeomorphisms with the following property.

Definition 2.8. A homeomorphism f ∈ Homeo(Ω) preserves the vertical structure if, given a point x in a vertical C of a box B and a vertical C ′ of a box B ′ containing f (x), then there is a clopen subset C ⊂ C containing x such that for every y ∈ C, f (y) ∈ C ′ .
Alternatively, provided that Ω is minimal, a map f ∈ Homeo L (Ω) preserves the vertical structure if and only if its deplacement Φ is transversally locally constant. In the context of non-periodic repetitive tilings, this notion corresponds to the notion of strong pattern-equivariance (see [START_REF] Kellendonk | Pattern-equivariant functions and cohomology[END_REF]) of the map t → Φ f (ωt) for any fixed ω ∈ Ω. We denote by Homeo vsp (Ω) the collection of homeomorphisms preserving the vertical structure. It is plain to check that Homeo vsp (Ω) is dense in Homeo(Ω). We will denote by D vsp (Ω) the path-connected component of the identity in Homeo vsp (Ω).

Partition property

Definition 3.1. A group G of homeomorphisms of Ω satisfies the partition property if for every box cover {B i } t i=0 of Ω, and for any f ∈ G, there exists a decomposition f = g 1 • • • g ℓ where g i ∈ G and supp g i ⊂ B j(i) for i = 1, . . . , ℓ.

In this section, following [START_REF] Fisher | On the group of all homeomorphisms of a manifold[END_REF] and using the box decomposition structure of tilable laminations we show:

Proposition 3.2.
Let Ω be a minimal tilable lamination. The two groups Homeo 0 L (Ω) and Homeo 0 vsp (Ω) satisfy the partition property. We will also show assertions ( 1) and ( 2) of Theorem 1.1. To prove this result, we will use several lemmas. We start by showing that every map having its support included in a box of ball type is a deformation. Lemma 3.3. Let Ω be a minimal tilable lamination and B be a box of ball type. Any map g ∈ Homeo L (Ω) (resp. in Homeo vsp (Ω)), with support in the interior of B is a deformation of the identity (resp. g ∈ D vsp (Ω)).

Proof. The proof is classical by using the Alexander's trick. We can assume that the closure B of the box reads h -1 (D × C) in a chart h, with D a closed ball in R d of radius r > 0 centered at the origin. Since the support of the map g is in B, the map g preserves any slice of the box B. So, for any c ∈ C, let g c : D → D be the map defined by g(h

-1 (t, c)) = h -1 (g c (t), c) for t ∈ D. Now, for any t ∈ [0, 1], let F t : D × C → D × C be the map F t (x, c) = ((1 -t)g c ( x 1-t ), c) if |x| < r(1 -t) (x, c) if |x| ≥ r(1 -t).
It is plain to check the map h -1 F t h gives an isotopy between the identity and the map g.

In the case where g ∈ Homeo vsp (Ω), up to subdivide the clopen set C, we can assume that the map g c is independent of c. Hence the isotopy is also in Homeo vsp (Ω).

Given two subsets A ⊂ B of a topological space X, an embedding f : A → B is a continuous and injective map. This embedding is proper if f -1 (∂B) = A ∩ ∂B. The next theorem says that any proper embedding of a neighborhood of a compact set K into a ball, sufficiently close to the identity, can be isotoped to an embedding which is the identity on K. Moreover the isotopy depends continuously of the embedding. This theorem, true in any dimension, generalizes a version of the Schoenflies Theorem. 

: U × [0, 1] → D such that: • For any t ∈ [0, 1], H(•, t) : U → D is a proper embedding. • H(•, 0) = f (•) and H(•, 1) |K = Id |K . • There is a compact neighborhood K 2 of K in U , such that for any t ∈ [0, 1], H(•, t) |U\K2 = f (•) |U\K2 . • H depends continuously on f for the C 0 topology.
Applied in our context, a first consequence is that any map close to the identity can be interpolated by a map with a support in a box. Lemma 3.5. Let Ω be a tilable lamination, let B be a box of ball type and B ′ be a box with closure included in B. Then there exists an ε > 0 such that for any homeomorphism f ∈ Homeo L (Ω) (resp. Homeo vsp (Ω)) with a displacement smaller than ε, there exists a map g ∈ Homeo L (Ω) (resp. Homeo vsp (Ω)) with supp g ⊂ B such that g |B ′ = f |B ′ . Moreover, the displacement of g depends continuously on f for the C 0 -topology.

Proof. Without loss of generality, we may assume that

B reads h -1 (D 3 × C) in a chart h with D 3 a ball in R d . Assume that D 1 × C is a compact neighborhood of h(B ′ ) with D 1 ⊂ D 3 a compact subset and let D 2 ⊂ D 3 be a neighborhood of D 1 .
We consider a map f ∈ Homeo L (Ω) with a displacement smaller than ε (defined later). By continuity, for a small enough ε, the set 

f (h -1 (D 2 × C)) is in B, and for any c ∈ C, f (h -1 (D 2 × {c})) ⊂ h -1 (D 3 × {c}).
f • h -1 (t, c) = h • ( fc (t), c) for any (t, c) ∈ D 3 × C. By construction, f is a homeomorphism, f|h -1 (D1×C) = f |h -1 (D1×C)
and f|∂B = Id |∂B . So f can be extended by the identity to all the tilable lamination Ω to define a homeomorphism. This gives the map g.

Here again, when f ∈ Homeo vsp (Ω), up to subdividing the clopen set C, we can assume that the map f c is independent of c. So the same is true for f and it belongs to Homeo vsp (Ω). Proposition 3.6. Let Ω be a minimal tilable lamination and B = {B i } k i=1 be a box cover of Ω. Then, there are ε > 0 and an integer ℓ > 0 such that for every f ∈ Homeo L (Ω) (resp. in Homeo vsp (Ω)) with displacement smaller than ε, there exists a decomposition f = g 1 • • • g ℓ with g i ∈ Homeo L (Ω) (resp. Homeo vsp (Ω)) and supp g i ⊂ B j(i) .

Proof. Let B ′ = {B ′ 0 , B ′ 1 , . . . , B ′ m } be the box decomposition of cubic type given by Lemma 2.4. Up to subdividing each box B ′ i into smaller boxes, we can assume that the closure of every box B ′ i is included in a box B j(i) . We will construct, by induction on 0 ≤ i ≤ d, a homeomoprhism f i which equals the identity on a neighborhood of the i-skeleton of B ′ and equals f outside. At each step, we use Lemma 3.5 to approximate f i-1 by maps with support in a small box.

For any 0-vertical boundary V of a box

B ′ i , let B (0) 
V be a box containing V in its interior and included in a box B j(i) . Let B Step 0. Applying Lemma 3.5 to any box B (0) i and any neighborhood of the 0vertical V ∩B (0) i (when not empty), we get, for an ε small enough, a g i ∈ Homeo L (Ω) with supp g i ⊂ B (0) i such that g i = f on a neighborhood of V ∩ B (0) i . It follows that the maps g 1 , . . . , g n commute; and

f 0 = g -1 1 • • • • • g -1 n
• f is the identity in a neighborhood U 0 of the 0-skeleton of B ′ . Moreover the displacement of f 0 continuously depends on the displacement of f .

Step i. 1 ≤ i ≤ d-1. Let us assume that f i ∈ Homeo L (Ω) equals the identity on a neighborhood U i-1 of the i -1-skeleton of B ′ . We do the same as for the former step. Let

B (i) 1 , . . . , B (i)
ni be a collection of boxes such that any i-vertical boundary V of B ′ is in the interior of a box B (i) j ⊂ B t(j) . Up to refine the boxes B (i) j , we may assume that the sets B (i) j \ U i-1 are pairwise disjoint. Applying Lemma 3.5 to any box B (i) j and to a neighborhood of the i-vertical (V \ U i-1 ) ∩ B (i) j (when not empty), we have, for an ε small enough, a g

(i) j ∈ Homeo L (Ω) with supp g (i) j ⊂ B (i) j such that g (i) j = f on a neighborhood of (V \ U i-1 ) ∩ B (i) j .
We get that the maps g

(i) 1 , . . . , g (i)
ni commute; and f i = (g

(i) 1 ) -1 • • • • • (g (i) ni ) -1 • f i-1 is the identity in a neighborhood of the i-skeleton.
Hence the homeomorphism f d-1 preserves each box B ′ i , and f d-1 can be written as the composition of homeomorphisms with support in each box of the decomposition B ′ . Moreover if f ∈ Homeo vsp (Ω), then f d-1 ∈ Homeo vsp (Ω) also. This proves the proposition.

The following proposition shows the assertions ( 1) and ( 2 of Ω such that the diameter of any box B ′ j is smaller than ρ. Then by Proposition 3.6, any map f ∈ Homeo L (Ω) with displacement small enough, can be written as a product of maps g i ∈ Homeo L (Ω) with support in a B ′ j(i) . Thus by Lemma 3.3 we get that any g i is in D(Ω), and finally f ∈ D(Ω). This means that the identity lies in the interior of D(Ω). Standard arguments on topological groups show then that D(Ω) is open and closed in Homeo L (Ω) and D(Ω) = Homeo 0 L (Ω). The proof is similar for the group Homeo vsp (Ω). Finally, we can obtain the proof of Proposition 3.2. of Proposition 3.2. Let H be either Homeo 0 L (Ω) or Homeo 0 vsp (Ω) and let B be an atlas of Ω. Proposition 3.7 gives us a constant η > 0 such that any element of Homeo L (Ω) (resp. in Homeo vsp (Ω)) with a displacement smaller than η is in D(Ω) (resp. D vsp (Ω)). Up to refining the covering B, we can assume that every element of B has a diameter smaller than η. Since the group H is connected, it is enough to show the partition property for any f ∈ H with an arbitrary small displacement ε. By taking the ε given by Proposition 3.6, we can write f as a product of elements g i in Homeo L (Ω) with displacement smaller than η. By Proposition 3.7, we get g i ∈ H and this shows the partition property.

Simplicity of the commutator subgroup

Epstein's result [START_REF] Epstein | The simplicity of certain group of homeomorphisms[END_REF] asserts that if a group of homeomorphism is factorizable and acts transitively on open sets, then its commutator subgroup is simple. Let Ω be a minimal tilable lamination and let G be a subgoup of Homeo 0 L (Ω). In general, we cannot expect G to act transively on open sets. We need to replace the transivity condition with another one which is more adapted to laminated spaces. Thus, we give here, a sufficient condition on a subgroup of Homeo 0 L (Ω) so that the derived subgroup is simple. Theorem 4.1. Let Ω be a minimal R d tilable lamination. Let G ⊂ Homeo 0 L (Ω) be a group such that: i) G satisfies the partition property.

ii) For any boxes

B 1 = C -D 1 , B 2 = C -D 2 of ball type whose closures lie in a box B = C -K, there exists a g ∈ G ′ such that B 2 ⊂ g(B 1 ). Then the derived group G ′ = [G, G] is simple.
Proof. Let N be a non-trivial normal subgroup of G ′ . We have to show that N = G ′ . Lemma 4.2. There exists an atlas B of the solenoid Ω such that for every box B of B there is a map n B ∈ N such that B and n B (B) are disjoint.

Proof. Let Id = n ∈ N . There is a box B 0 = C 0 -D 0 of ball type such that B 0 and n(B 0 ) are disjoint. Since the translation flow is free and minimal and translations have the vertical structure preserving property, it follows that for every x ∈ Ω, there is a clopen subset C x ⊂ C 0 and an open ball

D x ⊂ R d with D 0 ⊂ D x such that C x -D x is a box of Ω containing the point x.
Let Bx be a box included in C x -D x containing the point x. By hypothesis ii), there is a g ∈ G ′ such that Bx ⊂ g(C x -D 0 ). It is then straightforward to check that the box Bx is disjoint from its image by the map g • n • g -1 ∈ N . The collection of boxes { Bx } x∈Ω satisfies the condition of the statement.

Let B be the finite cover given by Lemma 4.2 of the tilable lamination Ω by boxes and let ρ > 0 be its Lebesgue number. Let us recall that for any ball of radius ρ in Ω there exists a box of B containing this ball. Let B 1 be a box cover of cubic type of Ω, equivalent to B, and such that any box has a diameter smaller than ρ. It follows that when two boxes B 1 , B 2 of B 1 are intersecting, there exists a box

B of B containing B 1 ∪ B 2 .
The following is an algebraic lemma due to T. Tsuboi [START_REF] Tsuboi | On the uniform simplicity of diffeomorphisms groups[END_REF]. Proof. Let h = n -1 an, since the supports are disjoint, we have hb = bh. So we get

aba -1 b -1 = nhn -1 bnh -1 n -1 b -1 = nhn -1 h -1 hbnh -1 b -1 bn -1 b -1 = n(hn -1 h -1 )(bhnh -1 b -1 )(bn -1 b -1 ).
Now, for each B ∈ B 1 , let G B be the subgroup of G of homeomorphisms with support in B, and let H be the subgroup of G generated by all the G B with B ∈ B 1 . By the partition property (item i)), the groups H and G are the same. It is well-known that the commutator subgroup of H is generated by the conjugates of commutators of elements in a generating set of H. So to prove the theorem, we just have to show for any boxes B 1 , B 2 in B 1 , and for

f 1 ∈ G B1 and f 2 ∈ G B2 , that the commutator [f 1 , f 2 ] belongs to N .
If the boxes B 1 and B 2 do not intersect, then every point of Ω is fixed by either f 1 or f 2 , which means that [f 1 , f 2 ] = id and thus belong to N .

Suppose now that B 1 and B 2 intersect and let B be a box in B containing B 1 ∪B 2 . By Lemma 4.2, there exists a n ∈ N such that B ∩ n(B) = ∅. Thus by Lemma 4.3, we have [f 1 , f 2 ] ∈ N , and then H ′ = N .

Perfectness

To show that the groups Homeo 0 L (Ω) and Homeo 0 s (Ω) are simple, we will first prove in this section they are perfect. For this, we need the next lemma stating a transitivity of the action of the group D vsp (Ω) on specific boxes of a same box. This is a reinforcement of condition ii) in Theorem 4.1. We will deduce then the perfectness. This will imply, together with the partition property, that these groups satisfy the conditions of Theorem 4.1, and henceforth they are simple. Proof. Let h be the chart associated to the box C -V . The boxes B 1 and B 2 read respectively h -1 (D 1 × C) and h -1 (D 2 × C), with D 1 , D 2 two balls in V . Up to composing with a translation T ρ , we may assume that

D 1 ⊂ D 2 ⊂ V or D 2 ⊂ D 1 ⊂ V . In both cases, it is straightforward to construct a homeomorphism ψ ∈ D vsp (Ω) with support in C -V such that ψ(h -1 (D 1 )× C)) = h -1 (D 2 × C).
The proof of the next theorem follows directly the ideas of Frédéric Le Roux (see Theorem 1.1.3 in [START_REF] Bounemoura | Simplicité des groupes de transformations de surfaces[END_REF] for a proof on a surface). On a manifold, this shows directly that the group of homeomorphism is simple. Here, because of the lack of homogeneity, it enables just to show the groups Homeo 0 L (Ω) and Homeo 0 vsp (Ω) are perfect.

Theorem 5.2. For Ω a minimal R d -tilable lamination, the groups Homeo 0 L (Ω) and Homeo 0 vsp (Ω) are perfect.

Proof. Let H denotes either Homeo 0 L (Ω) or Homeo 0 vsp (Ω). We have to show that any element of H can be written as a commutators product. It is simple to find two non commuting elements a, b ∈ D vsp (Ω) with supports in a box B ⊂ Ω of ball type. So the element g = [a, b] ∈ H is not the identity. We will show that N (g), the normal subgroup generated by g, contains all the elements f of H with support in the box B. Recall that a conjugate of a commutator is still a commutator, it will follow that f can be written as a finite product of commutators. Since the box B is arbitrary, we get the conclusion by the partition property (Proposition 3.2).

We have g = Id, so we consider a box B ′ ⊂ B such that g(B ′ ) and B ′ are disjoint. In a chart h, we may assume that B ′ reads h -1 (B r (0)× C) where B r (0) denotes the Euclidean ball in R d of radius r > 0 centered at 0. For any integer n ≥ 0, we define a nested sequence of boxes B n := h -1 (B r/2 n+1 (0) × C). It is simple to construct an element ψ of D vsp (Ω) with support in B ′ , such that ψ(B n ) = B n+1 of n ≥ 0. We get then that the homeomorphism k = [ψ, g] ∈ N (g) satisfies k(B n ) = B n+1 for n ≥ 0 and supp k ⊂ B ′ ∪ g(B ′ ) (k is the product of ψ and gψ -1 g -1 that have disjoint supports).

Let A n = B n \ B n+1 and let us show that N (g) contains all the element of H with support in A 1 . For any φ ∈ H with a support in A 1 , we claim that φk and k are conjugate: notice, we have k = φ -1 (φk)φ on A 0 , n≥0 A n = n≥0 g n (A 0 ) = n≥0 (φk) n (A 0 ) and k |B\B0 = φk |B\B0 ; It is then standard to check that the continuous homeomorphism φ defined by φ|An := (φk) n φk -n |An for any n ≥ 0 and φ|Ω\B0 = Id, can be extended by continuity to n≥0 A n = B 0 , is in H and satisfies k = φ-1 (φk) φ

on Ω. We get then φk ∈ N (k) ⊂ N (g), so φ ∈ N (g). Finally, let f ∈ H with a support in B. By Lemma 5.1, there exists a φ ∈ H such that the support of φf φ -1 is in A 1 . So by the last result we have f ∈ N (g).

We have then the groups Homeo 0 L (Ω) and Homeo 0 vsp (Ω) equal their commutator groups. So by Lemma 5.1 and Theorem 4.1, we get the main result: Theorem 1.1.

Uniform perfectness in dimension one

Theorem 5.2 asserts that any homeomorphism of a tilable lamination Ω is a product of commutators. For the one dimension, we can be more precise. Theorem 6.1. For Ω a minimal R-tilable lamination, any element of Homeo 0 L (Ω) (resp. D vsp (Ω)) can be written as a product of two commutators of Homeo 0 L (Ω) (resp. D vsp (Ω)).

Before proving this theorem, we need some technical lemmas. The first one solves the problem of perfectness for homeomorphisms with support in a box. Recall that any map f ∈ Homeo 0 L (Ω) preserves the orientation, so, if Φ denotes its displacement, for any ω ∈ Ω, the map R ∋ t → t + Φ(ωt) ∈ R is increasing. Lemma 6.2. Let Ω be a minimal R-tilable lamination and let f ∈ Homeo 0 L (Ω) (resp. Homeo 0 vsp (Ω)) with support included in a box B. Then there exists a homeomorphism g ∈ Homeo 0 L (Ω) (resp. Homeo 0 vsp (Ω)) with support in B such that gf g -1 = f 2 . In particular f = [g, f ].

Proof. Since f preserves the orientation, it preserves each slice of the box B = C -I, with C a clopen set and I an interval. For any x ∈ C, we denote by f x : I → I the increasing map induced on the slice of x: i.e. defined by f x (t) = t + Φ(xt) so that f (xt) = xf x (t) for any t ∈ I.

For any z 0 ∈ {z ∈ B; f = Id}, let the vertical C z0 be Ct 0 where z 0 writes x 0t 0 with x 0 ∈ C, t 0 ∈ I. We define the local strip

V z0 := {x -t; x ∈ C, t 0 ≤ t < f x (t 0 )}.
By the definition, the sets {f n (V z0 ) = V f n (z0) } n∈Z are pairwise disjoints, and ∪ n∈Z f n (V z0 ) is a f -invariant open set. Hence there exist a collection at most countable of points {z n } n≥0 ⊂ {f = Id} and local strips V n = V zn such that supp f = ∪ n≥0 ∪ p∈Z f p (V n ) and the sets {∪ p∈Z f p (V n )} n≥0 are pairwise disjoint.

Notice that since f preserves the orientation, a point is fixed by f if and only it is a fixed point of f 2 . So we have supp f = supp f 2 .

For each n ≥ 0,

z n = x n -t n with t n ∈ I, x n ∈ C, let h n : [t n , f zn (t n )) → [t n , f 2 zn (t n
)) be the bijective affine map fixing t n . It is then straightforward to check that the continuous map g n defined on ∪ p∈Z f p (V n ) by

g n|f p (Vn) := f 2p • h n • f -p ,
can be continuously extended by the identity to ∂∪ p∈Z f p (V n ) and satisfies f 2 •g n = g n • f where it is defined. Hence we can define a homeomorphism g on Ω with support in B such that g |∪ p∈Z f p (Vn) = g n for every n ≥ 0. Notice furthermore that g is in Homeo 0 vsp (Ω) when f is. The next lemma, is a version of lemma 3.5 without the condition to be close of the identity. 

• supp f 2 ⊂ B; • f 1 | B ′ = Id| B ′ ; • f = f 1 • f 2 .
Proof. Let x be a point of Ω. The points x and f (x) are in the same leaf, so they belong to a same box B = C -I of cubic type. By continuity, there exists a small box x ∈ B ′ = C -J such that the closures of B ′ , f (B ′ ) are in B. Let f 2 be the map given by Lemma 6.3, and let

f 1 = f • f -1 2 .
It is straightforward to check they satisfy the conditions of the lemma. The proof is plain.

of Theorem 6.1. Let us denote by H the group Homeo 0 L (Ω) or Homeo 0 vsp (Ω) and let f ∈ H. Let f 1 and f 2 be the homeomorphims in H and B, B ′ be the boxes given by Lemma 6.4. From Lemma 6.5 applied to the box B ′ = C -(a, b), and since the map τ C-a is locally constant, there exists a clopen partition {C 1 , . . . , C ℓ } of C such that for any i, τ C-a |C i is constant, equals to τ i and {C i -[0, τ i ]} ℓ i=1 is a covering of Ω \ B by closed boxes with interior pairwise disjoint.

Hence, the map f 1 preserves any box C i -[0, τ i ], so it can be written as a product of maps g 1 • • • g ℓ , where any g i ∈ H and supp g i ⊂ C i -[0, τ i ]. By Lemma 6.2, f 2 is a commutator and any g i is a commutator [a i , b i ] where the homeomorphisms a i , b i ∈ H have their support in the box C i -[0, τ i ]. Since two homeomorphisms with disjoint interior of supports commute, we have

f 1 = ℓ i=1 g i = ℓ i=1 [a i , b i ] = [ ℓ i=1 a i , ℓ i=1 b i ].
It follows that f may be written as a product of two commutators.

Theorem 1 . 1 .

 11 Let Ω be a minimal tilable lamination. Let G be either Homeo L (Ω) or Homeo vsp (Ω). Then,(1) Homeo 0 L (Ω) = D(Ω) and Homeo 0 vsp (Ω) = D vsp (Ω); (2) G 0 is open in G; (3) G 0 is simple.Moreover, when the translation flow is expansive, e.g. for tiling spaces, the connected component of the identity in Homeo(Ω) is the group of deformations. Proposition 1.2. Let Ω be a minimal tilable lamination. If the translation flow is expansive, then the identity component Homeo 0 (Ω) is equal to D(Ω) and is open in Homeo(Ω).

  by identifying a vertical in B with the Cantor set C, we can write B = T (C, D) = C -D, thus avoiding the explicit reference to the chart h.

Corollary 2 . 7 .

 27 If the translation flow on the tilable lamination Ω is expansive, then Homeo 0 (Ω) is open and Homeo 0 (Ω) = Homeo 0 L (Ω).

Theorem 3 . 4 . [ 5 ]

 345 Let D be a (closed or open) ball in R d , K ⊂ D a compact subset and U a neighborhood of K in D. Then, for any proper embedding f : U → D close enough of the identity (for the C 0 topology), there exists a continuous map H

  For any c ∈ C, let f c : D 2 → D 3 be the embedding defined by f c (•) = (hf h -1 )(•, c) and let K be a compact neighborhood of ∂D 2 proper in U = D 2 \ D 1 . For an ε small enough and for any c ∈ C, Theorem 3.4 applied to the maps f c : U → D 3 , gives us embeddings h c = H c (•, 1) : U → D 3 . We define then the maps fc : D 3 → D 3 by fc|U := h c and fc|D 1 := f c|D1 and fc|D 3\D2 := Id |D3\D2 Let f : B → B be the map defined by

n

  be the collection of these boxes containing all the 0-vertical boundaries. Up to refine the boxes B (0) i , we can assume that they are pairwise disjoint. The union of all theses boxes B (0) i covers the 0-skeleton of B ′ .

  ) of Theorem 1.1. Proposition 3.7. Let Ω be a minimal tilable lamination. Then, D(Ω) is open in Homeo L (Ω) and D(Ω) = Homeo 0 L (Ω). Similarly, D vsp (Ω) is open in Homeo vsp (Ω) and D vsp (Ω) = Homeo 0 vsp (Ω). Proof. Let B = {B i } k i=1 be a box cover of ball type of Ω. Let ρ be the Lebesgue number of B and consider an atlas B ′ = {B ′ j } ℓ j=1

Lemma 4 . 3 ([ 17 ,

 4317 Lemma 3.1]). Let B be a box and n be an homeomorphism such that n(B) ∩ B = ∅. Then for any homeomorphisms a, b ∈ G with supports in B, the commutator [a, b] can be written as a product of 4 conjugates of n and n -1 .

Lemma 5 . 1 .

 51 Let B 1 = C -D 1 and B 2 = C -D 2 be two boxes of ball type, and let B 0 = C -V be a box containing the closures of B 1 and B 2 . Then there exists a g ∈ D vsp (Ω) such that B 2 = g(B 1 ).

Lemma 6 . 3 .

 63 Let Ω be a minimal R-tilable lamination and let f ∈ Homeo 0 L (Ω) (resp. Homeo 0 vsp (Ω)). Suppose thatB ′ = C -J and B = C -I are boxes of cubic type such that the closure of f (B ′ ) ∪ B ′ is contained in B. Then, there exists a g in D(Ω) (resp. D vsp (Ω)) with support contained in B such that f | B ′ = g| B ′ .Proof. Without loss of generality, we may assume that I, J are two open intervals such that 0 ∈ J ⊂ I. Consider η : I → [0, 1] a continuous function that is equal to zero on the boundary of I, is equal to one on J and affine on each component of I \ J. Let φ be the displacement function of f , and define ψ : Ω → R byψ(xt) = η(t)φ(xt) for any x ∈ C, t ∈ I,and by zero on the complement of B. It is clear that ψ is a continuous function. Thus, g(x) := xψ(x) is continuous and coincides with f on B ′ , and since J ⊂ I, it is also increasing by the choice of η. It is plain to check g ∈ D(Ω). Lemma 6.4. Let Ω ba a minimal R-tilable lamination and let f ∈ Homeo 0 L (Ω) (resp. Homeo 0 vsp (Ω)). Then there exist two boxes B ′ ⊂ B and two homeomorphisms f 1 , f 2 ∈ Homeo 0 L (Ω) (resp. Homeo 0 vsp (Ω)) such that

  Next we need a topological lemma on one dimensional tilable laminations. IfB = C -(a, b) is a box of cubic type, for an element x ∈ Cb, its return time to Ca is τ C-a (x) = inf{t > 0; xt ∈ C -a}. By minimality, τ C-a (x)is finite for any x ∈ Cb, and the map τ C-a : Cb → R is locally constant, hence continuous. Lemma 6.5. Let Ω be a R-tilable lamination, and let B = C -(a, b) be a box of cubic type. Then the following map is an homeomorphsim. {(x, t); x ∈ Cb, 0 ≤ t ≤ τ C-a (x)} -→ Ω \ B (x, t) → xt.
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