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Abstract. Rayleigh damping forces are commonly introduced in the numerical
simulations of nonlinear structures run to assess structural performance in case
of an earthquake. Their purpose is to account for energy dissipative mechanisms
not otherwise explicitly represented in the model. When caused by interactions
between the structure and its surrounding environment, energy dissipation is
external to the structure, whereas it is internal when resulting from energy ab-
sorption mechanisms activated in the structure. In this paper, the concept of
discrepancy forces is introduced in the framework of computational dynamics.
Then, damping forces are presented as a model of these so-called discrepancy
forces to represent internal energy dissipation. On the other hand, the dis-
crepancy forces are identified from a set of experimental data recorded during
shaking-table test of a ductile moment-resisting frame, which provides the ratio-
nale for a critical look into Rayleigh damping forces. It is in particular observed
that, for the structure tested, the Rayleigh damping model used is inaccurate as
a representation of the discrepancy forces. Besides, while the knowledge of the
discrepancy forces allows for rationally discussing the capabilities of the inelastic
structural model to represent the actual behavior of the structure, this is only
possible to a limited extent with the Rayleigh damping model used.

keywords: seismic performance, damping forces, nonlinear structure, compu-
tational mechanics, experimental test design, earthquake engineering.

1. Introduction

1.1. Seismic structural performance assessment. Seismic performance as-
sessment of inelastic structures is a key step in a seismic risk management process
that aims at mitigating the risks for the populations and the infrastructures in
seismically active regions. Seismic risk is a combination of seismic hazard and
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2 A CRITICAL LOOK INTO RAYLEIGH DAMPING FORCES

structural vulnerability and can be effectively formalized and communicated in a
probabilistic setting (see e.g. [6]):

(1) PPL =

∫

P [EDP ≥ EDPPL | IM = x] · P [IM = x] dx

In this equation, PL is the performance level associated to a certain value of an
engineering demand parameter (EDP) of interest. For instance, in the case of
moment-resisting frame structures, maximum interstory drift is often used as the
EDP of interest (see [6, 16, 5] among others) because it is possible to map it to
meaningful PL such as “immediate occupancy”, “structural damage” or “collapse
prevention” [6]. In equation (1), IM refers to the intensity measure of the seismic
ground motion, and the probability to observe an earthquake with an IM equal to
x in the region of interest, that is P [IM = x], is given by seismic hazard maps.
This paper focusses on the role of Rayleigh damping forces in the vulnerability
assessment of nonlinear structures, that is on the computation of the conditional
probability that a structural performance criteria is exceeded given a certain IM of
the ground motion, when the EDPs are computed through time-history analyses.

1.2. Uncertainties in the performance assessment. Whether they are per-
taining to the ground motion signal or to the structural response, uncertain-
ties are numerous and can dramatically impact the conclusions of seismic risk
analyses. To identify which of the potential uncertainty sources have to be ac-
counted for in the communication of risk analyses results, a series of sensitivity
analyses has been conducted in the structural earthquake engineering community
(e.g. [16, 5, 18, 15, 24, 2, 23] among others). In particular, the studies in [18, 15, 2]
explicitly account for Rayleigh damping as a potential contributor to the uncer-
tainty in the EDP of interest.

The sources of uncertainty that most strongly affect the repair cost in an earth-
quake have been sought in [18] using sensitivity analyses. A high-rise reinforced
concrete nonductile moment-resisting frame is studied. Structural Rayleigh damp-
ing ratio is found to be a minor source of uncertainty in the adopted structural
performance measure with respect to the capacity of the structural elements to
damage and the seismic ground motion intensity.

In [15], the authors use FOSM method to investigate the sensitivity of a series of
EDPs to uncertain parameters among which Rayleigh damping ratio. The building
studied is a seven-story reinforced concrete shear-wall structure. It is concluded
that, for the local EDPs considered (curvature in critical sections), viscous damping
is the second most significant source of uncertainty after the intensity of the ground
motion.

In [2], a sensitivity analysis of the maximum interstory drift to inelastic frame
element properties, beam-column joint properties as well as structural viscous
damping ratio is performed for a reinforced concrete frame structure at various
seismic hazard levels. Although the uncertainty in the ground motion dominates



A CRITICAL LOOK INTO RAYLEIGH DAMPING FORCES 3

the overall uncertainty in the interstory drift, Rayleigh damping ratio is found to
be one of the most significant other contributors to the EDP of interest.

1.3. Objective and scope of the paper. On the one hand, it has been ob-
served that Rayleigh damping can be a significant contributor to the overall un-
certainty in the EDPs of interest for seismic performance assessment of inelastic
structures [15, 2]. On the other hand, it has been shown that using Rayleigh
damping forces along with an inelastic structural model can be problematic and
lead to unintended consequences that can compromise the validity of the analyses
outputs [10, 3]. Therefore, the objective of this paper is to provide a rational
discussion on the validity of Rayleigh damping forces in the time history analyses
of inelastic structures and to shed light on a potential strategy to model realis-
tic damping forces in inelastic simulations along with improving the predictive
capabilities of the structural models.

Rayleigh damping can be used in seismic simulations either to account for energy
dissipation mechanisms that are external to the structure or for energy absorption
mechanisms that are internal to the structure. This work focusses on internal
energy absorption only. Besides, in case internal energy absorption has to be mod-
eled, we adopt the viewpoint of Rayleigh damping forces being added to complete
the seismic energy absorption capacity of the inelastic structural model. In other
words, Rayleigh damping forces are not considered in this paper as intrinsic to
the structural response but as some ad hoc correction of deficiencies of the inelas-
tic structural model to accurately represent the actual structural response to the
seismic action.

The approach adopted in this work is fundamentally different from what is de-
veloped in studies focused on structural system identification (see e.g. [9, 20, 21]).
In these latter studies, the structure is considered as a system that modifies the
seismic ground motion (input signal) into the data (e.g. displacements) recorded
at monitored points (output signals). In such analyses, there is no explicit inelastic
structural model used to simulate the structural response: the structural system is
represented by linear differential equations characterized by modal damping ratios
and frequencies that can be identified in the process. Hereafter however, an inelas-
tic structural model is constructed to approximate the response of the structure,
and the damping forces time history is identified.

1.4. Outline of the paper. The outline of the paper is as follows. In the next
section, basic equations of nonlinear dynamics are first recalled as a baseline for
introducing the concept of discrepancy forces in the framework of computational
nonlinear dynamics. In particular, the need for experimental data to calculate
these discrepancy forces is pointed out. Section 3 is devoted to a short description
of the shaking table tests during which the experimental data that are used there-
after were recorded. Then, two inelastic structural models of the tested moment-
resisting reinforced concrete frame are presented. They are developed using fiber
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frame elements and simple inelastic beam-to-column connections. The discrepancy
forces are calculated for both structural models in sections 5 and 6. How discrep-
ancy forces can be used to improve structural models is in particular discussed
and used to parameterize the improved structural model used in section 6. Before
closing the paper with some conclusions, section 7 presents a critical discussion on
Rayleigh damping forces based on the rationale provided by the knowledge of the
discrepancy forces.

2. Damping forces revisited – Discrepancy forces

2.1. Classical computational nonlinear dynamics. We assume that the dy-
namic nonlinear structural problem is cast in a standard finite element form. We
also assume that displacement (hysteresis), velocity (viscosity), and acceleration-
proportional (inertia) forces contribute to the structural response (left-hand side
of the equation):

(2) Mü(tn) +C(tn)u̇(tn) + Fhys(u; tn) = Fext(tn)

where M and C are the mass and damping matrices, Fhys is the structural hys-
teretic restoring force vector, and Fext is the external loading vector. tn ∈ T with
T = {n × ∆t | n ∈ [0, 1, .., N ],∆t = T/N > 0} is a discrete process. Fext typ-
ically consists of the static loadings (dead and service loads), the forces induced
by the seismic ground motion, and the reactions at the connections between the
structure and its environment. Also, if some energy dissipation sources that are
external to the structure are present in the system (structure equipped with energy
dissipation device that has known physical properties), they are considered here
to act as external loading, so that the viscous and hysteretic forces only account
for mechanisms that are internal to the structure.

Because the structural response is possibly nonlinear, we rewrite equation (2)
as a residual vector R that has to be iteratively set to zero:

(3) R (u, u̇, ü; tn) = 0

At iteration k, with the subscript n referring to tn, the Newton-Raphson updating
residual reads

(4) R(k+1)
n = R(k)

n +
dR

du

∣

∣

∣

∣

(k)

n

du(k)
n = 0

where:

(5) R(k)
n = Fext

n −Mü(k)
n −Cnu̇

(k)
n − Fhys(u(k)

n )

and the total tangent matrix
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n = −
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∣
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∂ü
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n + cCC

(k)
n + cMM(6)
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where K = dFhys/du is the structural tangent stiffness matrix, cC = du̇/du
and cM = dü/du are coefficients dependent on both the time step ∆t and the
parameters of any one-step time integration algorithm.

2.2. Damping forces revisited. The presence of velocity-proportional forces in
equation (2) does not result from continuum mechanics principles but from the
introduction of viscous forces at a structural level. These latter forces are re-
ferred to as damping forces because they are designed for representing damping
features resulting from some viscous mechanisms activated during the dynamic
response of the structure. In earthquake engineering, there is few evidence that
actual structural damping results from viscous phenomena and several researchers
have claimed that the energy dissipative phenomena that contribute to the over-
all structural damping should rather be explicitly accounted for in the hysteretic
response Fhys(t) (e.g. [3]).

A shift of perspective is proposed here: Instead of adding viscous forces in the
equations of equilibrium, discrepancy forces Fdis(t) are added. Discrepancy forces
not necessarily are proportional to the velocity. They have to be understood as
completing the hysteresis and inertia forces in the balance equation so that the
model accurately predicts the displacements and accelerations that would be exper-
imentally observed. Then, denoting y and ÿ the displacements and accelerations
that would actually be observed during experimental tests, the residual vector and
total tangent stiffness matrix, compare with equations (5) and (6), now read:

0 := R̃n = Fext
n −Mÿn − Fdis

n − Fhys(yn)(7)

S̃n = Kn + cMM(8)

2.3. Discrepancy forces. The comparison between experiment and simulation
observations can generically be formulated as:

(9) q(t) + η(t) = G(t) + ǫ(t)

On the left-hand side is the experimental observation of the “truth” q (to reuse the
term employed in [19]), polluted by some necessary observation errors η. On the
right-hand side is the output of the numerical model G along with the simulation
errors gathered in ǫ. Hence, ǫ accounts for the effects of a possible lack of physics in
G as well as for any other reason why the output of G does not fit the experimental
observations, such as numerical errors due to digitized space and time integration
procedures for instance.

Here, we focus on acceleration and displacement time histories as quantities
of interest. Accelerations provide insight in the resisting forces developed in the
structure; displacements are, as mentioned in the introduction, often used as in-
dicators of the structural response that can be mapped to performance levels.
Besides, we do not explicitly account for any measurement error. Consequently,
the right-hand side in equation (9) takes the form q + η = {y ÿ}T . On another
hand, we set G = H⋆D, where ⋆ denotes the dual actions of model H (inertia
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along with inelastic structural resisting forces) and model D (discrepancy forces).
We have G(t) = {u ü}T where u and ü result from either solving R = 0 when D

is defined such that Fdis = Cu̇ (equation (5)), or from solving R̃ = 0 when Fdis is
not given any particular form (equation (7)).

Discrepancy forces are computed as the solution of the inverse problem R̃(y, ÿ) =
0, which according to equation (7) leads to:

(10) Fdis = Fext −Mÿ − Fhys(y)

In other words: the external forces along with the displacements y(t) and acceler-
ations ÿ(t) recorded during shaking table test are imposed to the system, which

yields R̃ = 0 because y(t) and ÿ(t) are the “true” displacements and accelera-
tions; then Fdis can be directly computed with equation (10). Discrepancy forces
are then defined as the forces needed in the system to satisfy the balance equation
without uncertain viscous damping forces. M and Fhys are computed from a FE
model, Fext contains the static forces and the seismic forces computed from M

and the acceleration of the shaking table üg recorded during the test.
Note that in the case Fdis is defined as a particular model, for instance as

Rayleigh damping forces (Fdis = Cẏ with C = αM+ βK), there is no guarantee
the problem R̃(y, ÿ) = 0 has a solution. This would not mean that the model
D for building Fdis (Rayleigh damping) intrinsically is poor, but it would mean
that the dual action of model H and Rayleigh damping model is not suitable for
accurately simulating the experimentally observed displacement and acceleration
time histories.

More specifically, suppose one has a N -degree-of-freedom (DOF) FE model of
a structure that is tested on a shaking table. Then, suppose both the relative
displacement and relative acceleration time histories are recorded during the ex-
perimental test at N e ≤ N DOFs of the FE mesh of the structure and gathered
in vectors ye(t) and ÿe(t) of size N e. Reorganizing the DOFs order so that the
N e free DOFs that are monitored during the experimental test as well as the N b

DOFs controlled by structural boundary conditions are gathered, it comes:

(11)





Fdis,e

Fdis,f

Fdis,b



 :=





Fext,e

Fext,f

Fext,b



−M





ÿe

ÿf

ÿb



−





Fhys,e(ye,yf ,yb)
Fhys,f(ye,yf ,yb)
Fhys,b(ye,yf ,yb)



 .

In an ideal situation, the displacement and acceleration time histories have been
recorded for all the DOFs of the FE mesh. Then, Fhys(ye,yb) can be computed in
a quasi-static nonlinear structural analysis, where the structure is loaded by the
displacements ye, to yield the discrepancy forces. However, in practice, there is
usually not such an amount of data recorded and there areNf DOFs not monitored
during shaking table test. Some assumptions have to be made to cope with this
lack of knowledge on the experimental response of the structure to compute Fdis.
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The discrepancy forces provide information on the capability of the structural
model to represent the experimental response of the structure or, in other words,
the forces that should be added in the system to account for the mechanisms either
not or poorly represented by the inelastic structural response Fhys.

2.4. Errors sources. Equation (9) actually involves the N e DOFs where experi-
mental data is available for both displacement and acceleration time histories (ye(t)
and ÿe(t)). On the other hand, equation (7) involves the other Nf DOFs defined in
the finite element model. In turn, only the elements of the discrepancy forces vec-
tor pertaining to the N e controlled DOFs can be identified. Compromises based on
expert judgement then have to be made to define the Nf other discrepancy forces.
Then, solving R̃(u, ü) = 0 does not necessarily yield {ue(t) üe(t)} = {ye(t) ÿe(t)},
especially in case some DOFs that significantly contribute to the overall structural
response have not been monitored during shaking table test and can thus not be
controlled when solving R̃ = 0.

It is also possible that seismic analysis run with discrepancy forces computed as
in equation (11) instead of damping forces does not exactly yield the displacements
and accelerations recorded during the experimental test. This comes from the
asymmetrical numerical treatment of the inverse and direct problems. Indeed, on
the one hand, inverse problem R̃(ye, ÿe) = 0 is quasi-statically solved to compute
Fhys,e(t): ye(t) is imposed step by step, without dynamic effects, and the resisting

forces are stored. Whereas, on the other hand, the direct problem R̃(u, ü) = 0

is solved dynamically. Consequently, errors due to the time integration algorithm
are only generated when solving the direct problem.

Finally, it is worth stressing that G somehow acts like a black box. Suppose
the dual action of a structural model H with a Rayleigh damping model allows
for accurately simulating {u(t) ü(t)} = {y(t) ÿ(t)}. This only means G is a valid
model for predicting the quantities of interest (displacements and accelerations).
It however in any way means that the structural model H or the discrepancy
forces model (Rayleigh damping), independently taken, are valid models. As a
consequence, there is no guarantee the variables used in model H to describe the
state of the system are accurate. For instance, G being a valid model does not
imply the plastic deformations in steel rebars are accurately simulated.

3. Shaking table tests

3.1. Description of the structure. In this work, experimental data recorded
during the shaking-table test of a ductile moment-resisting reinforced concrete
frame is used [7]. The structure is depicted in figure 1. It was designed at a
reduced scale of 1/2 according to the provisions of the National Building Code
of Canada and of the Canadian concrete standard. The structure was assumed
to be ductile, that is the design base shear was computed with a reduction factor
R = 4. The frame is fixed in a stiff base beam that is clamped on the shaking table.
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No rocking has been reported during the test. Four concrete blocks were used to
simulate concentrated gravity loads in every beam span; they were designed so
that their center of gravity coincide with the center of gravity of the supporting
beam. These latter additional masses induced service cracks. The total weight
of the frame is about 100 kN, its fundamental period T1 = 0.28 s was measured
preliminary to the seismic excitation, with the additional concrete blocks. Mode 1
is preponderant in the sense that it accounts for more than 90% of the total mass.
The detailed presentation of the design assumptions and parameters can be found
in [7].

Figure 1. RC frame structure tested on the shaking table at École
Polytechnique Montreal. The frame is 5-meter wide (2×2.5 m) and
3-meter high (2 × 1.5 m). Every beam supports additional masses
to account for service static loads. The system is symmetric.

3.2. Loading. The structure is subjected to two types of loading: vertical static
loading due to the dead load of the frame along with the additional masses, and
horizontal dynamic forces induced by the seismic acceleration time history imposed
on its base.

The N04W component of the ground motion recorded in Olympia, Washington
on April 13, 1949 was selected for the test program and scaled to a peak ground
acceleration PGA = 0.21 g. The feedback record of the acceleration measured
on the shaking table during the test is shown in figure 2 and the corresponding
elastic response spectrum with 5% viscous damping ratio in figure 3. This is the
ground motion time history actually imposed on the base of the structure. So, it
accounts for the effects of possible friction in the shaking table and of other energy
dissipation mechanisms in the experimental contrivance that could be activated
and that are external to the structure (interaction with the surrounding air is
neglected and there is no interaction observed between the test structure and the
system to prevent out-of-plane bending).
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Figure 2. Acceleration time history recorded on the base of the
frame during the test.
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Figure 3. Elastic response spectrum to the seismic motion with a
critical viscous damping ratio of 5% (pseudo-acceleration with re-
spect to period).

3.3. Data recorded during the test. During the experimental test, the follow-
ing acceleration and displacement time histories have been recorded (node numbers
are consistent with figure 4):

• the horizontal absolute displacement of the shaking table (precision±0.9 mm)
and at nodes 4 and 11 (precision ±0.3 mm), as well as the absolute vertical
displacement at nodes 5, 6, 8 and 9 (precision ±0.2 mm);

• the horizontal absolute acceleration of the shaking table and at nodes 4
and 11 (precision ±0.005 g).

Besides, local deformation time histories in several longitudinal rebars were recorded.
In what follows, only the horizontal displacements and accelerations are used.

4. Two inelastic structural models: H1 and H2

All the numerical simulations are performed with the finite element computer
program FEAP [22] where the various elements and material behavior laws have
been implemented.

4.1. Two finite element models: H1 and H2. Two different finite element
models of the tested frame are developed, as illustrated in figure 4. The frame
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remained in its initial plane during the shaking table test and it is thus modeled
as a 2D structure. Both models have the same geometry and material properties,
they differ one from another with respect to the way beam-to-column connections
are treated. For both models, end zones in elements 8, 11, 14 and 17 are modeled as
very stiff comparing to current beam sections stiffness. This aims at representing
the stiffening effects of the steel plates added on the beams as part of the system
designed for clamping together the additional masses and the frame. Otherwise,
for model H1, no particular treatment of the elements connections is introduced.
For model H2 however, the beam-to-column inelastic joints elements shown in
figure 6 are used.

Figure 4. Finite element meshes for structural models H1 (black
nodes only) and H2 (black and white nodes connected through in-
elastic joints).

4.2. Inertia forces. It is reported in [14] that the experimentally measured mass
per unit volume of frame is ρ = 3200 kg.m−3. This supposedly uniformly dis-
tributed mass is concentrated on the nearest nodes all over the frame. Additional
mass on element 8 is concentrated at nodes 5 and 6, and analogously for the three
other beams 11, 14 and 17. For model H2, the additional nodes (white nodes in
figure 4) are considered as massless. Rotational DOFs are assumed as massless too,
whereas same mass is assigned to both vertical and horizontal DOFs. Accordingly,
we compute the inertia forces with the following masses: m4 = m10 = 156.4 kg,
m5 = m6 = m8 = m9 = 1434.0 kg, m7 = 224.5 kg, m11 = m17 = 90.5 kg,
m12 = m13 = m15 = m16 = 861.2 kg, m14 = 136.8 kg.

4.3. Inelastic beam and column elements. Beams and columns are modeled
using fiber elements [4] with Euler-Bernoulli kinematics and displacement-based
numerical implementation. Control cross sections along the frame element axis
coincide with the position of two Gauss-type numerical integration points. Because
this is a 2D-model, these control sections are divided into concrete layers, and
not fibers as suggested by its denomination. The steel longitudinal rebars are
accurately positioned in the elements cross sections. Uniaxial material behavior
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law is then assigned to every concrete layer and steel fiber. Steel reinforcing
stirrups are not explicitly accounted for in the model. However, they are expected
to confine concrete and, consequently, confined and unconfined concrete layers with
different behavior laws are implemented in the model, as illustrated in figure 5.

Figure 5. Frame element cross section. Sections are divided into
confined and unconfined concrete layers according to whether it is
inside or outside the steel reinforcement stirrups (in the y direction).
Longitudinal steel rebars cross sections are explicitly introduced in
the model description, not the stirrups. Dashed lines represent fron-
tiers between layers.

To get a structural response that is independent of the number of layers in the
elements, it has been observed that the following cross-section discretization in all
the frame elements is suitable: 4 unconfined concrete layers (2 at the top and 2
at the bottom) and 6 confined concrete layers, as represented in figure 5. Besides,
second-order P-∆ effect is accounted for in every frame columns.

4.4. Inelastic beam-column joint element. For assessing structural perfor-
mance of reinforced concrete frames, beam-column joint elements have been de-
veloped and implemented in finite element procedures for modeling reinforced
concrete moment-resisting frames, whether they are ductile or not [1, 17]. The
joint elements used in these two papers account for the main inelastic mechanisms
that determine beam-column behavior: that is shear cracking, longitudinal rebars
yielding and anchorage failure. In the present work, we use a simple model for
representing the inelastic response of beam-column joints, very much in the spirit
of the nonlinear rotational springs initially effectively used in [8] for modeling the
same frame as in this present work. Indeed, the purpose here is not to test the
capability of elements to effectively represent complex observed structural behav-
iors, but to illustrate how using different structural models affects the discrepancy
forces.

Accordingly, the basic model illustrated in figure 6 as been developed and nu-
merically implemented to limit resisting bending moment at beam-to-column con-
nections. The joint acts like a rigid body along horizontal and vertical directions.
It has however finite stiffness in rotation represented by two bars which develop a
force F according to an inelastic moment-rotation behavior law. These joint bars
are extensions of the longitudinal rebars in the adjacent beam: they have the same
position in the section and the same geometry.
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Figure 6. Beam-to-column element.

4.5. Material behavior laws. Although results of uniaxial test carried out to
identify the actual properties of the steel and concrete materials the frame struc-
ture is built of are reported in [7, 14], there is too few experimental data available
for accurately identifying steel and concrete uniaxial cyclic responses. As a con-
sequence, the material constitutive laws detailed below are thought as reasonable
approximations of the actual behaviors. All the material models considered in this
work have been developed using some of the ingredients of the more general model
presented in [12].

4.5.1. Longitudinal steel rebars. Mean Young modulus Es = 224.6 GPa, mean
yield stress σy = 438 MPa and mean ultimate stress σu = 601 MPa have been
obtained from uniaxial tests on longitudinal steel rebars. The steel model imple-
mented is shown in figure 7.
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Figure 7. Steel longitudinal rebar constitutive law.

4.5.2. Concrete. Compression tests have been carried out on unconfined concrete
specimens, leading to mean Young modulus of Ec = 27.5 GPa and ultimate com-
pression stress σ′

c = 26.2 MPa. Concerning the behavior of concrete confined
inside the stirrups, no experimental data is available and it is modeled with ex-
pected larger ultimate stress and additional ductility than for unconfined concrete.
Concrete models implemented are shown in figure 8.



A CRITICAL LOOK INTO RAYLEIGH DAMPING FORCES 13

−10 −8 −6 −4 −2 0

x 10
−3

−40

−35

−30

−25

−20

−15

−10

−5

0

5

ǫxx

σ
x

x
[M

P
a
]

Figure 8. Concrete behavior laws: unconfined (plain line) and con-
fined (dashed line) concrete.

4.5.3. Joint bars. As illustrated in figure 6, beam-column joint elements moment-
rotation response is modeled by upper and lower bars. The purpose of these joints
is to limit the resisting bending moment in the frame elements. Accordingly,
inelastic behavior illustrated in figure 9 is assigned to the joint bars. This behavior
is symmetric and parameterized by an elastic stiffness Ej along with a limit stress
σj . Post-yielding stiffness is fixed at less than 0.1Ej . Assuming equal areas A
for the upper and lower bars cross sections, the limit moment is computed as
Mj = Aσj d.
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Figure 9. Beam-to-column joint behavior law. Illustration with
Ej = 300 GPa, σj = 600 MPa.

5. Model G1 = H1⋆D1

In this section, we identify a model of discrepancy forces D1. Only an approx-
imation of the discrepancy forces can be provided because experimental data are
missing to calculate the complete discrepancy forces vector. Given the available
data, it is assumed that the horizontal displacements and accelerations at each
node from node 4 to node 10 (see figure 4) are equal, and so for the 2nd-level
beam (nodes 11 to 17). This assumption is justified by the fact that the dynamic
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response of the frame is dominated by its 1st mode and that this preponderant
mode is an overall lateral bending mode.

5.1. Inelastic response to static loading. The elastic fundamental period of
the frame is unknown, but this period after the additional masses are applied has
been experimentally measured through free vibration tests: T exp

1 = 0.28 s. We use
this information to check whether model H1 accurately represents structural mass
and stiffness distribution in the initial state before seismic loading.

Due to the possible inelastic response of the structure, static loading is first
imposed as vertical nodal forces during a step by step numerical process. Then,
numerical free vibration test is carried out and it is observed that TH1

1 = 0.23 s
before static loading is applied and TH1

1 = 0.29 s after. This good agreement with
the experimental measure shows the capability of model H1 to accurately represent
the stiffness and mass distributions over the structure loaded by the static weights.

5.2. Discrepancy forces model D1. The recorded time histories during the
shaking table test consist in the horizontal relative displacement (ye) and rela-
tive acceleration (ÿe) at the 1st and 2nd levels of the frame, along with the shaking
table acceleration (üg). ‘Relative’ is to be understood as ‘relative to the dis-
placement and acceleration at the base of the frame’. Displacements induced by
static loading (additional masses fixed on the beams before the seismic motion)
have not been recorded. To account for the contribution of static loading to the
discrepancy forces, these displacements are approximated performing quasi-static
numerical analysis and storing the displacements pertaining to the N e DOFs mon-
itored during shaking table test, hereafter referred to as usta,e. We assume that
there is no dynamic effects generated while static loading is added on the frame
(üsta,e = 0).

Accordingly, discrepancy forces are computed in the following steps:

(1) A quasi-static analysis is run with the static forces imposed to the structure
and the induced horizontal displacements usta,e are stored.

(2) Resisting forces Fhys, that is the response of model H1, are computed
solving the following quasi-static nonlinear problem:

(12)





0

0

0



 :=





0

Fsta,f

Fsta,b



+





Ve

0

0



−





Fhys,e(usta,e + ye,yf , 0)
Fhys,f(usta,e + ye,yf , 0)
Fhys,b(usta,e + ye,yf , 0)



 ,

where the displacements usta,e along with ye are imposed to the structure.
Ve is the vector containing the reaction forces at the DOFs where these
latter displacements are imposed, and Fsta is the static part of the exter-
nal loading. Static loading (vertical forces) is imposed within the same
time period than usta,e and then kept constant while ye is applied to the
structure.



A CRITICAL LOOK INTO RAYLEIGH DAMPING FORCES 15

(3) Due to a lack of recorded data, we assume that dynamic effects for the
vertical and rotational DOFs can be neglected, that is ÿf = 0. Besides,
there only are dynamic external loading forces imposed to the N e DOFs
monitored during shaking table test, so that there are only static forces
applied at the other nodes: Fext,f/b = Fsta,f/b. Finally, using the experi-
mentally recorded accelerations ÿe and üg, the discrepancy forces Fdis are
computed introducing equations (12) in equations (11):

(13)





Fdis,e

Fdis,f

Fdis,b



 :=





−Me1e üg

Fsta,f

Fsta,b



−





Meÿe

0

0



−





Ve

Fsta,f

Fsta,b



 ,

where 1e is the unit vector of size N e. Accordingly, Fdis,f = Fdis,b = 0 and

(14) Fdis,e = −Me (ÿe + 1e üg)−Ve ,

with, according to equation (12), Ve = Fhys,e. Fsei,e = −Me1eüg is the
seismic forces vector and Fine,e = Meÿe the inertia forces vector.

Fdis,e reflects the capacity of the inelastic structural model to represent the
behavior that has been experimentally observed during shaking table test: if the
structural model were capable of perfectly representing the experimental response
of the analyzed frame, discrepancy forces would be null for each DOF. Typical
seismic and inertia forces as well as discrepancy and hysteretic forces time histories
computed following this method are shown in figures 10 and 11. Discrepancy and
hysteretic forces looks like they are symmetric with respect to the x-axis. In fact,
according to equation (14), they would be symmetric if the dynamic forces were
null. Seismic and inertia forces are however not null but very small comparing
with the hysteretic forces (compare figures 10 and 11).
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Figure 10. Seismic (black) and inertia forces (grey) at node 5.
The mass distribution for model H1 being the same as for model
H2, seismic and inertia forces are identical for both models. Seismic
and inertia forces at any other node are less or equal to those shown
here at node 5.
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Figure 11. Model D1 [left] and model D2 [right]. Forces at nodes 4
[top], 5 [center], and 7 [bottom]: discrepancy forces (black), resisting
forces developed by inelastic structural models (grey).

5.3. Seismic response of G1. Usual seismic analysis is then run, except without
Rayleigh damping forces (commonly added in practice) and with the previously
identified discrepancy forces imposed to the structure, the same way external load-
ing is. This means the direct problem R̃(u, ü) = 0 is solved to check whether or
not the computed displacements and accelerations ue and üe fit the experimental
data ye and ÿe. The HHT-α method [11] implemented in FEAP with α = 0.65,
β = 0.5 and γ = 1 is used and a time step of 5 ms; the value for α has been found
to be adequate for accurately simulating the maximum displacements.

The comparison of the numerical response G(t) with the experimental data is
shown in figure 12. The horizontal displacements are well simulated at both levels,
except for the first 7 or 8 s when neither the amplitude nor the phase of the signals
match. Considering the accelerations time histories, the numerical response is in
good accordance with the experimental data for the 2nd level, especially between 8
and 20 s, as for the displacements. For the 1sd level, the numerical response does
not fit as good the experimental recording. One can then conclude that model
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Figure 12. [top] 2nd-level relative displacement [left] and relative
acceleration [right] time histories; [bottom] 1st-level relative displace-
ment [left] and relative acceleration [right] time histories. Experi-
mental data (black) and numerical simulation with model G1 (grey).

G(t) provides a reasonably accurate model for predicting horizontal displacements
and accelerations in the frame.

5.4. A critical look into model H1. As illustrated in figure 11 [left], the dis-
crepancy forces are very large comparing with the seismic and inertia forces. This
sheds light on the fact that the model H1 is unable to accurately represent the
hysteretic forces actually developed in the frame elements during shaking table
test. If model H1 were an accurate model, the hysteretic forces developed due to
the imposed displacements ye would approximately satisfy the force equilibrium
equations without the need to add discrepancy forces to satisfy the equilibrium
equations. However here, large discrepancy forces are required to balance the large
hysteretic forces.

Consequently, we developed another inelastic structural model H2 which is anal-
ogous to H1, except at the beam-to-column connections (see figure 4) where in-
elastic behavior limiting the resisting moments is accounted for.

6. Model G2 = H2⋆D2

6.1. Parameterization of the model. The joint elements are parameterized by
the elastic modulus Ej and the limit stress σj (post-yielding slope is set to less
than 0.1Ej). Ej is identified so that the fundamental period of the frame after
dead load is applied approaches the experimental value T exp

1 = 0.28 s: setting
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Ej = 300 GPa yields to TH2

1 = 0.29 s for the frame with static loading and to

TH2

1 = 0.25 s before static loading. Then, σj is calculated so that the bending
moment at beam-to-column connections is limited to ±M̄z as the appearance of
large discrepancy forces are detected in model D1. We set M̄z = 13 kN.m, which
corresponds to σj = 600 MPa, and here is how we chose this value: i) According
to the time history of the discrepancy forces for model D1 shown in figure 11 [left],
one can observe that the discrepancy forces increase around t = 8 s; ii) Then, the
time history of the bending moment at node 7 in element 9, plotted in figure 13,
shows that, around t = 8 s, bending moment exceeds Mz = −13 kN.m; iii) In
the attempt to limit the discrepancy forces, we thus limit the bending moment
to M̄z = 13 kN.m. The bending moment could have been monitored at another
beam-to-column connection and another value of M̄z could have been observed.
However, our purpose here is only to develop a structural modelH2 that is different
from previous structural model H1, and not to rigorously identify the beam-to-
column joint parameters that would lead to the best representation of the frame.
This would require much more advanced identification procedures that are out of
the scope of this work.
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Figure 13. Resisting bending moment time history at node 7 in
element 9 simulated running model G1. Bending moment is not null
initially because of preceding static loading.

6.2. Discrepancy forces model D2. The discrepancy forces for model D2 are
calculated as for model D1. Figure 11 [right] shows the same quantities for model
D2 as figure 11 [left] for model D1. It can be observed that the discrepancy forces
are overall smaller for model D2, except in two cases: i) at node 5 for t > 16 s and
ii) at node 7 where the resisting and discrepancy forces drop around t = 11 s and
t = 16 s are larger than for model D1.

6.3. Seismic response of G2. We first show in figure 14 the bending moment
time history at node 7L to check the efficiency of the inelastic joints for limiting
the bending moment between ±13 kN.m.

As for model G1, the direct problem is solved as a usual seismic analysis except
with the discrepancy forces from model D2 and not, as in common practice, from
a Rayleigh damping model. Again, simulated displacements and accelerations are
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Figure 14. Resisting bending moment time history at node 7L

(element 9) simulated running model G2. Bending moment is not
null initially because of preceding static loading.

compared with the experimental data (see figure 15). Displacements at both levels
are fairly good simulated, while larger errors are observed for the accelerations. As
an overall remark, experimental data are not as good represented as with model
G1. Note that model G2 not performing as good as model G1 is not in contradiction
with the fact that model H2 is more elaborate than model H1. It only means that
the discrepancy forces for model G2 are not as accurately computed as for model G1.
This can be explained by the fact that there are other DOFs than the horizontal
ones (the rotational DOFs) that significantly contribute to the structural response
for model G2. For model G1 however, beam-to-column joints behave as rigid bodies
and do not contribute to the overall seismic energy absorption. Also, the abrupt
stiffness changes in the joint elements could generate some artifacts, which the
acceleration time history could be especially affected by. The sensitivity of the
results to the time integration algorithm that we experienced corroborates this
point. Further investigation in this direction is needed and left for future work.

7. A critical look into Rayleigh damping forces

For accurate prediction of the inelastic response of structures in seismic loading,
it would be ideal to have a reliable predictive model of the discrepancy forces.
That is a model that would be capable of accurately accounting for the phenomena
not explicitly represented in the hysteretic forces. Although there presently is a
consensus in the earthquake engineering community that using Rayleigh damping
forces is far from reaching this ultimate goal [3, 10], common implementation
of inelastic time history seismic analyses adds Rayleigh damping forces to the
hysteretic structural forces. Whether one can expect the damping forces to be
a good model for the discrepancy forces or not is something that can now be
discussed based on the rationale provided by the knowledge of the discrepancy
forces associated to model H1 or H2 acquired in the previous sections.

7.1. Forces in seismic simulations with Rayleigh damping. Inelastic struc-
tural models H1 and H2 are now used along with a Rayleigh damping model to
run seismic simulations of the frame. Because the frame is dominated by its first
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Figure 15. [top] 2nd-level relative displacement [left] and relative
acceleration [right] time histories; [bottom] 1st-level relative displace-
ment [left] and relative acceleration [right] time histories. Experi-
mental data (plain line / black) and numerical simulation with model
G2 (dashed line with markers).

mode and the structure is stiff (TH1

1 = TH2

1 = 0.29 s), we adopt hereafter the
mass-proportional version of Rayleigh damping. Accordingly, model D is build as:

(15) Fdis(t) = α M u̇(t)

where u̇ is the velocities vector.
Coefficient α is computed with the help of the following relation that links the

damping ratio ξ to the circular frequency ω pertaining to mode m at time t during
the time history seismic analysis (see e.g. [13]):

(16) ξm(t) =
α

2ωm(t)
.

Accordingly, damping ratio is expected to increase while structure damages and its
fundamental frequency decreases during strong seismic motion. Mass-proportional
Rayleigh damping designed with a target damping ratio for mode 1 ξ̂1 = 3%, that
is α = 1.1702 s−1, is found to provide relatively satisfactory results in terms of peak
displacement and acceleration, for both models H1 and H2, as shown in figures 16
and 17.

Here are some further details on the notion of targeted damping ratio ξ̂1. Before
seismic loading is imposed and after static loading has been applied, both struc-
tural modelsH1 andH2 have fundamental circular frequency ω1(0) = 21.67 rad.s−1,
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Figure 16. Experimental (black) and simulated (grey) 2nd-level
relative displacement [top] and relative acceleration [bottom] time
histories. Simulations are run with model H1 along with mass-
proportional Rayleigh damping (ξ̂1 = 3%).
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Figure 17. Experimental (black) and simulated (grey) 2nd-level
relative displacement [top] and relative acceleration [bottom] time
histories. Simulations are run with model H2 along with mass-
proportional Rayleigh damping (ξ̂1 = 3%).
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Figure 18. Damping (black) and hysteretic (grey) forces time his-
tories simulated using model H1 [left] and H2 [right] along with

mass-proportional Rayleigh damping (ξ̂1 = 3%) at nodes 4 [top], 5
[center], and 7 [bottom]. At node 5, horizontal velocity being almost
identical all along the 1st-level beam, damping forces are almost null.

that is, according to equation (16) with α = 1.1702 s−1, ξ1(0) = 2.7%. After seis-
mic motion, for structure H1: ωH1

1 (T ) = 17.95 rad.s−1 and ξH1

1 (T ) = 3.3%, and
for structural model H2: ω

H2

1 (T ) = 16.11 rad.s−1, that is ξH2

1 (T ) = 3.7%.
Besides, Rayleigh damping is implemented so that no contribution to the mass-

proportional damping term comes from the elements that support the additional
masses (elements 8, 11, 14 and 17) to avoid any artificial effects due to the con-
centration of mass in these regions of the frame.

The hysteresis and damping forces time histories observed during these sim-
ulations are shown in figure 18 for model H1 [left] and model H2 [right]. The
amplitudes are here much smaller than those observed for the discrepancy forces
in figure 11. Mass-proportional Rayleigh damping forces remain small comparing
with the hysteretic forces for both models H1 and H2, which is often considered
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as a requirement for a good modeling of damping in other works [10, 3]. Using the
same argument as previously, a perfect structural model H would not require any
additional forces to satisfy the equilibrium equation and, therefore, the presence
of mass-proportional Rayleigh damping forces illustrates the fact that some phe-
nomena are missed by the structural model. However, these latter forces are much
smaller than the discrepancy forces observed in figure 11: this shows that these
mass-proportional Rayleigh damping forces do not provide as sharp an insight into
the structural model H deficiencies.

Note that the same analysis has also been performed with both mass and
tangent stiffness-proportional terms for the Rayleigh damping model (Fdis(t) =
(αM+ βK(t)) u̇(t), where K(t) is the structural tangent stiffness matrix) and

with a targeted damping ratio ξ̂ = 3% for the first two modes of the frame. With
this procedure, damping matrix C(t) = αM+βK(t) is modified at each time step
of the analysis according to the modification of the stiffness matrix. Coefficients
α and β are computed once for all at the beginning of the the analysis. Using this
other damping model yields the same conclusions as previously.
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Figure 19. Rayleigh damping-like discrepancy forces consistent
with the experimental data. Forces are simulated with mass-
proportional Rayleigh damping (ξ̂1 = 3%) at nodes 4 [top] and 7
[bottom]. Mass-proportional damping forces are independent of the
structural model because stiffness matrix is not considered. Forces
at node 5 are null because same horizontal velocity is assumed all
over 1st-level beam.
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7.2. Rayleigh damping forces consistent with the experimental data.

Keeping the same damping model as above, we now compute Rayleigh damp-
ing forces that are consistent with the experimental displacement time history.
The velocities are approximated as the first time derivative of the experimental
displacement time history: ẏe

n ≈ (ye
n+1−ye

n)/∆t, and resulting mass-proportional
Rayleigh damping forces are shown in figure 19. Recalling that the appropriate
discrepancy forces can reach up to 100 kN (see figure 11), this illustrates that
mass-proportional Rayleigh damping forces are inconsistent with the hysteretic
forces induced by both inelastic structural models H1 and H2. In other terms,
the equations R̃(ye, ẏe, ÿe) = 0 has no solution when the discrepancy forces are
modeled as mass-proportioanl Rayleigh damping forces.

8. Conclusions

In this paper, the general concept of discrepancy forces has been introduced in
the framework of computational dynamics. Given a structural model and exper-
imental data, discrepancy forces are defined as the forces needed to satisfy the
equilibrium equation when the experimental data are imposed to the structural
model.

Rayleigh damping model is commonly added to the structural model in seismic
time history analyses of structures to account for internal energy absorption mech-
anisms not otherwise explicitly represented by the structural model. It has been
shown in the literature that Rayleigh damping is difficult to control throughout
inelastic analyses and that, besides, the conclusions of seismic performance studies
can be significantly affected by uncertain Rayleigh damping forces. Better knowl-
edge of how additional damping forces should be computed thus is highly desirable.
To that purpose, we propose in this paper to consider Rayleigh damping forces as
a model of discrepancy forces rather than as intrinsic component of the structural
response (which is done by systematically adding Rayleigh damping forces in the
equilibrium equation).

The purpose of this proposed shift of perspective is to provide a critical look into
Rayleigh damping forces. Given experimental data, it is possible to calculate the
discrepancy forces, which provides the rationale for a critical analysis of Rayleigh
damping forces as a candidate for modeling these discrepancy forces. It would
indeed be ideal to have predictive models of the discrepancy forces for a given
structural model and we thus investigated whether Rayleigh damping forces could
meet this ultimate goal or not.

In this work, it has been observed that, for the reinforced concrete moment-
resisting frame structure considered:

• The Rayleigh damping model used is not an adequate model for the dis-
crepancy forces;

• While discrepancy forces provide insight into the capability of the structural
model for representing the actual structural behavior, the modeled Rayleigh
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damping forces only shed light on the structural model to a more limited
extent;

• The forces developed by the structural model can be strongly different
according to whether the computed discrepancy forces or Rayleigh damping
forces are introduced in the simulations.

This work also points out that, in analyses where structural forces are combined
with damping forces, the validity of a structural model can only be studied with
respect to the damping model, and vice versa. Therefore, a better knowledge of
the damping forces is relative to the structural model used.

As a final remark, this work illustrates how experimental data can be effectively
used to identify the forces that are usually expected to be represented by Rayleigh
damping in seismic structural analyses. In this sense, it could pave the way for
better knowledge of damping forces.
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