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ON THE PRODUCT OF FUNCTIONS IN BMO AND H1

OVER SPACES OF HOMOGENEOUS TYPE

LUONG DANG KY

Abstract. Let X be an RD-space, which means that X is a space of ho-
mogeneous type in the sense of Coifman-Weiss with the additional property
that a reverse doubling property holds in X . The aim of the present paper
is to study the product of functions in BMO and H1 in this setting. Our
results generalize some recent results in [4] and [10].

1. Introduction and statement of main results

A famous result of C. Fefferman state that BMO(Rn) is the dual space
of H1(Rn). Although, for f ∈ BMO(Rn) and g ∈ H1(Rn), the point-wise
product fg may not be an integrable function, one (see [2]) can view the
product of f and g as a distribution, denoted by f × g. Such a distribution
can be written as the sum of an integrable function and a distribution in a
new Hardy space, so-called Hardy space of Musielak-Orlicz type (see [1, 8]).
A complete study about the product of functions in BMO and H1 has been
firstly done by Bonami, Iwaniec, Jones and Zinsmeister [2]. Recently, Li and
Peng [10] generalized this study to the setting of Hardy and BMO spaces
associated with Schrödinger operators. In particular, Li and Peng showed that
if L = −∆+ V is a Schrödinger operator with the potential V belongs to the
reverse Hölder class RHq for some q ≥ n/2, then one can view the product of
b ∈ BMOL(R

n) and f ∈ H1
L(R

n) as a distribution b× f which can be written
the sum of an integrable function and a distribution in H℘

L(R
n, dµ). Here

H℘
L(R

n, dµ) is the weighted Hardy-Orlicz space associated with L, related to
the Orlicz function ℘(t) = t/ log(e+ t) and the weight dν(x) = dx/ log(e+ |x|).
More precisely, they proved the following.

Theorem A. For each f ∈ H1
L(R

n), there exist two bounded linear operators
Lf : BMOL(R

n) → L1(Rn) and Hf : BMOL(R
n) → H℘

L(R
n, dν) such that

for every b ∈ BMOL(R
n),

b× f = Lf (b) + Hf(b).
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Let (X , d, µ) be a space of homogeneous type in the sense of Coifman-Weiss.
Following Han, Müller and Yang [7], we say that (X , d, µ) is an RD-space if
µ satisfies reverse doubling property, i.e., there exists a constant C > 1 such
that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≥ Cµ(B(x, r)).

A typical example for such RD-spaces is the Carnot-Carathéodory space with
doubling measure. We refer to the seminal paper of Han, Müller and Yang [7]
(see also [5, 6, 12, 13]) for a systematic study of the theory of function spaces
in harmonic analysis on RD-spaces.

Let (X , d, µ) be an RD-space. Recently, in analogy with the classical result
of Bonami-Iwaniec-Jones-Zinsmeister, Feuto proved in [4] that:

Theorem B. For each f ∈ H1(X ), there exist two bounded linear operators
Lf : BMO(X ) → L1(X ) and Hf : BMO(X ) → H℘(X , dν) such that for
every b ∈ BMO(X ),

b× f = Lf (b) + Hf(b).

Here the weight dν(x) = dµ(x)/ log(e + d(x0, x)) with x0 ∈ X and the
Orlicz function ℘ is as in Theorem A. It should be pointed out that in [4], for
f =

∑∞
j=1 λjaj , the author defined the distribution b× f as

(1.1) b× f :=
∞
∑

j=1

λj(b− bBj
)aj +

∞
∑

j=1

λjbBj
aj

by proving that the second series is convergent in H℘(X , dν). This is made
possible by the fact that H℘(X , dν) is complete and is continuously imbedded
into the space of distributions (Gǫ

0(β, γ))
′ (see Section 2), which is not estab-

lished in [4]. Moreover one has to prove that Definition (1.1) does not depend
on the atomic decomposition of f . In this paper, we give a definition for the
distribution b× f (see Section 3) which is similar to that of Bonami-Iwaniec-
Jones-Zinsmeister.

Our first main result can be read as follows.

Theorem 1.1. For each f ∈ H1(X ), there exist two bounded linear operators
Lf : BMO(X ) → L1(X ) and Hf : BMO(X ) → H log(X ) such that for every
b ∈ BMO(X ),

b× f = Lf (b) + Hf(b).

Here H log(X ) is the Musielak-Orlicz Hardy space related to the Musielak-
Orlicz function ϕ(x, t) = t

log(e+d(x0,x))+log(e+t)
(see Section 2). Theorem 1.1 is an

improvement of Theorem B since H log(X ) is a proper subspace of H℘(X , dν).
Let ρ be an admissible function (see Section 2). Recently, Yang and Zhou

[12, 13] introduced and studied Hardy spaces and Morrey-Campanato spaces
related to the function ρ. There, they established that BMOρ(X ) is the dual
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space of H1
ρ(X ). Similar to the classical case, we can define the product of

functions b ∈ BMOρ(X ) and f ∈ H1
ρ(X ) as distributions b× f ∈ (Gǫ

0(β, γ))
′.

Our next main result is as follows.

Theorem 1.2. For each f ∈ H1
ρ(X ), there exist two bounded linear operators

Lρ,f : BMOρ(X ) → L1(X ) and Hρ,f : BMOρ(X ) → H log(X ) such that for
every b ∈ BMOρ(X ),

b× f = Lρ,f (b) + Hρ,f(b).

When X ≡ R
n, n ≥ 3, and ρ(x) ≡ sup{r > 0 : 1

rn−2

∫

B(x,r)
V (y)dy ≤ 1},

where L = −∆ + V is as in Theorem A, one has BMOρ(X ) ≡ BMOL(R
n)

and H1
ρ(X ) ≡ H1

L(R
n). So, Theorem 1.2 is an improvement of Theorem A

since H log(Rn) is a proper subspace of H℘
L(R

n, dν) (see [9]).
The following conjecture is suggested by A. Bonami and F. Bernicot.

Conjecture. There exist two bounded bilinear operators L : BMO(X ) ×
H1(X ) → L1(X ) and H : BMO(X )×H1(X ) → H log(X ) such that

b× f = L (b, f) + H (b, f).

It should be pointed out that when X = R
n and H log(X ) is replaced by

H℘(Rn, dν), the above conjecture is just Conjecture 1.7 of [2], which answered
recently by Bonami, Grellier and Ky [1] (see also [9]).

Throughout the whole paper, C denotes a positive geometric constant which
is independent of the main parameters, but may change from line to line. We
write f ∼ g if there exists a constant C > 1 such that C−1f ≤ g ≤ Cf .

The paper is organized as follows. In Section 2, we present some notations
and preliminaries about BMO type spaces and Hardy type spaces on RD-
spaces. Section 3 is devoted to prove Theorem 1.1. Finally, we give the proof
for Theorem 1.2 in Section 4.

Acknowledgements. The author would like to thank Aline Bonami, San-
drine Grellier, Dachun Yang and Frédéric Bernicot for very useful suggestions.

2. Some preliminaries and notations

Let d be a quasi-metric on a set X , that is, d is a nonnegative function on
X × X satisfying

(a) d(x, y) = d(y, x),
(b) d(x, y) > 0 if and only if x 6= y,
(c) there exists a constant κ ≥ 1 such that for all x, y, z ∈ X ,

(2.1) d(x, z) ≤ κ(d(x, y) + d(y, z)).

A trip (X , d, µ) is called a space of homogeneous type in the sense of Coifman-
Weiss [3] if µ is a regular Borel measure satisfying doubling property, i.e. there
exists a constant C > 1 such that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≤ Cµ(B(x, r)).
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Following Han, Müller and Yang [7], (X , d, µ) is called an RD-space if
(X , d, µ) is a space of homogeneous type and µ also satisfies reverse doubling

property, i.e. there exists a constant C > 1 such that for all x ∈ X and r > 0,

µ(B(x, 2r)) ≥ Cµ(B(x, r)).

Set diam(X ) := supx,y∈X d(x, y). It should be pointed out that (X , d, µ) is
an RD-space if and only if there exist constants 0 < d ≤ n and C > 1 such
that for all x ∈ X , 0 < r < diam(X )/2, and 1 ≤ λ < diam(X )/(2r),

(2.2) C−1λdµ(B(x, r)) ≤ µ(B(x, λr)) ≤ Cλnµ(B(x, r)).

Here and what in follows, for x, y ∈ X and r > 0, we denote Vr(x) :=
µ(B(x, r)) and V (x, y) := µ(B(x, d(x, y))).

Definition 2.1. Let x0 ∈ X , r > 0, 0 < β ≤ 1 and γ > 0. A function f
is said to belong to the space of test functions, G(x0, r, β, γ), if there exists a
positive constant Cf such that

(i) |f(x)| ≤ Cf
1

Vr(x0)+V (x0,x)

(

r
r+d(x0,x)

)γ

for all x ∈ X ;

(ii) |f(x) − f(y)| ≤ Cf

(

d(x,y)
r+d(x0,x)

)β
1

Vr(x0)+V (x0,x)

(

r
r+d(x0,x)

)γ

for all x, y ∈ X

satisfying that d(x, y) ≤ r+d(x0,x)
2κ

.

For any f ∈ G(x0, r, β, γ), we define

‖f‖G(x0,r,β,γ) := inf{Cf : (i) and (ii) hold}.

Let ρ be a positive function on X . Following Yang and Zhou [13], the
function ρ is said to be admissible if there exist positive constants C0 and k0
such that for all x, y ∈ X ,

ρ(y) ≤ C0[ρ(x)]
1/(1+k0)[ρ(x) + d(x, y)]k0/(1+k0).

Throughout the whole paper, we always assume that X is an RD-space with
µ(X ) = ∞, and ρ is an admissible function on X . Also we fix x0 ∈ X .

In Definition 2.1, it is easy to see that G(x0, 1, β, γ) is a Banach space.
For simplicity, we write G(β, γ) instead of G(x0, 1, β, γ). Let ǫ ∈ (0, 1] and
β, γ ∈ (0, ǫ], we define the space Gǫ

0(β, γ) to be the completion of G(ǫ, ǫ) in
G(β, γ), and denote by (Gǫ

0(β, γ))
′ the space of all continuous linear functionals

on Gǫ
0(β, γ). We say that f is a distribution if f belongs to (Gǫ

0(β, γ))
′.

Remark that, for any x ∈ X and r > 0, one has G(x, r, β, γ) = G(x0, 1, β, γ)
with equivalent norms, but of course the constants are depending on x and r.

Let f be a distribution in (Gǫ
0(β, γ))

′. We define the grand maximal functions

M(f) and Mρ(f) as following

M(f)(x) := sup{|〈f, ϕ〉| : ϕ ∈ Gǫ
0(β, γ), ‖ϕ‖G(x,r,β,γ) ≤ 1 for some r > 0},

Mρ(f)(x) := sup{|〈f, ϕ〉| : ϕ ∈ Gǫ
0(β, γ), ‖ϕ‖G(x,r,β,γ) ≤ 1 for some r ∈ (0, ρ(x))}.
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Let Llog(X ) (see [1, 8] for details) be the Musielak-Orlicz type space of µ-
measurable functions f such that

∫

X

|f(x)|

log(e + |f(x)|) + log(e+ d(x0, x))
dµ(x) < ∞.

For f ∈ Llog(X ), we define the ”norm” of f as

‖f‖Llog = inf







λ > 0 :

∫

X

|f(x)|
λ

log(e + |f(x)|
λ

) + log(e+ d(x0, x))
dµ(x) ≤ 1







.

Definition 2.2. Let ǫ ∈ (0, 1) and β, γ ∈ (0, ǫ).

(i) The Hardy space H1(X ) is defined by

H1(X ) = {f ∈ (Gǫ
0(β, γ))

′ : ‖f‖H1 := ‖M(f)‖L1 < ∞}.

(ii) The Hardy space H1
ρ(X ) is defined by

H1
ρ(X ) = {f ∈ (Gǫ

0(β, γ))
′ : ‖f‖H1

ρ
:= ‖Mρ(f)‖L1 < ∞}.

(iii) The Hardy space H log(X ) is defined by

H log(X ) = {f ∈ (Gǫ
0(β, γ))

′ : ‖f‖Hlog := ‖M(f)‖Llog < ∞}.

It is clear that H1(X ) ⊂ H1
ρ(X ) and H1(X ) ⊂ H log(X ) with the inclusions

are continuous. It should be pointed out that the Musielak-Orlicz Hardy space
H log(X ) is a proper subspace of the weighted Hardy-Orlicz space H℘(X , ν)
studied in [4]. We refer to [8] for an introduction to Musielak-Orlicz Hardy
spaces on the Euclidean space R

n.

Definition 2.3. Let q ∈ (1,∞].

(i) A measurable function a is called an (H1, q)-atom related to the ball
B(x, r) if
(a) supp a ⊂ B(x, r),
(b) ‖a‖Lq ≤ (Vr(x))

1/q−1,
(c)

∫

X
a(y)dµ(y) = 0.

(ii) A measurable function a is called an (H1
ρ , q)-atom related to the ball

B(x, r) if r ≤ 2ρ(x) and a satisfies (a) and (b), and when r < ρ(x),
a also satisfies (c).

The following results were established in [5, 13].

Theorem 2.1. Let ǫ ∈ (0, 1), β, γ ∈ (0, ǫ) and q ∈ (1,∞]. Then, we have:

(i) The space H1(X ) coincides with the Hardy space H1,q
at (X ) of Coifman-

Weiss. More precisely, f ∈ H1(X ) if and only if f can be written as f =
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∑∞
j=1 λjaj where the aj’s are (H1, q)-atoms and {λj}

∞
j=1 ∈ ℓ1. Moreover,

‖f‖H1 ∼ inf

{

∞
∑

j=1

|λj| : f =
∞
∑

j=1

λjaj

}

.

(ii) f ∈ H1
ρ(X ) if and only if f can be written as f =

∑∞
j=1 λjaj where the

aj’s are (H1
ρ , q)-atoms and {λj}

∞
j=1 ∈ ℓ1. Moreover,

‖f‖H1
ρ
∼ inf

{

∞
∑

j=1

|λj| : f =
∞
∑

j=1

λjaj

}

.

Here and what in follows, for any ball B ⊂ X and g ∈ L1
loc(X ), we denote

by gB the average value of g over the ball B and denote

MO(g, B) :=
1

µ(B)

∫

B

|g(x)− gB|dµ(x).

Recall (see [3]) that a function f ∈ L1
loc(X ) is said to be in BMO(X ) if

‖f‖BMO = sup
B

MO(f, B) < ∞,

where the supremum is taken all over balls B ⊂ X .

Definition 2.4. Let ρ be an admissible function and D := {B(x, r) ⊂ X : r ≥
ρ(x)}. A function f ∈ L1

loc(X ) is said to be in BMOρ(X ) if

‖f‖BMOρ
= ‖f‖BMO + sup

B∈D

1

µ(B)

∫

B

|f(x)|dµ(x) < ∞.

The following results are well-known, see [3, 5, 12].

Theorem 2.1. (i) The space BMO(X ) is the dual space of H1(X ).
(ii) The space BMOρ(X ) is the dual space of H1

ρ(X ).

3. The product of functions in BMO(X ) and H1(X )

Remark that if g ∈ G(β, γ), then

(3.1) ‖g‖L∞ ≤ C
1

V1(x0)
‖g‖G(β,γ)

and

(3.2) ‖g‖L1 ≤ (C +

∞
∑

j=0

2−jγ)‖g‖G(β,γ) ≤ C‖g‖G(β,γ).
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Proposition 3.1. Let β ∈ (0, 1] and γ ∈ (0,∞). Then, g is a pointwise
multiplier of BMO(X ) for all g ∈ G(β, γ). More precisely,

‖gf‖BMO ≤ C
1

V1(x0)
‖g‖G(β,γ)‖f‖BMO+

for all f ∈ BMO(X ). Here and what in follows,

‖f‖BMO+ := ‖f‖BMO +
1

V1(x0)

∫

B(x0,1)

|f(x)|dµ(x).

Using Proposition 3.1, for b ∈ BMO(X ) and f ∈ H1(X ), one can define the
distribution b× f ∈ (Gǫ

0(β, γ))
′ by the rule

(3.3) 〈b× f, φ〉 := 〈φb, f〉

for all φ ∈ Gǫ
0(β, γ), where the second bracket stands for the duality bracket

between H1(X ) and its dual BMO(X ).

Proof of Proposition 3.1. By (3.1) and the pointwise multipliers characteriza-
tion of BMO(X ) (see [11, Theorem 1.1]), it is sufficient to show that

(3.4) log(e+ 1/r)MO(g, B(a, r)) ≤ C
1

V1(x0)
‖g‖G(β,γ)

and

(3.5) log(e+ d(x0, a) + r)MO(g, B(a, r)) ≤ C
1

V1(x0)
‖g‖G(β,γ)

hold for all balls B(a, r) ⊂ X . It is easy to see that (3.4) follows from (3.1) and
the Lipschitz property of g (see (ii) of Definition 2.1). Let us now establish
(3.5). If r < 1, then by (3.5) follows from the Lipschitz property of g and the

fact that limλ→∞
log(λ)
λβ = 0. Otherwise, we consider the following two cases:

(a) The case: 1 ≤ r ≤ 1
4κ3d(x0, a). Then, for every x, y ∈ B(a, r), one has

d(x0, a) ≤
4κ3

4κ2−1
and d(x, y) ≤ d(x0,x)

2κ
. Hence, the Lipschitz property of g

yields

|g(x)− g(y)| ≤ C‖g‖G(β,γ)
1

V1(x0)

( 1

d(x0, a)

)γ

.

This implies that (3.5) holds since limλ→∞
log(λ)
λγ = 0.
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(b) The case: r > 1
4κ3d(x0, a). Then, one has B(x0, r) ⊂ B(a, κ(4κ3 + 1)r).

Hence, by (2.2), we get

log(e + d(x0, a) + r)MO(g, B(a, r)) ≤ C
log(2r)

Vr(x0)
‖g‖L1

≤ C
log(2r)

rd
1

V1(x0)
‖g‖G(β,γ)

≤ C
1

V1(x0)
‖g‖G(β,γ).

This proves (3.5) and thus the proof of Propsition 3.1 is finished.

�

Next we define LΞ(X ) as the space of µ-measurable functions f such that
∫

X

e|f(x)| − 1

(1 + d(x0, x))2n
dµ(x) < ∞.

Then, the norm on the space LΞ(X ) is defined by

‖f‖LΞ = inf







λ > 0 :

∫

X

e|f(x)|/λ − 1

(1 + d(x0, x))2n
dµ(x) ≤ 1







.

Recall the following two lemmas due to Feuto [4].

Lemma 3.1. For every f ∈ BMO(X ),

‖f − fB(x0,1)‖LΞ ≤ C‖f‖BMO.

Lemma 3.2. Let q ∈ (1,∞]. Then,

‖(b− bB)M(a)‖L1 ≤ C‖b‖BMO

for all b ∈ BMO(X ) and for all (H1, q)-atom a related to the ball B.

The main point in the proof of Theorem 1.1 is the following.

Proposition 3.2. (i) For any f ∈ L1(X ) and g ∈ LΞ(X ), we have

‖fg‖Llog ≤ 64n2‖f‖L1‖g‖LΞ.

(ii) For any f ∈ L1(X ) and g ∈ BMO(X ), we have

‖fg‖Llog ≤ C‖f‖L1‖g‖BMO+.

Proof. (i) If ‖f‖L1 = 0 or ‖g‖LΞ = 0, then there is nothing to prove. Otherwise,
we may assume that ‖f‖L1 = ‖g‖LΞ = 1

8n
since homogeneity of the norms.

Then, we need to prove that
∫

X

|f(x)g(x)|

log(e+ |f(x)g(x)|) + log(e + d(x0, x))
dµ(x) ≤ 1.
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Indeed, by using the following two inequalities

log(e+ ab) ≤ 2(log(e+ a) + log(e + b)), a, b ≥ 0,

and
ab

log(e+ ab)
≤ a + (eb − 1), a, b ≥ 0,

we obtain that, for every x ∈ X ,

(1 + d(x0, x))
2n|f(x)g(x)|

4n(log(e+ |f(x)g(x)|) + log(e+ d(x0, x)))

≤
(1 + d(x0, x))

2n|f(x)g(x)|

2(log(e + |f(x)g(x)|) + log(e+ (1 + d(x0, x))2n))

≤
(1 + d(x0, x))

2n|f(x)||g(x)|

log(e+ (1 + d(x0, x))2n|f(x)||g(x)|)

≤ (1 + d(x0, x))
2n|f(x)|+ (e|g(x)| − 1).

This together with the fact 8n(e|g(x)| − 1) ≤ e8n|g(x)| − 1 give
∫

X

|f(x)g(x)|

log(e + |f(x)g(x)|) + log(e+ d(x0, x))
dµ(x)

≤ 4n‖f‖L1 +
1

2

∫

X

e8n|g(x)| − 1

(1 + d(x0, x))2n
dµ(x)

≤
1

2
+

1

2
= 1,

which completes the proof of (i).
(ii) It follows directly from (i) and Lemma 3.1.

�

Now we ready to give the proof for Theorem 1.1.

Proof of Theorem 1.1. By (i) of Theorem 2.1, f can be written as

f =
∞
∑

j=1

λjaj

where the aj ’s are (H1,∞)-atoms related to the balls Bj ’s and
∑∞

j=1 |λj| ≤

C‖f‖H1. Therefore, for all b ∈ BMO(X ), we have

(3.6)

∥

∥

∥

∥

∥

∞
∑

j=1

λj(b− bBj
)aj

∥

∥

∥

∥

∥

L1

≤
∞
∑

j=1

|λj|‖(b− bBj
)aj‖L1 ≤ C‖b‖BMO‖f‖H1 .

By this and Definition (3.3), we see that the series
∑∞

j=1 λjbBj
aj converges

to b × f −
∑∞

j=1 λj(b − bBj
)aj in (Gǫ

0(β, γ))
′. Consequently, if we define the
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decomposition operators as

Lf (b) =

∞
∑

j=1

λj(b− bBj
)aj

and

Hf(b) =

∞
∑

j=1

λjbBj
aj ,

where the sums are in (Gǫ
0(β, γ))

′, then it is clear that Lf : BMO(X ) → L1(X )
is a bounded linear operator, since (3.6), and for every b ∈ BMO(X ),

b× f = Lf (b) + Hf(b).

Now we only need to prove that the distribution Hf(b) is in H log(X ). Indeed,
by Lemma 3.2 and (ii) of Proposition 3.2, we get

‖M(Hf(b))‖Llog ≤

∥

∥

∥

∥

∥

∞
∑

j=1

|λj||bBj
|M(aj)

∥

∥

∥

∥

∥

Llog

≤

∥

∥

∥

∥

∥

∞
∑

j=1

|λj||b− bBj
|M(aj)

∥

∥

∥

∥

∥

L1

+

∥

∥

∥

∥

∥

b

∞
∑

j=1

|λj|M(aj)

∥

∥

∥

∥

∥

Llog

≤ C‖f‖H1‖b‖BMO+ .

This proves that Hf is bounded from BMO(X ) into H log(X ), and thus ends
the proof of Theorem 1.1.

�

4. The product of functions in BMOρ(X ) and H1
ρ(X )

For f ∈ BMOρ(X ), a standard argument gives

(4.1) ‖f‖BMO+ ≤ C log(ρ(x0) + 1/ρ(x0))‖f‖BMOρ
.

Proposition 4.1. Let β ∈ (0, 1] and γ ∈ (0,∞). Then, g is a pointwise
multiplier of BMOρ(X ) for all g ∈ G(β, γ). More precisely, for every f ∈
BMOρ(X ),

‖gf‖BMOρ
≤ C

log(ρ(x0) + 1/ρ(x0))

V1(x0)
‖g‖G(β,γ)‖f‖BMOρ

.

Proof. By Proposition 3.1, (4.1) and (3.1), we get

‖gf‖BMOρ
≤ ‖gf‖BMO + ‖g‖L∞ sup

B∈D

1

µ(B)

∫

B

|f(x)|dµ(x)

≤ C
log(ρ(x0) + 1/ρ(x0))

V1(x0)
‖g‖G(β,γ)‖f‖BMOρ

.

�
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Using Proposition 4.1, for b ∈ BMOρ(X ) and f ∈ H1
ρ(X ), one can define

the distribution b× f ∈ (Gǫ
0(β, γ))

′ by the rule

(4.2) 〈b× f, φ〉 := 〈φb, f〉

for all φ ∈ Gǫ
0(β, γ), where the second bracket stands for the duality bracket

between H1
ρ(X ) and its dual BMOρ(X ).

Proof of Theorem 1.2. By (ii) of Theorem 2.1, there exist a sequence of
(H1

ρ ,∞)-atoms {aj}
∞
j=1 related to the sequence of balls {B(xj, rj)}

∞
j=1 and

∑∞
j=1 |λj| ≤ C‖f‖H1

ρ
such that

f =

∞
∑

j=1

λjaj = f1 + f2,

where f1 =
∑

rj<ρ(xj)
λjaj ∈ H1(X ) and f2 =

∑

rj≥ρ(xj)
λjaj .

We define the decomposition operators as following

Lρ,f(b) = Lf1(b) + bf2

and

Hρ,f(b) = Hf1(b),

where the operators Lf1 and Hf1 are as in Theorem 1.1. Then, Theorem 1.1
together with (4.1) give

‖Lρ,f(b)‖L1 ≤ ‖Lf1(b)‖L1 +
∑

rj≥ρ(xj)

|λj|‖baj‖L1

≤ C‖f1‖H1‖b‖BMO + C‖b‖BMOρ

∑

rj≥ρ(xj)

|λj|

≤ C‖f‖H1
ρ
‖b‖BMOρ

and

‖Hρ,f(b)‖Hlog ≤ C‖f1‖H1‖b‖BMO+ ≤ C‖f‖H1
ρ
‖b‖BMOρ

.

This proves that the linear operator Lρ,f : BMOρ(X ) → L1(X ) is bounded
and the linear operator Hρ,f : BMOρ(X ) → H log(X ) is bounded. Moreover,

b× f = b× f1 + b× f2

= (Lf1(b) + Hf1(b)) + bf2

= Lρ,f (b) + Hρ,f(b),

which ends the proof of Theorem 1.2.
�
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