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Chapter 14

Energy Stability Analysis for a Hybrid
Fluid-Kinetic Plasma Model

In plasma physics, a hybrid fluid-kinetic model is composed of a
magnetohydrodynamics (MHD) part that describes a bulk fluid component and a
Vlasov kinetic theory part that describes an energetic plasma component. Although
most hybrid models in the plasma literature are non-Hamiltonian, this chapter
investigates a recent Hamiltonian variant in its two-dimensional configuration. The
corresponding Hamiltonian structure is described along with its Casimir invariants.
Then, the energy-Casimir method is used to derive explicit sufficient stability
conditions, which imply a stable spectrum and suggest nonlinear stability.

14.1. Introduction

The discipline of plasma physics has provided a rich collection of spectral and
stability problems. Depending on the circumstances, plasmas may be described by
fluid models or kinetic theories with coupling to electromagnetic fields. As a result,
plasma theory has all of the possibilities and concomitant complications of all these
disciplines and, although a great deal of lore has been generated on the formal level,
there remain many open mathematical problems of a spectral and stability nature.

When dissipative terms are small enough to be safely neglected, the resulting
plasma systems are infinite-dimensional Hamiltonian systems. Thus, we are led to
stability and spectral problems of a wide variety of Hamiltonian operators. Usually,
these operators are non-Hermitian, non-normal and have rich spectra with both point
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and continuous components. Bifurcation theory of these operators including their
nonlinear extensions provides challenging non-trivial problems of important physical
relevance.

A particularly challenging class of spectral and stability problems arises from the
so-called hybrid models of plasma physics. These are models that incorporate both
fluid and kinetic equations. Generally speaking, the purpose of these models is to
describe a bulk portion of the plasma by a fluid model, such as MHD, while
describing a hot component of the plasma by a kinetic theory, such as the
Maxwell-Vlasov system. Thus, hybrid models can combine all spectral and stability
issues that occur in fluid and kinetic theories separately into a complicated whole. It
is well known that MHD and the Vlasov equation separately have a variety of
interesting point and continuous components to their spectra, and so, hybrid models
can indeed present a challenging class of mathematical problems. However, because
of the Hamiltonian nature of these models, we can use energy techniques to obtain
spectral information without performing detailed operator analysis. In particular, we
can obtain sufficient conditions for the existence of a stable spectrum by the so-called
energy-Casimir method (see [HOL 85, MOR 98]) that is based on the natural
Lyapunov—Dirichlet method of Hamiltonian systems theory.

The purpose of this chapter is to describe a particular hybrid model that is a
coupling between two-dimensional (planar) MHD and Vlasov theory. We will
describe its Hamiltonian structure and apply the energy-Casimir method to a class of
equilibrium states and obtain sufficient conditions for stability. This chapter is
organized as follows. In section 14.2, we review some details regarding stability and
the energy-Casimir method. Then, in section 14.3, we describe the planar hybrid
model, its noncanonical Hamiltonian structure and associated Casimir invariants.
This is followed in section 14.4 by the application of the energy-Casimir method
giving rise to the sufficient conditions. Finally, we conclude in section 14.5. For
completeness, two appendices are included: Appendix A (section 14.7) provides a
proof of the Jacobi identity, while Appendix B (section 14.8) contains a direct
verification that the functional indicated as Casimir for the hybrid model, indeed,
commutes with every other observable.

14.2. Stability and the energy-Casimir method

Consider a dynamical system z = V defined on some space (manifold) 2, where
z € Z can be a point or a trajectory, “ ~ ” denotes time derivative and V is an
autonomous vector field defined on Z. Our interest is in the stability of equilibrium
points z,, solutions that satisfy V(z,) = 0. We adopt the standard definition of
stability for such points, which is the following:

An equilibrium point z,, of a dynamical system is said to be stable if,
for any neighborhood N of z, there exists a subneighborhood S C N of
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Ze, such that if Z, an initial condition, is in S, then the trajectory z(¢) € N
for all time ¢ > 0.

Often, we consider the associated linear problem 8z = DV (z,) - 8z obtained by
expanding V (z, + 8z7) to first order. If §z remains in N, then the system is said to be
linearly stable, and to distinguish this kind of stability from that with dynamics under
the full vector field V, we add the adjective nonlinear to describe the latter. Assuming
a solution of the form 6z = Zexp(At), the linear problem becomes (DV — Aid)-2 =0,
where id is the identity operator. The spectrum of DV, 6(DV), is the set composed of
A € C for which the linear operator DV — A id has no densely defined continuous
inverse, and an equilibrium point is said to be spectrally stable if ioc(DV) C LHP
(closure of the lower half complex plane). Observe that this definition of stability
includes the case iA € R, which corresponds to pure oscillation, a case that is
sometimes called neutral stability. Inclusion of this case is most important, since this
is the only kind of spectral stability possessed by Hamiltonian systems.

There are several logical implications between the different types of stability, and
these can be somewhat subtle: for example, linear stability implies spectral stability;
linear stability does not imply nonlinear stability; nonlinear stability does not imply
linear stability. For establishing linear stability in Hamiltonian systems, which would
assure us that the spectrum lines on /R, we can use Lyapunov function techniques
dating back to Lagrange and Dirichlet. Our main concern in this chapter is to do this
for a particular hybrid model.

For Hamiltonian systems, the vector field of our dynamical system is generated
by a Poisson bracket so that the equations of motion have the form z = {z, H}, which
for finite-dimensional systems in a coordinate patch is given by z' = J9;H, where J
is the Poisson bivector (cosymplectic form) and { , }: C*(2") x C*(Z) — C*(Z).
Thus, equilibrium points satisfy dH € Ker(J). A consequence of the Poisson bracket
identities (see Appendix A (section 14.7)) is the Lie-Darboux theorem, which
implies Ker(J) is spanned by Casimir invariants, which satisfy {C, f} = 0, for all
functions f € C*(%) (although there are serious unresolved issues with this theorem
for infinite-dimensional systems (see, e.g., [YOS 13])). Thus, equilibria are critical
points of an invariant energy function .# = H + C and this fact is very useful for
establishing stability criteria.

For finite-dimensional systems, definiteness (positive or negative) of the quadratic
form §2.% (z.;8z) assures both linear and nonlinear stability. For linear systems,
82.F is invariant, in fact the Hamiltonian for the linear dynamics, and its definiteness
means the equilibrium point is foliated by nested invariant sets that are topologically
spheres. The interior of these sets can thus serve as the subneighborhoods S in the
above definition of stability. For nonlinear systems, .% is invariant and, under mild
smoothness conditions, §2.% determines the topological character of the level sets of
Z in a sufficiently small neighborhood of the equilibrium point z,. This guarantees
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that for any neighborhood N, there is an S C N, determined by some level set of .%,
within which the flow must remain.

For infinite-dimensional systems, the situation is considerably more complicated.
First, definiteness of §2.% does not imply that an extremal point that satisfies §.% = 0
is in fact an extermum (maximum or minimum). For both linear and nonlinear stability,
we require 2.7 to lead to a norm for defining open sets. This leads to a second and for
nonlinear stability an often formidable complication: even if a norm can be extracted
from §2.% for a rigorous proof of nonlinear stability, we must show that the solution
to the dynamical system actually exists in this norm. Unfortunately, for the systems of
most physical significance in plasma physics, global existence results are not available.
In the rosy situation where existence results are firm, it can turn out that more than one
choice of norm may be available and a given equilibrium can be stable in one norm
and not in another; in this case, a physical determination must be made about what is
important.

In this chapter, we will follow the practice in the physics literature (e.g. [HAZ 84,
HOL 85, MOR 86, MOR 98]) and only obtain formal stability criteria for our hybrid
models. More specifically, in section 14.4, we will find conditions under which 82F is
positive definite. The reader interested in seeing what makes up a rigorous application
of the energy-Casimir method is referred to [BAT 95, REI 94].

14.3. Planar Hamiltonian hybrid model

Many hybrid models exist in the plasma physics literature, but one of the most
popular kinetic-MHD variants is that of [CHE 91, PAR 92, PAR 99, FU 95], which
has often been used in computer simulations [KIM 04, TAK 09]. This model employs
the so-called pressure-coupling scheme, which suffers from not conserving energy
exactly. Recently, a Hamiltonian version of this scheme (HPCS) was given in
[HOL 12, TRO 10, TRO 13]. Here, we will present and analyze a two-dimensional
variant of the HPCS. The equations of motion will be given in section 14.3.1, its
Hamiltonian structure is given in section 14.3.2 and its Casimir invariants is given in
section 14.3.3.

14.3.1. Planar hybrid model equations of motion

Upon setting all physical constants equal to unity, the planar Hamiltonian hybrid
model is given by the following system of partial differential equations:
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do=[y,0]+[J,A]+2xV- (VJ_ '/‘d3VfVJ_VJ_> ; [14.1]
A = [y,A], [14.2]
af af . af
at*[fv‘l’]JFVLaXL+V‘Z><V<VﬂI/'aVL)
—‘rVZVJ_A-aif—VJ_-VJ_A&if:O. [143]
8vl 8vz

In these equations, the scalar functions A and ® are defined on a domain 2 C R2
and indicate the magnetic poloidal flux function and the vorticity of the bulk flow.
These are related to the magnetic field B and to the bulk velocity field U by

0o=zxV-U:=2-VxU, B=-ZxVA,

where 2 indicates the unit vector along the coordinate z of a Cartesian system (x,y,z),
in which the coordinates x and y cover the domain &. The two-dimensional gradient
V| acts as V | u = £dxu+ $dyu on a generic function u. The current density J and the
stream function Y , on the other hand, are related to the magnetic flux function and to
the vorticity by

J=—AA, v=-A"o, [14.4]

respectively. In [14.4], the symbol A denotes the two-dimensional Laplacian. The
distribution function (phase space density) f(x,,v) is defined over the (reduced)
particle phase space 2 x R?, where x| and v, denote (x,y) and (v, vy), respectively.
Finally, we indicated by [, | the canonical bracket acting on two functions as f and g

by [f,g]:=V.ig-2xVf.

Equations [14.1]-[14.3] govern the evolution of an incompressible MHD bulk
system, coupled with a kinetic particle population. Equation [14.1] is a vorticity
equation, in which the bulk plasma flow is affected by the presence of the kinetic
species, through the additional pressure divergence term, represented by the last term
on the right-hand side of equation [14.1]. In the absence of such term, we retrieve the
two-dimensional version of classical MHD. Analogously, equation [14.3] describes
the evolution of the distribution function of the kinetic species, which, in its turn, is
influenced by the transport and force term associated with the bulk velocity. Such
effects vanish upon setting v = 0 in [14.3]. Equation [14.2], on the other hand, is the
ideal Ohm’s law reflecting the assumption that the magnetic flux is frozen into the
bulk fluid.
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14.3.2. Hamiltonian structure

The model of equations [14.1]-[14.3] 1is easily obtained from the
three-dimensional Hamiltonian hybrid model in [TRO 10, TRO 13] by reduction to
two spatial dimensions. Thus, it is not surprising that it inherits a Hamiltonian
structure in terms of a noncanonical Poisson bracket. In Appendix A (section 14.7),
we show how to reduce the Poisson bracket of the three-dimensional model to obtain
the planar system [14.1]-[14.3].

Recall that a Poisson bracket {, } defines a Lie algebra realization on a set of
observables consisting of the functionals of the dynamic variables, which here are ®,
A and f. As alluded to in section 14.2, time evolution of an element F' of such algebra
is determined by the equation

OF ={F,H}, [14.5]

where, for the case at hand, the Hamiltonian H is given by
1
H:E/dzx(—a)A"w—AAA+/d3vf|v\2), [14.6]

and the expression for the Poisson bracket reads

0= foxo g sl [ (505 (50 51])
Joser([5pr i) L5 75al )

, 5 [[8F &G
+/d xd Vf(LSf’afL [14.7]

(86G86F 86F86G)>

v, 0f OV, Of Iv.Of v, Of

This bilinear operation satisfies antisymmetry, the Leibniz identity and the Jacobi
identity (see Appendix A (section 14.7)). In [14.7] we introduced a canonical bracket
defined over a reduced phase space as [f,g],:=V f-dy, g—Vig-o f.

For the choices F = @, A, or f, using [14.6] and [14.7] in [14.5], we retrieve the
model equations [14.1]-[14.3], provided that boundary terms arising from integration
by parts vanish. This is accomplished, for instance, if the involved functions are
periodic on Z or, in case Z is unbounded, if they also decay at infinity. The functions
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depending on the velocity coordinates are also assumed to go to zero sufficiently fast
as v — oo,

Concerning the Hamiltonian [14.6], we remark that it naturally expresses the total
energy of the system, consisting of the sum of the bulk kinetic energy, the magnetic
energy and the kinetic energy of the hot particle population, corresponding to the three
terms appearing in [14.6], respectively.

With regard to the Poisson bracket, on the other hand, we observe that it possesses
a pure MHD part, consisting of the first two terms of [14.7], which correspond to
the Poisson bracket of reduced MHD [MOR 84, MAR 84]. It also possesses a purely
kinetic part, given by its last two terms, which include the Vlasov bracket [MOR 80a,
MOR 82, MAR 82]. The remaining terms, on the other hand, are those responsible for
the coupling between the MHD and the kinetic components.

14.3.3. Casimir invariants

As discussed in section 14.2, the energy-Casimir method requires the
identification of the Casimir invariants C, i.e. functionals satisfying {F,C} = 0 for
any arbitrary functional F in the algebra of observables. However, finding the
Casimirs is not always an easy task and their limited availability sometimes stands as
the major obstacle to the application of the method. However, in the case under
consideration, the existence of a cross-helicity invariant for the Hamiltonian PCS was
shown in [HOL 12] and this Casimir finds its way into the present two-dimensional
theory, where it is generalized. The existence of such a Casimir for the
three-dimensional Poisson bracket yields a whole family of Casimir invariants when
projected on the plane. Upon summing contributions arising from the magnetic
helicity and the Vlasov dynamics, the total Casimir invariant for the planar hybrid
model reads

Clw,A,f)= /dzx <a)<l>(A)+‘P(A)+/d3vA(f)) , [14.8]
where @, W and A are arbitrary functions, and we have introduced the shorthand
O:=w—-4:xV-K, with K:= /d3val.

That [14.8] is in fact a Casimir invariant is shown in Appendix B (section 14.8).

The existence of such Casimir invariants is amenable to a physical interpretation,
which becomes clearer when considering separately, the contributions coming from
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the functions ®, ¥ and A. If & = A = 0, the remaining Casimir expresses the
conservation of magnetic flux through a surface moving with the bulk fluid velocity.
This property is the frozen-in condition for the magnetic flux, inherited from ideal
MHD. If ® =W = 0, we retrieve the conservation of the integral of any function of
f, which is characteristic of Vlasov systems and whose physical meaning in terms of
particle rearrangements was given in [MOR 87]. However, a new family of invariants
associated with this two-dimensional hybrid model appears when setting ¥ = A = 0.
For this case, the Casimir family reduces to

Clw,A,f) = /dzx (w—zxv-/d%fn)cp(fx)
= /d2x<I>’(A)(VLW'VLA+/d3vaL'2><VA)

= /dzxtb’(A)(U—K)B, [14.9]

where we recall that K = [ &3y fv., which corresponds to the momentum of the hot
particle species in the xy-plane. Equation [14.9] introduces a hybrid cross-helicity
density (U —K) - B, expressing the correlation between the magnetic field and a
velocity field obtained by subtracting from the bulk velocity a contribution coming
from the kinetic species. Upon setting K = 0, this Casimir reduces to the cross
helicity family of invariants for two-dimensional MHD which to our knowledge was
first found in [MOR 84]. For a given constant Ao, choosing ®(A) = #,(A), with S
indicating the Heaviside function with step located at A = A, expresses the property
that not only is the total generalized cross-helicity is conserved, but also its integral
over domains A = Ag, which are bounded by magnetic flux surfaces.

Given that these families of Casimirs have been identified explicitly, we are ready
to apply the energy-Casimir method and find sufficient conditions for energy stability
of the system. This is carried out in the next section.

14.4. Energy-Casimir stability analysis

Knowledge of the Casimir invariants provides a variational principle for equilibria,
6.7 =0, which we tend to in section 14.4.1. Then, the next step of the energy-Casimir
method is to consider the second variation, §2.% = 0, which is done in section 14.4.2.
Note that all physical constants have been set to unity. A more perspicuous study of
the dynamical behavior can be obtained upon restoring these constants.
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14.4.1. Equilibrium variational principle

To construct a variational principle for the equilibria under consideration, we first
define the free energy functional . = H + C. Then, we take its first variation, which
reads

8.7 — 8 Fynp + 8 Fy — 6//d2xd3v<b(A)v-2 < VF

where we split-off the Vlasov part 8%y := [d?xd®v (A’ +|v|*>/2) §f and the MHD
part

8 Funp = /d2x (@A) - A"'0) S0+ /dzx (0@ (A) — A+ P/ (A)) A,

Upon setting 6.% = 0, the equilibrium equations turn out to be

0 = y.+P(A,), [14.10]

0 = —M,+0,P'(A,)+Y(A), [14.11]
2

0 = CIJ’(AE)V~2xVAe+%+A/(fe), [14.12]

whose first relation renders the third in the form
1 2 1 2 a
§|V+Ue\ f§|Ue\ + A =0. [14.13]

In the above expressions, we introduced the subscript e to indicate equilibrium
quantities.

Upon assuming an invertible A, from [14.13], we obtain the equilibrium
distribution function in the form

1 1 1 1

fo=fol 2 IVHUL =< U ) =fo[ = v +2x VO =2 |V, ®*) . [14.14]
2 2 2 2

As an example, consider the relative Gaussian distribution

1 1
fe :exp(—2|V+Ue|2+2|U62) .
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It is easy to see that this yields
/d3vng = Uy, — @=v,. ((1 +e*%|VL‘I"2) Vlcp)
and therefore, in the absence of MHD equilibrium flow, we have @, = 0, which means
that the vorticity 2 x V- [d3v fv, associated with the hot particle flow is also zero.

In the general case of an arbitrary equilibrium of the type [14.14], this quantity is
computed as

1 1 1
2xv./d3vfen:/d3vf; (vi+U)-2xV [2|VL+U|2—2|U|2—|—2\}§]
= —VJ_~(I’leVJ_(I)),

where n, = [d*vf, is the hot particle equilibrium density. In conclusion, the final
form of the hybrid equilibrium relation reads

—AA+ D' (A) V- (1+n)V I DP(A.)) + ¥ (A,) =0.

In the absence of a hot species (n, = 0), this reduces to the celebrated
Grad-Shafranov equation for reduced MHD [HAZ 84]. Note, when n, Z 0, we call
the above equilibrium relation the hybrid Grad—Shafranov equation.

14.4.2. Stability conditions

Turning now to stability criteria, we compute the second variation
8 F =8> Fynp + 8> Fy — 2//d2xd3v SP(A) v, -5x VSf
7//d2xd3v(vL~2xVf)d)’(A)(&A)z,
where we have introduced
8 Furrp = /dzx(\VSI//— VED+ (1 ()2) [VSAP)
+ / d’x (0@ +9" + 'AP') (5A)?,
S Fy = /d2xd3vA"(f)(5f)2,

which correspond to the second variation expressions for reduced MHD [HAZ 84] and
the Vlasov equation [FOW 63, GAR 63, MOR 87, HOL 85, MOR 90], respectively.
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After some rearrangement, the expression for the second variation, evaluated at an
equilibrium solution of [14.10]-[14.12], can be written as follows
8 (0, Ac, fo) = 8 Frinip (e, A, fo) + 5 Fy (0, Ae, f) [14.15]
- / Cxd®y (v-2x VL) D" (A,)(5A)?
+ //dzxd%f;‘ ‘Sf— SALV @ (A,) -2 VL’Z
+//d2xd3vf;1 ’8fffe<l>’(Ae)VL6A~2 x vl‘z
—2//d2xd3vfe (81)* /d2 (TrP )|V &' (A.)|*(5A)?
+//d2xd3vfe ViV @(A,))(5A)?
/d2xc1>’2 ) (TP, )|V SA

+ / d’xdv £, ®%(A,) (v, -V 8A)?

where we have defined P, , := fd3v fevivy, while Tr denotes the ordinary matrix
trace.

Because energy stability is attained (by definition) if the second variation,
evaluated at the equilibrium, has a definite sign, for any perturbations 0A, d® and
d f, we infer from [14.15], that sufficient conditions for stability are provided by

/ 2 1
|D'(Ae)|” < T, [14.16]
B D" (A,) + W (A.) + ' (A)AD (A,) — |V @ (A) P TrP L, > 0 [14.17]
AN(f)>2/f.. [14.18]

Note that ¥, = —®(A,) implies U, = —®'(A,)B,, so that the stability condition
of [14.16] reads

> (1+TrP, ) U,

where B, := |B,| and U, := |U,|. Because of the presence of the kinetic component,
our stability condition requires slower equilibrium flows, in comparison to the
corresponding condition for reduced MHD. The latter condition [MOR 84], indeed,
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requires MHD flows to be just sub-Alfvénic, whereas this is no longer sufficient to
satisfy [14.16] in the presence of a hot particle population.

Upon making use of ® = ~U, -B,/B> = —U,/B,, the condition [14.17] can be
reformulated in the following way:

B, x2-V, J, U2\ 1B.x? U2\ B, x 2 )
1_Ze ) _1Bex2 ¢ (Ye V.B 14.19
B? BZ) 2 B2 t\BZ) B2 Tt7e [ 1
U,B, x2 ANE
2222 v sx VK, — |V, [ =2)]| TtP,, >0, 14.20
B, B 1Zx e ‘ L(Be> P, [ ]

which provides an interpretation of this stability condition in terms of physical
properties of the equilibrium state. The terms of line [14.19] correspond to the same
terms appearing in the energy stability condition for reduced MHD. In particular, we
can recognize in the first term the above-mentioned sub-Alfvénic condition, in
addition to conditions depending on the relative direction of the equilibrium
magnetic fields and the gradient of the current density. These have been shown to be
a source for the kink and interchange instabilities observed in tokamaks in the
presence of magnetic curvature, see Chapter 12. The terms of line [14.20] account for
the new contributions due to the kinetic species. These are due to the compressibility
of the hot particle equilibrium flow and to the hot particle energy. We observe that, in
the case of static MHD equilibrium (i.e. U, = 0), the presence of the kinetic species
has no influence on the condition [14.19]-[14.20]. In particular, in that limit, we
recover the pure reduced MHD condition [HAZ 84], B, x Z-VJ, > 0, which
corresponds to a current density profile monotonically decreasing with the
equilibrium flux function A,.

Finally, upon differentiating the equilibrium relation for A’ with respect to v, we
obtain

1
N'(f.)= 7 = f, < -2f1.

For example, the particular Gaussian distributions such that f, = —f, (unit
variance) are stable equilibria. This is a modification of Gardner’s well-known
monotonicity theorem [GAR 63, FOW 63].

It should be emphasized that our sufficient conditions are not optimal. Clearly,
some potentially stabilizing positive definite terms have not been used, and terms
involving gradients, e.g., |V 8A|?, could be estimated in conjunction with those
involving (8A)? by the Poincaré inequality in order to obtain better results. Also, the
conditions we have obtained control A and §f, but an examination of 8%.%yup
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reveals that there is a neutral direction given by §y = §®. This was pointed out in
[MOR 86], where it was shown that this corresponds to the Alfvén wave that has an
interpretation in terms of spontaneous symmetry breaking and plays the role of the
Goldstone mode of particle physics.

14.5. Conclusions

Stability analyses play a central role in the investigation of phenomena occurring
in plasmas. For phenomena in which dissipative effects can be neglected, plasma
models should be energy conserving and possess a Hamiltonian structure, thereby
avoiding unphysical “phantom dissipation”. For continuum models (e.g. kinetic or
fluid theories) formulated in terms of Eulerian variables, the Hamiltonian structure is
generically of noncanonical type. Associated with such Hamiltonian structure are
Casimir functionals, particular invariants arising from degeneracy of the
cosymplectic (bivector) operator. The existence of Casimir invariants is the basis of
the energy-Casimir method for determining stability conditions for noncanonical
Hamiltonian systems, which, as mentioned in section 14.2, imply spectral stability. In
this chapter, we applied the energy-Casimir method to the planar version of a hybrid
model for plasmas, which couples, via the pressure terms, the dynamics of a bulk
MHD flow, with the kinetic evolution of a population of hot particles.

After introducing the model, we formulated its Hamiltonian structure, pointing out
how it relates to the Hamiltonian structures of reduced MHD and the Vlasov equation.
In particular, in terms of the adapted variables, it emerged that the corresponding
noncanonical Poisson bracket introduces the kinetic-MHD coupling terms, whereas
the Hamiltonian is just the sum of the reduced MHD and Vlasov contributions. This
was also reflected in the Casimir structure. Indeed, the latter was seen to be divided
into three independent contributions: two of these inherited from reduced MHD and
Vlasov equation, which correspond to the magnetic frozen-in condition and to the
conservation of any function of f integrated over phase space, respectively. However,
the third family of Casimirs that was seen to originate from the coupling terms in
the bracket is peculiar to this model and expresses the conservation of a generalized
hybrid cross-helicity, which, unlike the usual cross-helicity of MHD, accounts also for
the contribution of the fluid momentum of the hot particle species.

The abundance of Casimirs present in this planar reduction of the model
facilitated the application of the energy-Casimir method. From the first variation of
the free energy functional .%, we determined general equations for equilibria of the
system. These led, in particular, to a hybrid Grad-Shafranov equation, which
generalizes the traditional equilibrium conditions of two-dimensional MHD. Finally,
explicit energy stability conditions were obtained from the analysis of the second
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variation of .%. On the basis of the obtained conditions, the presence of the hot
particle species was seen to impose a lower bound on the equilibrium bulk speed
when compared to the pure MHD case. The presence of the kinetic component was
also seen to require stronger conditions on the current density profile for the stability
to be attained. The distribution function, on the other hand, is constrained by
dependence on the MHD component, via the equilibrium relation, and its variation in
terms of the equilibrium quantities required a bound from above in order to satisfy
the stability conditions. However, also in the presence of the hot particle population,
we observed that without MHD equilibrium flow, a monotonically decreasing current
density profile satisfies the stability condition, as is the case for reduced MHD. Also,
Gaussian distribution functions with unit variance are seen to satisfy the equilibrium
condition, as is the case for purely kinetic Vlasov-like systems.

In conclusion, we remark that the conditions obtained are not optimal; further
analysis of the functional .% could lead to tighter conditions. However, the energy-
Casimir analysis as performed is direct and efficient and circumvents more detailed
spectral analysis.
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14.7. Appendix A: derivation of hybrid Hamiltonian structure

In this appendix, we obtain the Hamiltonian structure composed of the
Hamiltonian of [14.6] and Poisson bracket of [14.7], by restriction of the
Hamiltonian structure first given in [TRO 10] for the full three-dimensional HPCS
model. (For background material see, e.g., [MOR 98, MOR 05] and [AND 12] for a
similar derivation).
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The HPCS Poisson bracket is given by

o fo (255552 050)

O0F _6G 6G _OF

J— 3 —_— e ———— —

/d xP(SM Vep oM VSp)
OF 0G oG OF
3 . —_— —_—— — [
+/de <8MXVX5B SMXVX6B>

' O0F 6G d 6F 0 6G
3.3 or oG oo d oG
./dXd vf([ﬁf’c‘if]v—’—B 8v8f><8v5f>

§F  8G] [6G  GF
3 3 - —_— —_— —_— . —_—
efee (57 sl (57wl )

whereas the Hamiltonian reads

2
H= /d3 ( E+rpu(p)+ 2' >+;/d3xd3vf|v|2. [14.22]

In equations [14.21) and [14.22], p and M indicate the mass density of the bulk
fluid and its momentum density, respectively, whereas % (p) is the internal energy per
unit mass. Physical constants have been set equal to unity.

The proof that [14.22] satisfies the Jacobi identity also can be carried out by
explicit verification. Indeed, upon recognizing that it is composed of terms of the
original bracket of MHD [MOR 80b] and that of the Maxwell-Vlasov system
[MOR 80a, MOR 82, MAR 82, MAR 83], together with later work on the two-fluid
system [SPE 82a, SPE 82b], it is not difficult to ascertain the validity of the Jacobi
identity. Alternatively, we can begin with an action principle (see, e.g., [MOR 09]), in
particular the action principle for this model of [HOL 12], and derive the Poisson
bracket of [14.22], thereby ensuring the Jacobi identity.

To see how the bracket [14.21] reduces to the bracket [14.7] of the planar model,
we first consider the two-dimensional restriction of [14.21] by eliminating the
dependence on the z coordinate. Then, we can enforce incompressibility by
restricting to functionals that are independent of p in [14.21]. Consistently, we also
remove the internal energy term from the Hamiltonian [14.22]. We note that with
such restrictions on the functionals and on the Poisson bracket, the Poisson bracket
loses all explicit functional dependence on p. Thus, according to the bracket theorem
of [MOR 82], the restricted Poisson bracket must satisfy the Jacobi identity.
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By using vector identities, we can rewrite the first line of [14.21] as

JOF _SF 8G
2 P
] ( VEM oM V5M>

_/d2 (V < M- <5F 5G>_8FV.6G+6GV.6F).

oM oM M S6M M M

Then, introduction of the relations
VXM= 0, B =V x(A%)

leads to the following rule for transforming the functional derivatives

oF _ o (SF .y OF _OF
SM s50°)  “VXSB T sa

[14.23]

[14.24]

[14.25]

Using [14.24] and [14.25], together with [14.23] in [14.21], leads namely to the
bracket [14.7] of the incompressible planar model. The Hamiltonian [14.22], on the

other hand, reduces to [14.6].

14.8. Appendix B: Casimir verification

Here, we demonstrate explicitly that [14.8] is a Casimir invariant, i.e. satisfies
{F,C} = 0 for all functionals F. This is simplified by noting that [d*x¥(A) and
[ d?xd3vA(f) are separate Casimirs of [14.7]. Using 8C/8 f = v-£ x V®, we obtain

(k)= [ o g.e] « [ (|00 - [o57] )

OF
2 3 — —_ .A .A —
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—/dzxd3vv szf{éF }

/dzxd3vf<[vz><VCI>§F] [ 5 D
/dzxd3vv szf{aF } /dzxd*vf(v sz{ }
o txv ] [rexv o] ) <o

In the above computations, integrations by parts with vanishing boundary terms
have been carried out and the Leibniz identity has been used. Also, prime denotes
differentiation with respect to the argument.
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