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Abstract

In a closed manifold of positive dimension n, we estimate the expected volume
and Euler characteristic for random submanifolds of codimension r € {1,...,n} in
two different settings. On one hand, we consider a closed Riemannian manifold and
some positive A\. Then we take r independent random functions in the direct sum of
the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues less than
A? and consider the random submanifold defined as the common zero set of these r
functions. We compute asymptotics for the mean volume and Euler characteristic of
this random submanifold as A goes to infinity. On the other hand, we consider a complex
projective manifold defined over the reals, equipped with an ample line bundle £ and
a rank r holomorphic vector bundle £ that are also defined over the reals. Then we
get asymptotics for the expected volume and Euler characteristic of the real vanishing
locus of a random real holomorphic section of £ ® £? as d goes to infinity. The same
techniques apply to both settings.

Keywords: FEuler characteristic, Riemannian random wave, spectral function, random
polynomial, real projective manifold, ample line bundle, Bergman kernel, Gaussian field.

Mathematics Subject Classification 2010: 14P25, 32A25, 341.20, 60D05, 60G60.

1 Introduction

Zeros of random polynomials were first studied by Bloch and Polya [7] in the early 30’s.
About ten years later, Kac [22] obtained a sharp asymptotic for the expected number of
real zeros of a polynomial of degree d with independent standard Gaussian coefficients, as
d goes to infinity. This was later generalized to other distributions by Kostlan in [23]. In
particular, he introduced a normal distribution on the space of homogeneous polynomials of
degree d — known as the Kostlan distribution — which is more geometric, in the sense that it
is invariant under isometries of CP!. Bogomolny, Bohigas and Leboeuf [8] showed that this
distribution corresponds to the choice of d independent roots, uniformly distributed in the
Riemann sphere.

In higher dimension, the question of the number of zeros can be generalized in at least
two ways. What is the expected volume of the zero set? And what is its expected Euler
characteristic? More generally, one can ask what are the expected volume and Euler char-
acteristic of a random submanifold obtained as the zero set of some Gaussian field on a
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Riemannian manifold. In this paper, we provide an asymptotic answer to these questions in
the case of Riemannian random waves and in the case of real algebraic manifolds.

Let us describe our frameworks and state the main results of this paper. See section 2 for
more details. Let (M, g) be a closed (that is compact without boundary) smooth Riemannian
manifold of positive dimension n, equipped with the Riemannian measure |dVj,| associated
to g (defined below (2.1)). This induces a L?-inner product on C>(M) defined by:

(1.1) Vo € CO(M),  (6,0) = / @) @) Vi

It is well-known that the subspace V) C C*°(M) spanned by the eigenfunctions of the
Laplacian associated to eigenvalues smaller than A? has finite dimension. Let 1 < r < n and
let fM, ..., (") € Vy be independent standard Gaussian vectors, we denote by Z ¢ the zero
set of f = (f(l), ceey f(T)). Then, for A large enough, Z; is almost surely a submanifold of
M of codimension r (see section 2 below) and we denote by Vol (Zy) its Riemannian volume
for the restriction of g to Zy. We also denote by x(Z) its Euler characteristic.

Theorem 1.1. Let (M,g) be a closed Riemannian manifold of dimension n. Let V) be
the direct sum of the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues
smaller than X2. Let fO), ... f) be r independent standard Gaussian vectors in Vs, with
1 <r < n. Then the following holds as A goes to infinity:

E[Vol (Zy)] = (\/T)\—H) Vol (M) % + O\ ).

Here and throughout this paper, E[ - | denotes the mathematical expectation of the quantity
between the brackets and S is, as usual, the unit Euclidean sphere in R**1!.

If n — 7 is odd, Z¢ is almost surely a smooth manifold of odd dimension. In this case,
X(Z¢) = 0 almost surely. If n — r is even, we get the following result.

Theorem 1.2. Let (M,g) be a closed Riemannian manifold of dimension n. Let V) be
the direct sum of the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues
smaller than X2. Let fO), ..., f) be r independent standard Gaussian vectors in Vs, with
1 <r<n. Then, if n —r is even, the following holds as \ goes to infinity:

Vol (S*="*1) Vol (S"71)
7 Vol (S™) Vol (S7—1)

+Oo(\"h.

B (Z9)] = (-7 (255) Vel )

vn+2

We also consider the framework of the papers [15, 16] by Gayet and Welschinger, see
section 2.6 for more details. Let X be a smooth complex projective manifold of complex
dimension n. Let £ be an ample holomorphic line bundle over X and £ be a holomorphic
vector bundle over X of rank r. We assume that X, £ and £ are equipped with compatible
real structures and that the real locus RX of X' is non-empty.

Let h, denote a Hermitian metric on £ with positive curvature w and hg denote a
Hermitian metric on £. Both metrics are assumed to be compatible with the real structures.
Then w is a Kéhler form and it induces a Riemannian metric g and a volume form dVy = ‘;’1—7
on X. For any d € N, the space of smooth sections of £ ® L% is equipped with a L?-inner
product similar to (1.1) (see section 2.6).

Let RH®(X, & ® L) denote the space of real global holomorphic sections of € ® £4. This
is a Euclidean space for the above inner product. Let s be a standard Gaussian section in
RHO(X,E®L%), we denote by Z, the real part of its zero set. Once again, for d large enough,
Z is almost surely a smooth submanifold of RX of codimension r. Let Vol (Z) denote the
Riemannian volume of Z; and x(Z,) denote its Euler characteristic. We get the analogues
of theorems 1.1 and 1.2 in this setting.



Theorem 1.3. Let X be a complex projective manifold of dimension n defined over the reals
and r € {1,...,n}. Let L be an ample holomorphic Hermitian line bundle over X and &
be a rank r holomorphic Hermitian vector bundle over X, both equipped with real structures
compatible with the one on X. Let s be a standard Gaussian vector in RHY(X,E @ L4).
Then the following holds as d goes to infinity:

E[Vol (Z,)] = (V) Vol (R) Yol(8"7) | o(vi™).

Vol (S7)
Theorem 1.4. Let X be a complex projective manifold of dimension n defined over the reals
and r € {1,...,n}. Let L be an ample holomorphic Hermitian line bundle over X and &

be a rank r holomorphic Hermitian vector bundle over X, both equipped with real structures
compatible with the one on X. Let s be a standard Gaussian vector in RH?(X,€ ® L4).
Then, if n — r is even, the following holds as d goes to infinity:

P Vol (§7~+1) Vol (§71) (vi)
Elx(Z)) = (-1)"= (Vd)" Vol (R¥) VI ETvel e O vd' ).

In the case of random eigenfunctions of the Laplacian, theorem 1.1 was already known
to Bérard [9] for hypersurfaces. See also [33, thm 1] where Zelditch shows that, in the case
of hypersurfaces, $E[Zf] — |dVas| as A — +00, in the sense of currents. He also proves a
similar result in the case of band limited eigenfunctions.

Let us discuss theorems 1.3 and 1.4 when X is CP™ with the standard real structure
induced by the conjugation in C**!, £ is the trivial bundle X x C" and £ = O(1) is the
hyperplane bundle with its usual metric. Then RX = RP" and w is the Fubini-Study metric
on CP", normalized so that it is the quotient of the Euclidean metric on the sphere S?"+1.
Besides, RH?(X, £?) is the space of real homogeneous polynomials of degree d in n + 1
variables, and Z; is the common real zero set of r independent such polynomials.

In this setting, Kostlan [23] proved that for any d > 1, E[Vol (Z;)] = (\/E) Vol (RP™™7).

See also the paper [30] by Shub and Smale, where they compute the expected number
of common real roots for a system of n polynomials in n variables. The expected Euler
characteristic of a random algebraic hypersurface of degree d in RP™ was computed by
Podkorytov [28]. Both Kostlan’s and Podkorytov’s results were generalized by Biirgisser. In
[10], he computed the expected volume and Euler characteristic of a submanifold of RP"™
defined as the common zero set of r standard Gaussian polynomials P, ..., P. of degree
di,...,d, respectively. In particular, when these polynomials have the same degree d and
n — r is even, he showed that:

n—r

(12) E[x (Zr....r,)] = (VA) S (1 ay Fp(!prg),

where I" denotes Euler’s gamma function. Theorems 1.3 and 1.4 agree with these previous
results.

Recently, Gayet and Welschinger computed upper and lower bounds for the asymptotics
of the expected Betti numbers of random real algebraic submanifolds of a projective manifold,
see [15, 16]. This relies on sharp estimates for the expected number of critical points of index
1€{0,...,n—r} of a fixed Morse function p : RX — R restricted to the random Z,. More
precisely, let N;(Zs) denote the number of critical points of index i of p,z_, let Sym(i, n—r—1i)
denote the open cone of symmetric matrices of size n — r and signature (i,n —r — i) and let
du denote the standard Gaussian measure on the space of symmetric matrices. Gayet and
Welschinger show [16, thm 3.1.2] that:

Vd' (n—1)!
Vol (RY) - Sy

a8 ENE o

er(i,n —r —1),



where eg(i,n —r —i) = / |det(A)| du(A).
Sym(i,n—r—1)

One can indirectly deduce theorem 1.4 from this result and from [10] in the following
way. By Morse theory:

Elx(Z2) = Y ()EINZ)] |~ Co,Vd' Vol (R)
1=0

where C), , is a universal constant depending only on n and r. Specifying to the case of RP",
equation (1.2) gives the value of C,, .. Gayet and Welschinger also proved a result similar to
(1.3) for hypersurfaces in the case of Riemannian random waves, see [14]. It gives the order
of growth of E[x(Z¢)] in theorem 1.2, for r = 1.

In their book [1], Taylor and Adler compute the expected Euler characteristic of the
excursion sets of a centered, unit-variance Gaussian field f on a smooth manifold M. This
expectation is given in terms of the Lipshitz-Killing curvatures of M for the Riemannian
metric gy induced by f, see [1, thm 12.4.1]. One can deduce from this result the expected
Euler characteristic of the random hypersurface f~1(0), always in terms of the Lipschitz-
Killing curvatures of (M, gy). It might be possible to deduce theorems 1.2 and 1.4 from this
result, in the case of hypersurfaces, when the Gaussian field (f(z))zenm (resp. (s(2))zerx)
has a constant covariance function (see section 2.3 for the definitions of these objects), but
one would need to estimate the Lipschitz-Killing curvatures of (M, gy) (resp. (M, gs)) as A
(resp. d) goes to infinity.

In a related setting, Bleher Shiffman and Zelditch [5] computed the scaling limit of the
k-points correlation function for a random complex submanifold of a complex projective
manifold. See also [6] in a symplectic framework. Our proofs of theorems 1.2 and 1.4 use
the same formalism as these papers, adapted to our frameworks.

We now sketch the proofs of our main results in the harmonic setting. The real algebraic
case is similar. The first step is to express Vol (Zy) (resp. x(Zs)) as the integral of some
function on Z¢. In the case of the volume this is trivial, and the answer is given by the
Chern-Gauss-Bonnet theorem (see section 4.2 below) in the case of the Euler characteristic.
Then we use the Kac-Rice formula (see theorem 5.3) which allows us to express E[Vol (Z;)]
(resp. E[x(Zs)]) as the integral on M of some explicit function that only depends on the
geometry of M and on the covariance function of the smooth Gaussian field defined by f.

It turns out that the covariance function of the field associated to the r independent
standard Gaussian functions f™) ..., f(") in Vj is given by the spectral function of the
Laplacian. In the algebraic case, the covariance function is given by the Bergman kernel of
€ ® L£4. This was already used in [5, 26].

Then, our results follow from estimates on the spectral function of the Laplacian (resp.
the Bergman kernel) and their derivatives (see section 3). In the case of random waves, the
estimates we need for the spectral function were proved by Bin [4], generalizing results of
Hormander [20]. In the algebraic case, much is known about the Bergman kernel [3, 5, 25, 32]
but we could not find the estimates we needed in codimension higher than 1 in the litterature.
These estimates are established in section 3.3 using Hormander-Tian peak sections. Peak
sections were already used in this context in [15, 16], see also [31]. The author was told by
Steve Zelditch, after this paper was written, that one can deduce estimates for the Bergman
kernel in higher codimension from the paper [3] by Berman, Berndtsson and Sjéstrand.

This paper is organised as follows. In section 2 we describe how our random submanifold
are generated and the setting of the main theorems. Section 3 is dedicated to the estimates
we need for the spectral function of the Laplacian and the Bergman kernel. In section 4 we
derive an integral formula for the Euler characteristic of a submanifold. The main theorems
are proved in 5, and we deal with two special cases in 6: the flat torus and the real projective
space. For these examples, it is possible to compute expectations for fixed A (resp. d) and



we recover the results of Kostlan and Biirgisser. Three appendices deal respectively with:
some standard results about Gaussian vectors, a rather technical proof we postponed until
the end, and a derivation of the Kac-Rice formula using Federer’s coarea formula.
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2 Random submanifolds

This section is concerned with the precise definition of the random submanifolds we consider.
The first two subsections explain how we produce them in a quite general setting. The third
one introduces the covariance kernel, which characterizes their distribution. We also describe
the distribution induced on the bundle of 2-jets in terms of this kernel. Then we describe
what we called the harmonic setting, before explaining how to adapt all this in the real
algebraic case. This kind of random submanifolds has already been considered by Bérard
[9], Zelditch [33] and Nicolaescu [26] in the harmonic case, and by Gayet and Welschinger in
the real algebraic case, see [15, 16, 17]. See also [10, 11, 24] in special cases.

2.1 General setting

Let (M, g) be a smooth closed manifold of positive dimension n. We denote by |dVa| the
Riemannian measure on M induced by g. That is, if x = (x1,...,x,) are local coordinates
in an open set U C M and ¢ is a smooth function with compact support in U,

(2.1) y ¢ |dVy| = /@Rn o(x)/det(g(x))day . .. da,.

From now on we fix some r € {1,...,n}, that we think of as the codimension of our
random submanifolds. Let (-,-) denote the L?-scalar product on C>°(M,R") induced by
|dVas|: for any fi and fo € C*°(M,R"),

(2.2) 1 fo) = / _{(a) (o) 14V

where the inner product on the right-hand side is the standard one on R".

Notation 2.1. Here and throughout this paper (-,-) will always denote the inner product
on the concerned Euclidean or Hermitian space.

Let V be a subspace of C>°(M,R") of finite dimension N. For any f € V, we denote by
Z¢ the zero set of f. Let D denote the discriminant locus of V', that is the set of f € V' that
do not vanish transversally.

If f vanishes transversally, Z¢ is a (possibly empty) smooth submanifold of M of codi-
mension r and we denote by |dVy| the Riemannian measure induced by the restriction of g
to Zy. We also denote by Vol (Zy) the volume of Z; and by x(Zy) its Euler characteristic.
In the case r =n, when f ¢ D, Z; is a finite set and |dV| is the sum of the Dirac measures
centered on points of Zy.

We consider a random vector f € V with standard Gaussian distribution. That is the
distribution of f admits the density function:

L o < oy ||2>
xp [ —= ||z
\/27TN 2

with respect to the Lebesgue measure of V. Under some further technical assumptions
on V (see 2.2 below), f vanishes transversally almost surely. Hence, the random variables
Vol (Zy) and x(Zy) are well-defined almost everywhere, and it makes sense to compute their
expectation.

For the convenience of the reader, we gathered the few results we need about Gaussian
vectors in appendix A. We introduce some notations here and refer to appendix A for futher
details. In the sequel, we will denote by X ~ A (m,A) the fact that the random vector X
is distributed according to a Gaussian with mean m and variance A. A standard Gaussian
vector is X ~ N(0,Id). We will denote by duy the standard Gaussian measure on a
Euclidean space of dimension N, that is the measure with density (2.3) with respect to the
Lebesgue measure.

(2.3) T



2.2 The incidence manifold

Following [26], we say that V is 0-ample if the map jO : f + f(x) is onto for every x € M.
From now on, we assume that this is the case and we introduce an incidence manifold as
Shub and Smale in [30] (see also [15, 16]).

Let F': (f,x) € VXM — f(z) € R" and let 01 F and 02 F denote the partial differentials
of F' with respect to the first and second variable respectively. For any (f,z) € V x M,

(2.4) OF(f,x)=3° and 0o F(f,x) = d.f.

We assumed j{ to be surjective for every z € M, thus F is a submersion. Then ¥ = F~1(0)
is a smooth submanifold of codimension r of V' x M, called the incidence manifold, and for
any (fo,z) € V x M:

Ty = {(f,v) €V X TuM | f(2) +dyfo - v =0}

We set m1 : ¥ — V and 7w : ¥ — M the projections from X to each factor. A vector
f € V is in the range of dy, ,ym1 if and only if there exists some v € T, M such that
(f,v) € T($y.2)%, that is f(z) is in the range of d, fo. Since V is 0-ample, the map ;2 is onto,
and d fo is surjective if and only if d(s, ;)71 is. Thus, the discriminant locus D is exactly the
set of critical values of ;. By Sard’s theorem, D has measure 0 in V', both for the Lebesgue
measure and for duy, and f vanishes transversally almost surely.

We equip ¥ with the restriction of the product metric on V' x M. Then, whenever f ¢ D,
(m1)7Y(f) = {f} x Z; is isometric to Zf, hence we will identify these sets. Similarly, we will
identify (m)~1(z) = ker(j)) x {x} with the subspace ker(j0) of V.

2.3 The covariance kernel

In this subsection we introduce the Schwarz kernel and covariance function associated to our
space of random functions. It turns out (see proposition 2.3 below) that these objects are
equal. The first to use this fact were Bleher, Shiffman and Zelditch in the case of complex
projective manifolds [5] and in the case of symplectic manifolds [6]. In the harmonic setting
this was used by Zelditch [33] and Nicolaescu [26].

In C>°(M,R") equipped with the L2-inner product (2.2), the orthogonal projection onto
V' can be represented by its Schwartz kernel, denoted by E. That is there exists a unique
E:MxM — R"®R" such that for any smooth f : M — R", the projection of f onto V is
given by:

(2.5) res (B(e,), f) = / B Sw) 4V

In the previous formula, the inner product on the right-hand side is the usual one on R",
acting on the second factor of R” ® R". The kernel E has the following reproducing kernel

property:
(2.6) VieV,VeeM, f(z)=(E(x"-),f).

If (f1,..., fn) is any orthonormal basis of V', one can check that F is defined by:

(2.7) (z,9) '—>Zfz )@ fily

This proves that E is smooth. Besides, for allz € M, E(x, z) is in the span of {{(®( | ( € R"},
and for all ( € R":

N N

(2.8) (B(2,2),¢ 20 =3 (@) ® fi(2),¢ 0 Q) = S ((file), )2 > 0.

=1 =1



This last equation shows that we can check the 0-amplitude condition for V' on its kernel.

Lemma 2.2. V is 0-ample if and only if, for all x € M and all ¢ € R" \ {0}, we have:
(E(z,z),(®C¢) > 0. That is if and only if E(x,x) is a positive-definite bilinear form on
(R™)* for any x € M.

On the other hand, the standard Gaussian vector f € V defines a smooth centered
Gaussian field (f(x))zenm with values in R™. Its distribution is totally determined by its
covariance function: (z,y) — Cov(f(z), f(y)) from M x M to R"®@R", where Cov(f(z), f(y))
stands for the covariance form of the random vectors f(x) and f(y) (cf. appendix A).

Proposition 2.3. Let V be a finite-dimensional subspace of C*°(M,R") and E its Schwartz
kernel. Let f ~ N(0,1d) in V, we have:

Ve,ye M, Cov(f(x), f(y)) = E[f(z) @ f(y)] = E(z,y).

Proof. Let z and y € M, the first equality is given by lemma A.7. We will now show that
E[f(z) ® f(y)] satisfies condition (2.5) to prove the second equality. Let fo: M — R” be a
smooth function and x € M,

/ B @ f)] o) Vi = / E[(f() ® /(4) . folw))]|AVi]

yeM

- / _EF@) () Solw)] 14Vl = ELF@) (7 o).

If fo € V*, this equals 0. If fo € V, we have:

Elf(z)(f, fo)l = E[E(z,"), ) (fo, /)] = (E(z,"), fo) = fo(z),

where we used the reproducing kernel property (2.6) both for f and fy and applied lemma A.8
to f ~ N(0,Id). In both cases, = — E[f(z) ([, fo)] is the projection of fy onto V, which
shows the second equality in proposition 2.3. O

This tells us that the distribution of our Gaussian field is totally determined by the
Schwartz kernel E. In our cases of interest, asymptotics are known for E and its derivatives,
see section 3 below. This is what allows us to derive asymptotics for the expectation of the
volume and Euler characteristic of Zy.

2.4 Random jets

Let VM be the Levi-Civita connection on (M, g). For any smooth f : M — R", we denote
by V2f = VMdf the Hessian of f.

Let 9, (resp. 9,) denote the partial derivative with respect to the first (resp. second)
variable for maps from M x M to R” ® R". Likewise, we denote by 0, (resp. 0y,) the
second partial derivative with respect to the first (resp. second) variable twice. As for the
Hessian above, all the higher order derivatives are induced by V.

Now, let f ~ N(0,Id) in V. We will describe the distribution induced by f on the 2-jets
bundle of M. Let x € M, we denote by J*(R") the space of k-jets of smooth functions from
M to R" at the point = (we will only use k € {0,1,2}). We already defined

3. C®(M,R") — R".
[ f(x)



We define similarly,

jliCc®(M,R™) - R" @ (R® T>M)
[ (f(@),daf)
and  j2:C®(M,R") - R"® (R& T M @ Sym(T; M)),
fe (f(x),dof,V2S)

where Sym(7* M) denotes the space of symmetric bilinear forms on 7, M.

The map j2 induces an isomorphism between J2(R") and R” @ (R® T M & Sym(T;M)).
In the sequel we will identify these spaces through j2. Likewise, J!(R") and R" ® (R& T M)
will be identified through ;..

Lemma 2.4. Let V be a finite-dimensional subspace of C*°(M,R") and E its Schwartz
kernel. Let f ~ N(0,1d) in V and x € M. Then j2(f) = (f(x),d.f,V2f) is a centered

Gaussian vector, and its variance form Var(j2(f)) is characterized by:

2.9) Var(f(z)) = E[f(z) ® f(z)] = E(z,z),
2.10 Var(d, f) = E[V.f @ Vo f] = (0.0, E)(z, x),
2.11 =E[V2f®Vif] = (0220yyE)(w, ),

Elf(z) ® Vo f] = (0, E)(w, ),
E[f(z) © Vif] = (8yyE)(z, ),
E[V.f ® V2f] = (0:0,,E)(z, ).

Cov(f(x)

)
)
Var(V2f)
of) =
0
Cov(dy f, V2 f)=

(

(2.10)

(2.11)

(2.12) Cov(f(z )
(2.13)

(2.14)

Proof. The first equality on each line is given by lemmas A.4 and A.7. Then proposition 2.3
gives the second equality in (2.9). The other equalities are obtained by taking partial deriva-
tives of (2.9) O

With this lemma, we have described the distribution of j2(f) only in terms of E. Since
JO(f) and j1(f) are the projections of j2(f) onto R™ and R” ® (R & T M) respectively, their
distributions are also characterized by lemma 2.4.

2.5 The harmonic setting

In this section, we describe what we called the harmonic setting, that is random eigenfunc-
tions of the Laplacian.

Let A denote the Laplace-Beltrami operator on the closed Riemannian manifold (M, g).
Recall the following classical facts from the theory of elliptical operators, see [13, thm 4.43].

Theorem 2.5. 1. The eigenvalues of A : C°(M) — C>®(M) can be arranged into a
strictly increasing sequence of non-negative numbers ()\i)keN such that )\i k—> +o00.
— 400

2. The associated eigenspaces are finite-dimensional, and they are pairwise orthogonal for
the L?-inner product (1.1) on C=(M) induced by g.

Let A > 0, we denote by V) the subspace of C*°(M) spanned by the eigenfunctions of
A associated to eigenvalues that are less or equal to A2, Each f = (fM), ... f(") € (V)"
defines naturally a map from M to R” so that we can see (V)" as a subspace of C*°(M,R").
By theorem 2.5, V) is finite-dimensional so we can apply the construction of sections 2.1
to 2.4 to (Vy)".

Since we consider a product situation, it is possible to make several simplifications. First,
the scalar product (2.2) on (V3)" is induced by the one on Vy. Thus f = (fV),..., f))isa



standard Gaussian in (Vy)" if and only if f1), ..., f(") are r independent standard Gaussian
in V. For a f € (V)" satistying this condition, fO . f0) are independent, and so are
their derivatives of any order. This means that, for every € M, the matrices of Var(f(z)),
Var(d, f) and Var(V2f) in the canonical basis of R” are block diagonal.

Another way to say this is that the kernel of (V)" is a product in the following sense.
We denote by ey : M x M — R the Schwartz kernel of the orthogonal projection onto V)
in C*°(M) and by E) the Schwartz kernel of (V},)". The kernel ey, is the spectral function of
the Laplacian and precise asymptotics are known for ey and its derivatives, see 3.

Let (41, ...,¢n) be an orthonormal basis of Vy. By (2.7),

N
(2.15) ex: (@) = D wil@)ei(y)

Let (¢1,...,¢r) denote the canonical basis of R”. The maps ¢;(; : M — R” with 1 <i < N
and 1 < ¢ < r give an orthonormal basis of (V)" and, for all  and y € M,

T

N r
Ex(z,y) =YY (#i@)¢) @ (9iy)Ce) = exl@,9) D ¢ ® G-

=1i=1 =1

Q

Lemma 2.6. Let ((1,...,¢-) be any orthonormal basis of R", for all x, y € M,

Ex(z,y) = ex(z,y) (Z G ® Cq) :

An immediate consequence of this and lemma 2.2 is that (V)" is 0-ample if and only if
ex(z,x2) > 0 for all z € M. By (2.15), this is equivalent to V) being base-point-free, that is
for every € M, there exists f € V) such that f(x) # 0.

Lemma 2.7. For all A >0, (V)\)" is 0-ample.

Proof. The constant functions on M are eigenfunctions of A associated to the eigenvalue 0.
Thus for every A > 0, V) contains all constant functions on M, hence is base-point-free. By
the above remark, (V)" is then 0-ample. O

2.6 The real algebraic setting

Let us now describe more precisely the real algebraic framework. The main difference with
what we did previously is that we consider sections of a rank r vector bundle instead of
maps to R". The local picture is the same as in sections 2.1 to 2.5, so that we can adapt
everything to this setting. But the formalism is a bit heavier.

Let X be a smooth complex projective manifold of complex dimension n. We equip X
with a real structure, that is with an antiholomorphic involution cy. We assume that its real
locus, the set of fixed points of cy, is not empty and we denote it by RX. Let £ be an ample
holomorphic line bundle over X equipped with a real structure ¢, compatible with the one
on X. By this we mean that cy o™ = mocg, where 7 : L — X stands for the projection
map onto the base space. Similarly, let £ be a holomorphic vector bundle of rank r over X,
with a compatible real structure ce.

Let hy and hg be real Hermitian metrics on £ and & respectively, that is ¢ (hs) = he
and ¢t (he) = he. We assume that h, is positive in the sense that its curvature form w is
Kahler. Locally we have:

w/ = %65 In (hL(C, C))
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where ( is any non-vanishing local holomorphic section of £ on the open set 2 C X. This
form corresponds to a Hermitian metric gc = w(+,¢-) on X whose real part is a Riemannian
metric g. We denote by dVx the volume form “+ on X.

Remark 2.8. The normalization of w is the one of [3, 5], but differs from our references
concerning peak sections [16, 31]. This will cause some discrepancies with the latter two in
section 3.2. With our convention, the Fubini-Study metric on RP™ induced by the standard
metric on the hyperplane line bundle O(1) is the quotient of the Euclidean metric on S™.

Let d € N, the vector bundle £ ® £ comes with a real structure cq = ce ® ¢ compatible
with cx and a real Hermitian metric hq = he ® h. We equip the space I'(€£ ® L) of smooth
sections of £ ® £ with the L? Hermitian product defined by:

(2.16) Vsy, 89 € F(g X ﬁd), <81 ,82> = / hd(Sl, 82) dVy.
X

We know from the vanishing theorem of Kodaira and Serre that the space H(X, £ ® £4)
of global holomorphic sections of £ ® £ has finite dimension N; and that Ny grows as a
polynomial of degree n in d, when d goes to infinity. We denote by:

RH' (X, e L") ={se H* (X,E® L") |cgos=s0cx}

the space of real holomorphic sections of £® L%, which has real dimension Ny. The Hermitian

product (2.16) induces a Euclidean inner product on RH®(X,€ ® L£?). Notice that we

integrate on the whole of X, not only on the real locus, even when we consider real sections.
If s € RHY(X,E ® L) is such that its restriction to RX vanishes transversally, then its

real zero set Zs = s71(0) NRX is a (possibly empty) submanifold of RX of codimension 7.

We denote by |dVs| the Riemannian measure induced on this submanifold by the metric g.
As in 2.2, we consider the incidence manifold:

(2.17) Sq={(s,2) e RHO(X,E @ L) x RX | s(z) =0} .

In this setting, X4 is the zero set of the bundle map Fy : RHO(X, £ @ L) x RXY — R(E ® L?)
over RX defined by Fy : (s,2) — s(z). In a trivialization, the situation is similar to the one
in 2.2. Thus, if RHY(X,€ ® L?) is 0-ample, ¥4 is a smooth manifold equipped with two
projection maps, 7; and 7o, onto RH?(X, £ ® £4) and RX respectively. By Sard’s theorem,
the discriminant locus of RH?(X, € ® £4) then has measure 0 for any non-singular Gaussian
measure, since it is the set of critical values of .

Remark 2.9. Here, by RH?(X,€ ® L%) is 0-ample we mean that, for every z € RX, the
evaluation map 529 : s € RHOY(X,€ ® L) — s(x) € R(E ® L4), is onto.

Let V¢ denote any real connection on £® £, that is such that for every smooth section s,
vd (caosocy) =cqo (Vds) odcy. For example one could choose the Chern connection. We
consider the vertical component V?F of the differential of F, whose kernel is the tangent
space of 34. For any (sg, ) € 34 the partial derivatives of Fy are given by:

(2.18) IIF(sg,x) = 594 and OIF(s0,2) = Viso.

Note that we only consider points of the zero section of £®@ L%, hence all this does not depend
on the choice of V.

Let Py (resp. P») denote the projection from X x X’ onto the first (resp. second) factor.
Recall that (£ ® £4) X (€ ® L) stands for the bundle Pj(£ ® L) ® Py (€ ® L) over X x X.
Let E4 denote the Schwartz kernel of the orthogonal projection from the space of real smooth
sections of £ ® £4 onto RH®(X, € ® £4). Tt is the unique section of (£ ® L£4) X (£ ® £4) such
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that, for every real smooth section s of £ ® £, the projection of s on RH?(X,£ @ L?) is
given by:

s (Balz,),s) = /  halEala.). () 4V

Here, hg acts on the second factor of (€ ® £%), ® (€ ® L?),.
The kernel E; satisfies a reproducing kernel property similar to (2.6):

(2.19) Vs e RHO(X,E @ L), Vo e RX, s(x) = (E(z,-),f) € R(E @ LY),.

If (s1,...,5n,) is an orthonormal basis of RH®(X, £ ® £%) then for all x and y € X,

Na

(2.20) Bu(z,y) =Y si(2) @ 5:(y).

i=1

For any x € RX, this shows Ey(x,z) is in the span {( ® ¢ | ( € R(£ ® £4),.}. We also get
the analogue of lemma 2.7.

Lemma 2.10. RH(X,E ® L£9) is 0-ample if and only if for any x € RX, Ey(x,x) is a
positive-definite bilinear form on (R(€ ® L4),)*.

Let s be a standard Gaussian vector in RH(X, & @ £%), (s(x))zerx defines a Gaussian
field with values in € ® £¢ and its covariance function is a section of (€ ® £4) K (£ ® L£%).
The same proof as for proposition 2.3 gives the following.

Proposition 2.11. Let E; be the Schwartz kernel of RHY(X,E @ £%). Let s ~ N(0,1d) in
RHO(X,E ® L), we have:

Vo,y e X, Cov(s(x),s(y)) = Els(z) @ s(y)] = Ea(z,y).
Remark 2.12. The kernel E is also the kernel of the orthogonal projection onto H%(X, E@L4)

inl (5 ® Ed) for the Hermitian inner product (2.16), that is the Bergman kernel of £ ® £%.

As in 2.4, let VRY denote the Levi-Civita connection on (RX,g). This connection and
V< induce the connection VRY ® Id +1d ®V% on T*(RX) ® (£ ® £L%). We denote by V24
the second covariant derivative (VEY ® Id +1d ®V?) o V4.

Let z € RX and let 7 (€ ® £%) denote the space of real k-jets of real smooth sections of
E® L4 at x. On the space of smooth real sections of £ ® L4 we define

gL s (s(z), Vis) and G2 s (s(x), Vis, V24s),
where V%s and V2?5 are implicitly restricted to T,RX. These maps induce isomorphisms:

THE@ LY ~R(E® LY, ® (RDTIRX), and
TJ2E@ LY ~R(E® LY, ® (RO T/RX @ Sym(T;RX)),
Note that the above isomorphisms are not canonical since they depend on the choice of V.

We have the following equivalent of lemma 2.4, with the same proof, and similar notations
for the partial covariant derivatives.

Lemma 2.13. Let E; denote the Bergman kernel of RH(X,E® L) and let s be a standard
Gaussian vector in RH(X,E @ LTY). Let v € RX, then j2%(s) is a centered Gaussian vector,

12



and its variance form is characterized by:

(2.21) Var(t) =E[s(z) ® s(x)] = Eq(z, x),

(2.22) (L) =E[Vis® Vis| = (0,0,Eq)(z, ),
(2.23) (S) =E[V2s® V2s| = (05,204 Ea)(z, ),
(2.24) Cov(t L) =E[s(z) ® Vis] = (0,Eq)(z, z),

( ) ) E[s V27d ] = (OyyEa)(z, z),

( ) ) E[ fs @ vy } (020y 5 Eq)(x, ).

3 Estimates for the covariance kernels

We state in this section the estimates for the kernels described above and their first and
second derivatives. These estimates will allow us to compute the limit distribution for the
random 2-jets induced by the Gaussian field (f(z))zenr (vesp. (8(2))zery)-

In the case of the spectral function of the Laplacian ey, the asymptotics of 3.1 were
established by Bin [4], extending results of Hormander [20]. In the algebraic case, Bleher
Shiffman and Zelditch used estimates for the related Szegé kernel, see [5, thm 3.1]. In terms
of the Bergman kernel, a similmar result was established in [3]. Both these results concern
line bundles. Here, we establish the estimates we need for the Bergman kernel in the case of
a higher rank bundle using Hérmander-Tian peak sections (see 3.2 and 3.3 below).

3.1 The spectral function of the Laplacian

We consider the harmonic setting of section 2.5. Let 2z € M and let (z1,...,2,) be normal
coordinates centered at x. Let (y1,...,yn) denote the same coordinates in a second copy
of M, so that (z1,...,2Zn,¥1,...,Yn) are normal coordinates around (z,x) € M x M. We
denote by 9,, (resp. 9,,) the partial derivative with respect to x; (resp. y;), and similarly
Oz, ,z; (resp. Oy, ;) denotes the second derivative with respect to z; and x; (resp. y; and y;).
Let

1 1 1

- — = s—— d = n ’
VimT(+ny T amTierr 0 P mTrBn)

where I" is Euler’s gamma function. Let us recall the main theorem of [4].

Yo =

Theorem 3.1 (Bin). Let V) be as in section 2.5 and let ey denote its Schwartz kernel. The
following asymptotics hold, uniformly in x € M, as A — +oo:

(31) 6/\(1', ZL') - 70>‘n + O()‘nil)a
(3.2) Op,ex(x,x) = O(\"),
An+2+0 )\nJrl £ — k,
(3.3) O aren(z, ) ( 1) i
ON"tY) ifi#k,
NAPPEL O if i =g,
(3.4) Oz, 0y,ex(z, ) 1) f ]
O™ ifi# 3,
(3.5) Oz 2.0y, ex(w,2) = O( AH2))
372 )\”+4+O Y ifi=j=k=1,
(3.6) Oz, 21,0y, €A (T, ) PANTALOWN?) ifi=jAk=lori=k#j=1,

O(\"*3)  otherwise.
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Since ey is symmetric, this also gives the asymptotics for 9, ex, 0y, y,ex and 0., 0y, 4, €x
along the diagonal. This theorem, together with lemma 2.6, gives the estimates we need for
the kernel Fy of (Vy)".

We will need the following relations:

(3.7) S and MY
4t 72

3.2 Hormander-Tian peak sections

We now recall the construction of Héormander-Tian peak sections in the framework of 2.6.
Let X be a complex projective manifold. Let £ be a rank r holomorphic Hermitian vector
bundle and £ be an ample holomorphic Hermitian line bundle, both defined over X. We
assume that X, £ and £ are endowed with compatible real structures, and that the Kahler
metric gc on X is induced by the curvature w of L.

The goal of this subsection is to build, for every d large enough, a family of real sections
of £ ® L with prescribed 2-jets at some fixed point z € RX. Moreover, we want this family
to be orthonormal, up to an error that goes to 0 as d goes to infinity. Using these sections,
we will compute (in 3.3 below) the asymptotics we need for the Bergman kernel.

Let x € RX and (z1,...,x,) be real holomorphic coordinates centered at & and such
that (61 b aaT) is orthonormal at . The next lemma is established in [17, lemma 3.3],

up to a factor coming from different normalisations of the metric.

Lemma 3.2. There exists a real holomorphic frame (o for L, defined over some neighborhood
of x, whose potential —In(hz (o, (o)) vanishes at x, where it reaches a local minimum with
Hessian gc.

We choose such a frame (g. Let ((1,...,() be a real holomorphic frame for £ over a
neighborhood of x, which is orthonormal at z. Since X’ is compact, we can find p > 0, not
depending on z, such that local coordinates and frames as above are defined at least on the
geodesic ball of radius p centered at x. The following results are proved in [16, section 2.3].
See also [15, section 2.2] and the paper by Tian [31, lemmas 1.2 and 2.3], without the higher
rank bundle £ but with more details.

Proposition 3.3. Let p= (p1,...,pn) EN", p' >p1 4+ +p, and g € {1,...,r}.
There ezists dy € N such that, for any d > dy, there exist Cqp >0 and s € RHO(X, £ @ L?)
such that ||s|]| =1 and

S(1, o wn) = Cay (5ot + 01, m))) (14 0(d7>) ) ¢ @ ¢

in some neighborhood of x, where the estimate O(d’Qp,) is uniform in x € RX.
Moreover, dy depends on p’ but does not depend on x, p, q or our choices of local coor-
dinates and frames. Finally, Cqp 1s given by:

2
(ot /{”( )< " - abe PR (65.CF) AV

The following definitions use proposition 3.3 with p’ = 3 and the corresponding dg.

Definitions 3.4. For any d > dy and g € {1,...,r} we denote the sections of RH®(X,ERL?)
given by 3.3 by:

. sg’qforplz---:pn:&

s?’q for p; =1 and Yk # i, pp = 0,
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o s for p;=2and Yk # i, pj, =0,
° SZ}Q for p; =p; =1and Vk ¢ {i, j}, pr = 0, when i < j.

Computing the values of the corresponding Cy,, (see [15, lemma 2.5]), we get the following
asymptotics as d goes to infinity. Once again, O(d~!) is uniform in .

Lemma 3.5. For every g € {1,...,r}, we have:

(3.8) 0= D (1 ol a)l)) (L 0@ G @ G

ﬂ'
n+1

(3.9) Vi€ {l,...,n}, sP7= dﬁn (w+ O, 2)I®)) (14 0(™) ¢ @ &,
(3.10)

n-+2 2
Vie{l,...,n}, sii= dﬁn <%+o(||(z1,...,xn)||6)>(1+o(d1))§q®§g,

and finally, Vi,j € {1,...,n} such that i < j,

n-+2
(3.11) st =\ T (g + 0 (I, )lP)) (1 0@ 7)) G @

1
Remark 3.6. These values differ from the one given in [16, lemma 2.3.5] by a factor ([, dVix)?
and some power of /7 because we do not use the same normalization for the volume form.
For the same reason they also differ from [31, lemma 2.3] by a factor /7.

The sections defined in 3.4 are linearly independent, at least for d large enough. In fact,
they are asymptotically orthonormal in the following sense. Let Hgdyx C RHY(X,E ® LY
denote the subspace of sections that vanish up to order 2 at .

Lemma 3.7. The sections (S?’q)lgqgr and (s?f) 1<q<r defined in 8.4 have L?-norm equal
0<i<n Y 1i<g<n

to 1 and their pairwise scalar product are dominated by a O(d~!) independent of x. More-

over, their scalar product with any unit element of Hgﬁz is dominated by some O(d~') not

depending on x.

3.3 The Bergman kernel

In this section we compute some asymptotics for the Bergman kernel and its derivatives.
Let € RX and let (z1,...,2,) be real holomorphic coordinates around x such that
(66—:“, cee %ﬂ) is orthonormal at x. We denote by (y1,...,yn) the same coordinates as
(z1,...,2,) in a second copy of X. Let (o be a real holomorphic frame for £ given by
lemma 3.2 and ((3, ..., () be a real holomorphic frame for £ that is orthonormal at x. For
simplicity, we set Cg = (p(z) ® (§(z) for every p € {1,...,7} and d € N, so that (¢{,...,¢?)
is an orthonormal basis of R(€ ® £%),..

Let V¢ be any real connection on £ ® £¢ such that, for every p € {1,...,7}, V4((, ® ()
vanishes in a neighborhood of x. In this neighborhood, we have for every function f:

3.12)  VUfG o) =deed and  V2UfG o) = ViR e,

where V24 stands for the associated second covariant derivative, as in 2.6. This choice of
connection may seem restrictive but the quantity we want to compute do not depend on a
choice of connection so that we can choose one that suits us.
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As usual, V? induces a connection on (£ ® £L4) K (£ ® L%). We denote by 8¢, and 8%, the
partial covariant derivatives with respect to x; and y; respectively. We also denote by 8;11 o

(resp. a;ji,yj) the second derivative with respect to x; and x; (resp. y; and y;).

Proposition 3.8. The following asymptotics hold as d — +oo. They are independent of
x € RX and of the choice of the holomorphic frame ((1, ..., ().

dn
- dn—l - —
(3 13) <Ed($,$) Cd®cd> 7T"+O( ) pr D,
O(d™™')  otherwise,
3.14) (08 Eq(z,x), ¢l @ ¢h) = 0(d"2),
(3.15) (07, o Balw,2), G @ () = O(d"),
dn+1 " ] , ) ]
(3.16) (00,00 Bulw.o) Gl ¢i ) = § o T OW) Ap=rfandi=],
O(d") otherwise,
(3.17) (02, 4,08 Balw,2) .G @ G ) = O@@*),
(3.18)
dn+2
2 +0@d"™) ifp=p andi=j=k=1,
ﬂ-n
d d d o prd\ _ n+2
(08,00, Balos2) G G ) = 4 42 +O0@d™™) ifp=p andi=j#k=1,

O(d"™*)  otherwise.

Remark 3.9. Since RH(X, £ ® L?) is not a product space, the terms with p # p’ are usually
not zero. However they are zero when & is trivial, for example.

Corollary 3.10. For every d large enough, RH(X, € ® L%) is 0-ample.

Proof of corollary 3.10. Let x € RX. By (3.13), the matrix of E4(z,z) in any orthonormal
basis of R(E ® L), is £-1,(1+ O(d™!)). Then E4(z, ) is positive-definite for d larger than
some do independent of . By lemma 2.10, RH?(X, & @ £%) is 0-ample for d > dj. O
Proof of proposition 3.8. First we build an orthonormal basis of RH?(X, £ ® L4) by applying
the Gram-Schmidt process to the family of peak sections. Then we use formula (2.20) and
the asymptotics of lemma 3.5 to prove the proposition.

We order the sections of definition 3.4 as follows:

(3.19)
d,1 d,r d,1 d,r d, 1 d,r .d,1 d,r d,1 d,r d,1 d,r
80" s 380 ST e ST ey Sy ey Sy ST s 8115 82/2s 582705 -y Sl -5 Sl
d,1 d,r d,1 d,r d,1 d,r d,1 d,r d,1 d,r
T CTRRRTE-EI TR0 TRREIN 1 i PRI i N SR o PN S PR SA (RN MU g

This family is linearly independent for d large enough and spans a space whose direct sum
with HY , is RHY(X,E ® L£%). We complete it into a basis B of RH(X, € ® L%) by adding
an orthonormal basis of Hgm at the end of the previous list.

We apply the Gram-Schmidt process to B, starting by the 1ast elements and gomg back-

~dr ~d,1
wards. Let B denote the resultmg orthonormal basis, and 50 ey sff, s’li’l, & n de-

note its first elements. This way, §," n 18 a linear combination of sn_1 » and elements
,

of Hg,m, and 53’1 is a linear combination of (possibly) all elements of B. We denote by
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(bi) | cjc rntnm+2) the first elements of B listed above (3.19) and by (b;) the corresponding
X 2

elements of B.
Let 7 € {1,...,%} and assume that for any k£ < ¢ and any j > ¢ we have

<b;c ,l;j> = O(d™'). Note that this is the case for i = 5(n + 1)(n + 2). Then,

bi = 3o (bi by ) by = i
b= Xy (bbb — i
where 7; stands for the projection of b; onto Hf ,. By lemma 3.7, [mi|? = (b, m) = O(d™).

bi— Y0 <bi,5]—> by —m

the above hypothesis once again, we get:

(3.20) by =

2
Then by our hypothesis =1+ 0(d™!). Using lemma 3.7 and

<bk75i> = (1+0d™)) | (b, bi) - Z <bk ;Z;j> <bi;l~7j> — (b, m) | =0(@d™Y),

for any k£ < i. By induction, for any 1 <7 < j < M, <bi,l;j> =0(d™1).

Using (3.20), for any i € {1, o W} bi = (bi+0(d™1) 0,0, by—m) (1+0(d1)).
Another induction gives:

(3.21) bi=|bi+0d™")) bj+7 | (1+0d™)),
J>i

for any i, where 7; € HY, is such that [7]]> = O(d~'). Moreover, all the estimates are

independent of z and ¢ € {1, ceey M}
Among the elements of B, only 58 o Eg’T do not vanish at z. Using formula (2.20),
we get Ey(z,r) = Z 509(z) ® 509(x). Then,
1<g<sr
(Balw,2).G 0 Gy = 3 (55°@) ) (557 (@) G )
q=1

Recall that by = sg L by = Eg’T. Because of (3.21), for all ¢ € {1,...,r},

<§§ﬂq(z),4§> = <sg’q(z),cg> Lo Z< 0 () §d>

q'=1

(3.22) 1 1
— VI +0d™Y) ifp=aq,
) Rv= (1+0(d™)) ifp=gq
O(dz™1) otherwise,

where the last equality comes from equation (3.8). This etablishes (3.13).
Likewise,

(0¢ Eq(z,2), @ )

<Z ~dq<>§d®cd>

1<q<r

> (b ¢f) (49,65,

1<q<r
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The description (3.21) shows that 92, ég’q(:c) does not necessarily vanish, but it equals:

o@d™) Z ot s?’q, ().
1<q'<r
1<isn

By (3.9), one gets that <8;li§g’q(z) ,Cg> = O(d%), for all p and ¢. Besides by (3.22),
<§g’q(z) ,Cg> = O(d?) for all p and g. This proves (3.14).

The remaining estimates can be proved in the same way, using lemma 3.5 and the fact
that the estimates for corresponding elements of B and B are the same. O

4 An integral formula for the Euler characteristic of a
submanifold

The goal of this section is to derive an integral formula for the Euler characteristic of a
submanifold defined as the zero set of some f: M — R", in terms of f and its derivatives.
This section is independent of the previous ones and the results it contains are only useful
for computing expected Euler characteristics (theorems 1.2 and 1.4).

We start by recalling the formalism of double forms, which was already used in this
context by Taylor and Adler, see [1, section 7.2]. The Riemann curvature tensor and the
second fundamental form of a submanifold being naturally double forms, this provides a
useful way to formulate the Chern-Gauss-Bonnet theorem and the Gauss equation. This is
done in subsections 4.2 and 4.3 respectively. Finally, we express the second fundamental
form of a submanifold in terms of the derivatives of a defining function and prove the desired
integral formula in 4.4.

4.1 The algebra of double forms

We follow the exposition of [1, pp. 157-158]. Let V' be a real vector space of dimension n.
For p and q € {0,...,n} we denote by A”?(V*) the space A*(V*) @ A (V*) of (p+ q)-linear
forms on V' that are skew-symmetric in the first p and in the last ¢ variables. The space of
double forms on V is:

(4.1) NN V)= D AV
0<p,q<n
Elements of A\?(V*) are called (p, q)-double forms, or double forms of type (p,q). We set:

n

(4.2) AV (V) =P A" (V).

p=0

Note that /\1’1 V* is the space of bilinear forms on V.

On A*(V*)@ A*(V*) we can define a double wedge product. It extends the usual wedge
product on \*(V*) ~ ®Z:0 APP(V*), so we simply denote it by A. For pure tensors a ® /3
and o/ ® B € A\*(V*) @ \*(V*), we set:

(4.3) (@@p) A @p) =(and)e (BAF)

and we extend A to all double forms by bilinearity. This makes A*(V*) ® A*(V*) into an
algebra, of which A*°(V*) is a commutative subalgebra. We denote by ¥ the double
wedge product of a double form v € A**(V*) with itself k times.
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Lemma 4.1. Let « be a symmetric (1, 1)-double form on'V, then for every x,y,z andw €V,

a"?((2,y), (z,w)) = 2 (a(z, 2)a(y,w) - alz,w)a(y, 2)).

Proof. Let (e1,...,e,) be a basis of V and (e7,...,e}) its dual basis. We have:

’rn

a= g kel ® e, and then o = E airagi(e; Nej) @ (e Aep).
1<i,k<n 1<,k I<n

Note that we do not restrict ourselves to indices satisfying ¢+ < j and k < [ as is usually
the case with skew-symmetric forms. By multilinearity, it is sufficient to check the result on
elements of the basis. Let 4,7,k and [ € {1,...,n}, then,

OéAQ((ei, €j), (er,er)) = Qi Q] — QO — QGO + QG QLG
= 2(aupj — o) (since « is symmmetric)
= 2(ale;, ex)alej, e1) — ales, er)alej, er)).

O

We can consider random vectors in spaces of double forms. The following technical result
will be useful in the proofs of theorems 1.2 and 1.4. See [1, lemma 12.3.1] for a proof.

Lemma 4.2. Let V' be a vector space of finite dimension n. Let a be a Gaussian vector in
/\1’1 V*. If a is centered, then for any p < 5,

B[] = 220 (8 [0"?)"".

2rp!
Assume now that V' is endowed with an inner product. It induces a natural inner product
on A*(V*) such that, if (eq,...,e,) is an orthonormal basis of V,
{e;/\---Ae;; 1<p<nandl<i <¢2<---<¢p<n}

is an orthonormal basis of A*(V*). We define the trace operator Tr on A**(V*) in the
following way. If a ® 8 € A**(V*) is a pure tensor, then:

(4.4) Tr(a® B) = (a, B)

and we extend Tr to A**(V*) by linearity.

Let M be a smooth manifold of dimension n. Applying the previous construction point-
wise to T, M, we define the vector bundle A*(T*M) ® A*(T*M) on M. Sections of this
bundle are called differential double forms on M, and we can take the double wedge product
of two such sections. Finally, if M is equipped with a Riemannian metric, we have a trace
operator Tr which is defined pointwise by (4.4). This operator is C°°(M)-linear and takes
sections of the subbundle A**(T*M) = @7 _, A”*(T*M) to smooth functions.

4.2 The Chern-Gauss-Bonnet theorem

Let (M, g) be a closed smooth Riemannian manifold of dimension n. We denote by VM the
Levi-Civita connection of M, and by & its curvature operator. That is k is the 2-form on M
with values in the bundle End(TM) = TM ® T*M defined by:

(X, Y)Z =V¥VM 7z - v¥viZ - vfggy]z

for any vector fields X, Y and Z. Here [X, Y] is the Lie bracket of X and Y.
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We denote by R the Riemann curvature tensor of M, defined by:
R(X,Y,Z,W) = g(x(X, Y)W, 2),

for any vector fields X, Y, Z and W on M. This defines a four times covariant tensor on M
which is skew-symmetric in the first two and in the last two variables, hence R can naturally
be seen as a (2,2)-double form. All this is standard material, except for the very last point,
see for example [21, section 3.3].

We now state the Chern-Gauss-Bonnet theorem in terms of double forms. Recall that
|dVar| denotes the Riemannian measure on M (see (2.1)).

Theorem 4.3 (Chern-Gauss-Bonnet). Let M be a closed Riemannian manifold of even
dimension n. Let R denote its Riemann curvature tensor and x(M) denote its Euler char-
acteristic. We have:

1 s

If M is orientable, this can be deduced from Atiyah-Singer’s index theorem. The general
case is treated in [27]. The above formula in terms of double forms can be found in [1,
thm 12.6.18], up to a sign coming from different sign conventions in the definition of R.

Remark 4.4. If M is a closed manifold of odd dimension then x (M) = 0, see [18, cor 3.37].

4.3 The Gauss equation

Let (M, g) be a smooth Riemannian manifold of dimension n and M be a smooth submanifold
of M of codimension r € {1,...,n—1}. We denote by VM and V the Levi-Civita connections
on M and M respectively. Likewise, we denote by R and R their Riemann curvature tensor.
We wish to relate R and R. This is done by the Gauss equation, see proposition 4.5 below.

We denote by II the second fundamental form of M C M which is defined as the section
of TAM @ T*M @ T*M satisfying:

(4.5) I(X,Y) = — (V%Y - @XY) = (V¥Y)*

for any vector fields X and Y on M. Here, (Vﬁ\g Y)L stands for the orthogonal projection

of VMY on TLM. Tt is well-known that IT is symmetric in X and Y, see [21, lemma 3.6.2].
The second fundamental form encodes the difference between R and R in the following
sense, see [21, thm 3.6.2].

Proposition 4.5 (Gauss equation). Let X, Y, Z and W be vector fields on M, then:

R(X,Y,Z,W)=R(X,Y,Z,W) + (Il(X, Z) , 1I(Y,W)) — (X, W) ,11(Y, Z)).

We want to write this Gauss equation in terms of double forms. Let = € M and X, Y,
Z and W € T,M. Let U ~ N(0,1d) in T, M, by lemma A.8:

(IL(X, Z) , 1Y, W)) — (II(X, W), 1LY, Z))
= E[(IN(X, Z),U) (II(Y,W),U) — (I(X, W), U) (1Y, Z),U)].

Then we apply lemma 4.1 to the symmetric (1, 1)-double form (IT, U) for fixed U. This gives:
1
(X, 2), 1Y, W) = (X, W), 1LY, 2)) = 5 E[(1,0) ((X,Y),(Z,W)]

We proved the following version of the Gauss equation.
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Proposition 4.6 (Gauss equation). Let (M,g) be a Riemannian manifold and let M be
a smooth submanifold of M, such that dim(M) > dim(M) > 1. Let R and R denote the
Riemann curvature of M and M respectively, and let 11 be the second fundamental form of
M C M. Then, in the sense of double forms:

- - 1
vee M, R =R()+3E [(H(x) : U>A2] ,
where U ~ N(0,1d) with values in Ty M, and R(x) is implicitly restricted to Ty M.

4.4 An expression for the second fundamental form

Let us now express the second fundamental form II of a submanifold M of M defined as the
zero set of a smooth map f : M — R". For this we need some further definitions.

Let V and V' be two Euclidean spaces of dimension n and r respectively. Let L : V — V'
be a linear surjection, then L* is injective and its image is ker(L)*, so that LL* is invertible.

Definition 4.7. Let L : V — V' be a surjection, the pseudo-inverse (or Moore-Penrose
inverse) of L is defined as LT = L*(LL*)™! from V' to V.

The map LT is the inverse of the restriction of L to ker(L)*. It is characterized by the fact
that LL' is the identity map of V/ and LTL is the orthogonal projection onto ker(L)= .

Let f : M — R” be a smooth submersion and assume that M = F71(0). Recall that
V2f =vVMgf.

Lemma 4.8. Let M be a Riemannian manifold and let M C M be a submanifold of M
defined as the zero set of the smooth submersion f : M — R". Let Il denote the second
fundamental form of M C M. Then,

Ve e M, I(z)=(daf)' o VIS,
where V2 f is implicitly restricted to T,M.

Proof. Let z € M, since II(z) and (d,f) take values in T, M+ = ker(d f)*, we only need
to prove that d, f o II(z) = V2f. Let X and Y be two vector fields on M. The map df - Y

vanishes uniformly on M, hence:
do(df -Y) - X = (VYdf), Y +dof - (VYY) =0,
Then, using equation (4.5) and ker(d, f) = T, M,
(dof o W(2))(X,Y) = —dof - (VYY) = —dof - (VXY) = (VX df). - Y = V2f(X,Y). O

Proposition 4.9. Let (M, g) be a closed Riemannian manifold of dimension n and R its
Riemann curvature. Let f : M — R" be a smooth submersion and Zy = f=(0). We denote
by Ry its Riemann curvature and by |dVy| the Riemannian measure on Zy.

If n —r is even, the Euler characteristic of Zy is:

1
4.6 Zf) = ——— Tr (R ATy AV,
(4.6) X2 = Gy |, T (BRs) Vi),
where m = 5=, Furthermore, for all v € Zy,

(47) Ry(x) = R(x) + 3B [(V2F . (o))" ()]

where U is a standard Gaussian vector in T, M .
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Proof. First, we apply the Chern-Gauss-Bonnet theorem 4.3 to Zf, which gives (4.6). Then
let z € Zy and U ~ N(0,1d) in T, M, by proposition 4.6,

1
Ry(x) = R(z) + 5B |(L(2),U)"°]
where II; is the second fundamental form of Zy C M. We conclude by lemma 4.8. O

Proposition 4.9 is also true for zero sets of sections. Let s be a section of some rank r
vector bundle over M that vanishes transversally and Zs be its zero set. Let |dV;| denote
the Riemannian measure on Z5 and R denote its Riemann tensor. As above, we can apply

theorem 4.3, so that:

1
(48) W20 = s [ (B ™) V.
TEZs

(2m)™m)

The result of proposition 4.6 is still valid for Zs. Besides, the same proof as in 4.8 shows
that, for any connection V%, the second fundamental form II, of Z, satisfies:

Vo € Z,, () = (Vis)T o V2.

Remark 4.10. This is not surprising since the terms of this equality do not depend on a
choice of connection and the result in a trivialisation is given by lemma 4.8.

Finally, for every connection V% and every = € Z,, we get:
1
(4.9) Ry(@) = R(@) + 5E [(V2%s, (Vi)™ (U))"*] .

where U is a standard Gaussian vector in T, M, as in (4.7).

5 Proofs of the main theorems

We now set to prove the main theorems. The proofs will be detailed in the harmonic case
but only sketched in the real algebraic one, since they are essentially the same.

5.1 The Kac-Rice formula

First, we state the celebrated Kac-Rice formula, which is one of the key ingredients in
our proofs. This formula is proved in [6, thm 4.2], see also [2, chap 6]. For the reader’s
convenience, we include a proof in appendix C.

Definition 5.1. Let L : V — V' be a linear map between Euclidean vector spaces. We
denote by |det* (L)| the orthogonal determinant of L:

|det™ (L)| = v/det(LL*),
where L* : V! — V is the adjoint operator of L.

Remark 5.2. If L is not onto then |det™ (L)| = 0. Else, let A be the matrix of the restriction
of L to ker(L)* in any orthonormal basis of ker(L)* and V’, we have |det* (L)| = |det(A)|.

As is section 2, we consider a closed Riemannian manifold M of dimension n and a
subspace V' C C®(M,R") of dimension N (recall that 1 < r < n). We assume that V is
0-ample, in the sense of section 2.2, so that

S={(f,x) eV x M| f(x)=0}

is a submanifold of codimension 7 of V' x M. Let f be a standard Gaussian vector in V.
Then Z; is almost surely a smooth submanifold of codimension r of M (see 2.2). Recall that
E denotes both the Schwartz kernel of V and the covariance function of (f(z))zenm-
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Theorem 5.3 (Kac-Rice formula). Let ¢ : ¥ — R be a Borel measurable function,

1 1
Ver /zeM v/det E(z, x)

whenever one of these integrals is well-defined.

El o(f,) [dVy| E[6(f,)|det* (duf)] | F(@) = 0] [V

TEZy

The expectation on the right-hand side is to be understood as the conditional expectation
of ¢(f,x)|det™ (dyf)| given f(x) = 0. By det(E(z,z)), we mean the determinant of the
matrix of the bilinear form E(x,z) in any orthonormal basis of R".

5.2 Proof of theorem 1.1

We start with the expectation of the volume, which is the toy-model for this kind of compu-
tations. In this case, the proof is closely related to [5, 6], in a slightly different setting. The
first step is to apply Kac-Rice formula above with ¢ : (f,z) — 1. We get:

1 1
V2T /meM Vdet(E(z, z))

Letz € M, j1(f) = (f(x),d.f) is a Gaussian vector in R"® (R&T M) whose distribution
only depends on the values of E and its derivatives at (z, z), see lemma 2.4. Thus E[Vol (Zy)]
will only depend on the values of F and its derivatives along the diagonal as was expected
from [5, thm 2.2].

The next step is to compute pointwise asymptotics for the integrand on the right-hand
side of (5.1). We will use lemma 2.4, which describes the distribution of j.(f), and the
estimates of section 3. Both in the harmonic and the algebraic settings, the pointwise
asymptotic turns out to be universal: it does not depend on x or even on the ambient
manifold. This is because the distribution of j1(f) is determined by the asymptotics of
section 3 which are universal.

We now specify to the harmonic setting of section 2.5, that is V' = (V)" for some non-
negative A. Recall that (V)" is 0-ample (lemma 2.7) so that equation (5.1) is valid in this
case. Let x € M, by lemma 2.6 and (3.1) we have:

(5.1)  E[Vol(Z)] =

E[|det* (dof)] | £(2) = 0] aVau] .

(5.2) det(Ex(z,2)) = (ex(z,2))" = (70A™)" (1+O0(\1)).

Then we want to estimate the conditional expectation in (5.1). Before going further, the
asymptotics of section 3.1 suggest to consider the scaled variables:

(5.3)

1 1
tx, L) = f(x), do f
instead of jl(f). This is a centered Gaussian vector whose variance is determined by (5.3).
Besides, by definition 5.1, the orthogonal determinant is homogeneous of degree r for linear
maps taking values in R", so that:

(5.4) E[ldet (@.f)] | £z) = 0] = VA2 B [|dett (1] | 1a = 0]

Lemma 5.4. For every x € M, we have:

E{\deﬁ (Ly)] ‘ ty = o} - @’”%(1 romy),

where the error term does not depend on the point x € M.
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We postpone the proof of this lemma for now and conclude the proof of theorem 1.1.
By (5.2), (5.4) and lemma 5.4, for every = € M,

1 n A Y AP t2 TVOI(S”_T) _1
ez det(E(z,z))EUdet (=) }f(x)_o}_<\/ 'YO/\n> Vo (O

where the error term does not depend on the point 2 € M. By (3.7) this equals:

A\ Vol (8™ ) »
(m) Vo) (OO

Plugging this into equation (5.1) gives theorem 1.1.

Remark 5.5. The same proof shows that, for any Borel measurable function ¢ : M — R, we

have:
_ (HLH) (/M¢|de|) % Lo,

We still have to prove lemma 5.4. For this, we need to compute the variance of Ly given
tx = 0. Let (z1,...,2,) be normal coordinates centered at x, and ((i,...,¢.) denote the
canonical basis of R”. We equip R” ® (R & T M) with the orthonormal basis:

E ¢ |dVy|

Zy

(55) (Cl,...,CT,C1®d.’L'1,...,C1®d$n,<‘2®dl‘1,...,<—2®d$n,...,CT®d$1,...,€r®d$n).

Let A(A) denote the matrix of Var(ty, L) in this basis. This matrix splits as

o) A= (Am) Ay,

where Ago(A) and Aq1(A) are the matrices of Var(ty) and Var(Ly) and Agy(A\) = "Ajg()) is
the matrix of Cov(ty, Ly). We can decompose further A1y and A7 into blocks of size r x r:

(5.7) Aip(N) = (Azio()‘))1gign J A(N) = (A?lj()‘))1gi7jgn .

By the definition (5.3) of (¢x, L)), these blocks are obtained by scaling the corresponding
blocks in the matrix of Var(j1(f)). Lemmas 2.4 and 2.6 tell us that each one of these blocks
is a scalar matrix. Then, using the estimates of section 3.1:

(5.8) Ago(N) = @) g o),
Yo"
. ; Oz,ex (2, ) 1
(59) Vi € {1, ce ,TL}, AlO()\) = W IT = O()\ ),
(5.10)

and, Vi,j € {1,....n}, AW =
jed } 11 (A) L AnF2 0()\*1) otherwise,

amiayjek(x’x) = {IT+O()\_1) if =7,
where [, stands for the identity matrix of size r. Thus A(X) = I.(41) + O(\71) and, by
corollary A.11, thq distribution of L) conditionned on t) = 0 is a centered Gaussian with
variance operator A(\) = Id +O(A~1). Note that these estimates do not depend on z or our
choices of coordinates.
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Proof of lemma 5.4. Let Ly ~ N(0,A()\) in R” ® T M. For X large enough, A()) is non-

singular, and we have:

(5.11) ]E[|detL (Ly)| ’ th = 0} = EHdetL (LA)H

1 1+
_ mm\/m/meti (L)| exp <—§<A(A) L,L>) dr,

where dL stands for the Lebesgue measure on R” @ Ty M. Beware that we see L as a linear
map in the term |det (L)| but as a vector in A(A\)"'L. The latter is not a composition.

Then A(\) = Id+O(A~1), so that H]\(A)*l ~1d
Hence, for all L e R" @ T M,

(50 2. < S

and by the mean value theorem,

exp (_% (A 1) L,L>) _ 1‘ < % LI exp (% ||L|2) .

is bounded by % for some positive C'.

Then,

(512) ‘ [ et ) (eXp (-3 (A2.2)) —ex (%)) ar

C n 2 ||L||2 C
<= St LY s R )

The integral on the right-hand side of (5.12) converges to some finite limit as A — +oo by
Lebesgue’s dominated convergence theorem, so that:

(5.13) / |det " (L)] exp (—% <A(A)—1L,L>) dL = /\detl (L)| e 2 aL + oA~ ).

Since det (i&()\)) =14+0(\71), by (5.11), (5.13) we have:

E[[det* (Ly)| | ta = 0] = E[[det* ()] + O(A),

where L is a standard Gaussian vector in R" @ T* M. The result of the lemma is given by
lemma A.14. O

5.3 Proof of theorem 1.3

We now consider the real algebraic setting described in section 2.6. The proof goes along the
same lines as above. Recall that X" is a complex projective manifold of dimension n, equipped
with a rank r holomorphic vector bundle £ and an ample holomorphic line bundle £, and
that X, £ and £ are endowed with compatible real structures. We are interested in the
volume of the real zero set Z; of a standard Gaussian section s in RH(X,€ ® L£%).

By corollary 3.10, RH?(X, £ ® £%) is 0-ample for d large enough, so that we can apply
Kac-Rice formula (theorem 5.3) with ¢ : (s,z) — 1, as in the harmonic case. Note that we
have to use the incidence manifold ¥4 defined by (2.17) here. As in (5.1), we get:

1
V21 Jeery det(Eq(z, x))

(5.14)  E[Vol(Z,)] E [ydeﬁ (Ves)|

s(x) = 0] [dVex ]|,
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where V? is any real connection on £ ® £%.

Let z € RX and (z1,...,2,) be real holomorphic coordinates around z such that
(59_11’ ey ;T) is orthonormal at x. Let (¢{,...,¢?) be an orthonormal basis of R(€ ® L?),.

This yields an orthonormal basis of J2(€ @ £4) similar to (5.5).
The value of E Udetl (Vgs)’ ‘ s(x) = 0} does not depend on the choice of V¥, since Vs

does not depend on V¢ when s(z) = 0. We choose a connection that satisfies the conditions
of section 3.3, in order to compute the pointwise asymptotic of this quantity.
The estimates of proposition 3.8 suggest to consider the scaled variables:

(5.15) (ta, La) = <\/dins \/;vd>

Then, (t4, Lq) is a centered Gaussian vector in R(€ ® £4),, and the matrix of Var(t4, L) in
the basis described above is I,.(,11) +0(d™1). This is proved by the same kind of computation
as in the harmonic case, using the estimates of proposition 3.8. The distribution of L, given
tq = 0 is then a centered Gaussian with variance operator A(d) = Id +O(d~).

As in the previous section (cf. lemma 5.4), for every x € RX,

1 d 1
x d -
E[[det* (V4s)] | s(a ,/ E[[det* (La)| | ta=0]
d"+1 o Yol (S") .
,/ TED) (1+0(d™1)).

(5.16)

Besides, the estimate (3.13) shows that:

TN

o),

(5.17) det (Eq(z,x)) =

Finally, by (5.14), (5.16) and (5.17), we have proved theorem 1.3.
As in the harmonic case, the same proof shows that for any Borel measurable function
¢ : RX — R, we have:

E[/ngﬂdvsq - (\/E)T ( M¢|dvm|> % +O(\/3T_2).

5.4 Proof of theorem 1.2

In this section we compute the expected Euler characteristic of our random submanifolds.
The proof is basically the same as in the volume case: apply Kac-Rice formula then compute
a pointwise asymptotic for the conditional expectation that appears in 5.3. Only, this time,
we apply Kac-Rice formula to a quantity ¢(f, x) that really depends on the couple (f,z) € X.
This makes the computations a bit more complex. Luckily, ¢(f, z) only depends on the 2-jet
of f at x, so we can still make pointwise computations.

Consider first the general setting of sections 2.1 to 2.4: f is a standard Gaussian vector
in the finite-dimensional subspace V' C C>°(M,R"). We assume that V is 0-ample, so that
for almost every f € V, Zy is a closed submanifold of dimension n — r.

If n —r is odd, then x(Zf) = 0 almost surely (see remark 4.4). From now on, we assume
that n — r is even and set m = #5*. If n = r, then Z; is almost surely a finite set, and
x(Zy) = Vol(Zy) is just the cardinal of Z;. In this case theorems 1.2 and 1.1 coincide, so
we need only consider the case » < n in the sequel.
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We denote by R the Riemann curvature of the ambient manifold M and, for any f € V,
we denote by Ry the Riemann curvature of Z;. By proposition 4.9 and Kac-Rice formula 5.3,

1

(2m)mm!

(5.18) E[x(Zy)] =E

/Z Te (Ry)™) |AVy|

1 1
- —— E[|det* (d, TrRxAm‘ ) = 0| |dVas|.
i o T et @ Ty ) | 1) = 0] v
Moreover, for all x € M, let U ~ N(0,1d) in T, M be independent of f. Then, proposition 4.9
gives:

(5.19) Ry (o) = Rw) + 580 [(V2F )]

where, the notation Ey[ - | means that we only take the expectation with respect to the
variable U. Here and in everything that follows, R(z) and V2 f are implicitly restricted to
ker(d. f) =T, Zy.

As in the volume case, the next step is to compute the pointwise asymptotic for the
integrand in the last term of (5.18). By (5.19), it only depends on R(z) and the distribution of
j2(f) which is characterized by lemma 2.4. This shows that the expected Euler characteristic
only depends on R and the values of FE and its derivatives (up to order 2 in each variable)
along the diagonal in M x M. It turns out that, both in the harmonic and the algebraic
cases, the pointwise asymptotic is universal and no longer depends on R.

Focusing on the harmonic case V = (V))", we already know from lemma 2.7 that (V)"
is 0-ample. Let x € M, recall that det(Ey(z,z)) = (70A")" (1 + O(A71)) (see (5.2)). Then,
the main task is to estimate the conditional expectation in (5.18).

We consider the scaled variables:

1 1 1
f(z), ds f, Vif
/,YOAn ( ) /'Yl)\n+2 /,72)\71—1-4

nR"@ R&TFM & Sym(TM)). By lemma 2.4, (t5, Ly, S)) is a centered Gaussian vector.
We denote by (Ly, Sy) a random variable in R” @ (T M & Sym (T M)) distributed as (Ly, Sx)
given t) = 0. Again, (I~/A, 5&) is a centered Gaussian, see A.11.

Let U ~ N(0,1d) in T,M be independent of f (hence of j2(f)) and (Lx,Sy). Then,
by (5.19), (5.20) and (3.7):

(5.20) (tx, La, Sy) = (

t A2
Ry(e) = Ble) + 5B0[ (V2] duf " (0)) ] = R(o) + 30 < T %>

_ A )
—R(.T)-i-mEU |:<S)\,L)\ (U)> :| .
Besides, |det (d f)| = VAt |det® (Ly)], so that,

(5.21) 1E[|detL (do f)| Te(Ry (z)"™) \ f(z) :o]

|det™ (L,)| T ((R(z) n 2(n/\7-2|—4)EU [<SA,L§*(U)>A2]>W> th = 0]

oot (1) (0 + gy (280 ) )|

To conclude the proof, we will use the following lemmas.

= VA2 E

= VA2 E
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Lemma 5.6. The random vectors (INJA,S’,\) converge in distribution to a Gaussian vector

(L,S) as A — 4o0. Let U ~ N(0,1d) in T,,M be independent of (i,\, g,\) and (L, S), then:

E “detl (EA) ‘ Tr ((R(m) + 2(:714)1% |:<S/\ ’il*(U)>A2DAm>1
- ((n/\j 4))m (2”;)!1@[\@& @) T ({8, L7 @)Y | 1+ 00,

where the error term is uniform in x € M.

Lemma 5.7. Let (L,S) be distributed as the limit of (i,\, g,\) and U ~ N(0,1d) in T,M
be independent of (L,S). We have:

|V01 (S"_T‘H) Vol (ST_l)

IEUdetJ‘ (L)| Tx (<S,L**(U)>A2m)} = (‘Zii)mmn@m)' 7 Vol (S") Vol (S7—1)

Assuming these lemmas and recalling (5.2) and (5.21), the integrand in the last term
of (5.18) equals:

m  rdom ,ylr 1 ™ Vol (Sni?ﬂrl) Vol (Sril) _1
(=1 mivam v \/7_70 (n+2) VOl S Vol (1) (LT oA,

where the error term is uniform in x € M. Since r + 2m = n and z—‘l’ =n+ 2, we finally get:

A )" Vol (S*=7+1) Vol (§71)

Bz = (0" (255) e Ee ., (0 O v,

and this is theorem 1.2.

We now have to prove lemmas 5.6 and 5.7. For this we will need the following tech-
nical result which is a reformulation of [10, prop 3.12]. The proof of 5.8 is mostly tedious
computations and we postpone it until appendix B.

Proposition 5.8. Let V and V' be two Euclidean spaces of dimension n and r respectively,
withl <r<n. Let Le V' Q@V* and U € V be independent standard Gaussian vectors.
Then, L' is well-defined almost surely and (|det™ (L)|, (LT)*U) has the same distribution as

U/
Xn an T anr N v ]
(I Xl Wil )

where U' € V', X, € R? forallpe{n—r+1,...,n} and U, X,,..., Xn_ry1 are globally
independent standard Gaussian vectors.

We start by computing the variance of (tx, Ly, Sx). As in 5.2, we choose (z1,...,2y)
normal coordinates centered at x and denote by ((1,...,(.) the canonical basis of R". For
any ¢ and j such that 1 <4 < j < n, weset dz;; = dz; @dz; and dx;; = (dr; @dzj+dz;@dx;).
We complete the basis of J} (R") given in (5.5) into an orthonormal basis of 72 (R") by adding
the following elements (in this order) at the end of the list:

(522) Cl ®d1‘11, AN .,Q« ®d1‘11,§1 ®d$22, e ,CT ®d$22, N ,Cl ®d1‘nn, .. .,CT ®d1‘nn,
G ®dzig, ..., G ®@dri2, (1 ®d213, ..., G ®dT13, ..., (1 @ dT1p, ..., G Q dT1y,
. -aCl ® dw(nfl)na R )C’!‘ ® d-r(nfl)n-
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The matrix of Var(ty, Ly, Sy) with respect to this basis is:

Aoo(A)  Ao1(A)  Apa(N)
A(}\) = AlO()\) A11(>\) A12()\) )
A2(A)  Aar(A)  Aza(N)

where Ago(A), A1o(A) and A11(A) are as in (5.6) and, similarly, Asa(\) is the matrix of
Var(Sy), Ao2(A) = "Agg()) is the matrix of Cov(ty,Sy) and Aj2(A) = *Ag; () is the matrix
of Cov(Ly,Sy). Asin (5.7), we can decompose further each of these matrices in blocks of
size r X r. That is, A1o(A) and Aq1(N) satisfy (5.7) and,

A2o(A) = (AN 1 cicpen s A1V = (A (V) 1<ichsn
(5.23) o S
and Aaa(A) = (A7 () 1<ichsn

1<5<i<n

By definition of (¢, Ly, S»), these blocks are obtained by scaling the corresponding blocks
in the matrix of Var(j2(f)). By lemmas 2.4 and 2.6 the matrices in (5.23) are scalar matrices.

Recalling (3.7), we set: v = —4/ 'yZ}Qyz =— Z—E. Then, by (5.20) and theorem 3.1 we have:

- | L+OY) ifi=k,
(5.24) A () = Ovpaper(®, @) {7 (A7) ifi

V302A" T2 O\™Y) ifi#k,
Oz, Oy, ex (1, )

2 AR (N) = .

=0(71),
3L4+-0\Y) ifi=j=k=1,
—1 e o
(5.26) Ag;’jl()\) _ Gmi,mkayj,yle)\(x,x)lr _ L4+0(\7") if z'f j# klf l
ori=k#j=I,

72)\71-1—4
O(\™') otherwise,

where I, denotes the identity matrix of size r. Similar estimates for Agg(A), A1p(A) and
A11 (M) are given by (5.8), (5.9) and (5.10) respectively. Then A(X) writes by blocks:

I, v, ~IL. - vl
I’fl’!‘
~1, 3, I, --- 1,
AN = | I 3L . +OY),
: : : I,
~I, I, - I, 3I
Irn(n,—l)
2

where the empty blocks are zeros. The distribution of (EA, S %), that is the distribution of
(L, Sy) given ty = 0, is a centered Gaussian whose variance matrix is:

Inr
ﬂOIr ﬂIT e ﬂIT
(5.27) AN = B,IT ol +O00h),
. .. ﬂIT
ﬂIT ﬂIT ﬂOIr

[r n(no1)
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2 2n+2

h = 1 — 2 = — d = 3 — 2 =

where [ ¥ n+2an 5o y s
Let A denote the leading term in (5.27). Equation (5.27) shows that the random vectors

(LA, 5}) converge in distribution to a random vector (L, S) ~ N(0,A) (see lemma A.12).
We have:

(see corollary A.11).

4(2n + 4)n1)T
(n+2)r )~

so that A is non-singular, and A()) is non-singular for \ large enough.

det (A) = (fo + (n — 1)B)" (8o — B)" "~V = (

Proof of lemma 5.6. We have already seen that (i xS A) converges in distribution, as A goes
to infinity, to (L, S) ~ N (0,A). We still have to prove the estimate in the lemma. We have:

(e g (550 )

n+4
50 ) oo s s

We can apply lemma 4.2 to each term in this sum. This yields:
(5.28) E Udetl (ik) } Tr ((R(m) + 2(:714)1&,] [<SA ,i;*(U)>A2DAm>]
)i ) o e )

Then it is sufficient to show that, for all ¢ € {0,...,m},

/\2:| g

(5:29) E Ude“ (2a)] (R(sc)“mw NEA ,i;*<u>>“q)]
= E [[det* (1)] Tr (R(@)""=9 A (S, L7 (©))"*) | + 001,

and that these terms are finite. Then (5.28) and (5.29) yield the estimate in the lemma.
Let ¢ € {0,...,m}, we first show that the principal part on the right-hand side of (5.29)
is finite. Let ¢ € R",

(5.30) Es [Tr (R(x)AWq) NS, <>A2q)}

is finite since it is the expectation of some polynomial in the coefficients of S. Thus, (5.30)
only depends on ¢, and it is an homogeneous polynomial in ¢ of degree 2q.

We assumed U to be independent of (L, S), and the expression (5.27) of A shows that L
and S are independent. Let U’ ~ A(0,Id) in R” and X,,_;11, ..., X, be standard Gaussian
vectors, with X, € RP, such that U’, S, X;,_r41,..., X, are globally independent. Applying
proposition 5.8, we have:

(5.31) E [|detL (L)| Tr (R(gg)A(m—Q) A <S’LT*(U)>/\211)}

—F ”Xn” U ||Xn7r+2||
||anr+1||2q71

Tr (R(z)/\(mf']) A{(S, U/>A2q)]

E [Tr (R(@Mm*ﬂ A (S,U’)AQ‘])} ﬂ B[] X,]].

p=n—r+2

1
=E 2¢—1
||Xn*7"+1||
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Since 2¢ —1 < 2m—1 < n—r—1and X,_,41 is a standard Gaussian in R"~"+1,
E| 21| < +00 (see lemma A.13). The other factors on the right-hand side of (5.31)

XTL*T‘ 1 2g—1
are”eXpegtzlalutions of polynomials is some standard Gaussian variables, so they are finite.
Then, A(A) = A+O(A~1), and the same kind of computations as in the proof of lemma 5.4
gives (5.29), which concludes the proof of lemma 5.6. Note that, since M is compact, R(x)
is bounded, independently of x. We need this fact to ensure that the error term in (5.29) is
independent of x. O

Proof of lemma 5.7. Let (L,S) ~ N(0,A) in R" @ (T*M & Sym(T:M)) and U ~ N(0,1d)
in T, M be independent of (L, S). By (5.31):
(5.32)

B[Jet (] 1 (5.7 @))"*") ] <& l")ﬁ}‘;ffl'l'|i%n'l)i"'1 B[ (5.0}

where U’ ~ N(0,1d) in R", X,, ~ N(0,Id) in R? for all p, and U’, S, X,_y41,..., X, are
globally independent.

Recall that we are only interested in the restriction of S to ker(L) C T, M. But L and S
are independent, as one can see on the expression of A (5.27), and the distribution of S is
invariant under orthogonal transformations of T, M. Thus, we can consider S restricted to
any 2m-dimensional subspace of T, M in our computations. For simplicity, we restrict .S to

V, the span of (BB—ZI,... 6—).

? Oxom

We now compute the term E [Tr (<S/V , U’>A2m)}. By lemma 4.2,

Bs (v 0] = grpmsfsw o)

Assuming that S/V = Z Sipdr; @ dry, with S;; € R”, we have:

1<i,k<2m

<S/V,U/> = Z <S¢k,UI> dx; ® dxy,.

1<i,k<2m

By lemma A.8,
Es[(Sv,U)?] = 3 Esl(Su,U") (S, U] (dai A day) @ (doy A day)

= Y (U, (AT) (dxi A daj) @ (dag Aday),

where we denoted by A%J! the covariance operator of S;; and Sj;. Then,

Es[w,U’)mF;in;z; D3 (H<U’,(Al’p’wplz»)Uf>>X

(dxiy Ndxjy A -+ Ndxg, Ndxj,,) @ (deg, Adzy A Adxg, Adzg,)
(2m)! "

= E(O’)E(O'/) UI, Aa(2p—1)a'(2p—1),a(2p)a/(2p) U’ (dZE ® dZC),
2mm) a,a;m pl:[l< ( ) >
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where G, is the set of permutations of {1,...,2m}, ¢ : Sy, — {—1,1} denotes the
signature morphism and dx = dxi A- - - Adza,. We get the last line by setting o(2p—1) = iy,
o(2p) = jp, 0'(2p — 1) = ky, and o’ (2p) = I, and reordering the wedge products.

Since our local coordinates are such that (66_117 ceey 6‘3?) is orthonormal at x, we have
Tr(dz ® dz) = ||dz|* = 1. Thus,
(5.33)
Tr (ES |:<S U/>A2m:|) _ (2m)' Z E(UU/) ﬁ <UI (Aa(2p—1)a/(2p—1),0(21))0/(2p)) UI> )
, 2mm! 0,0’ €S p=1 ’

By equation (5.27), for any o, 0’ € &g, and for any p € {1,...,m},
A (2p—1)o’ (2p—1),0(2p)e’ (2p) _ K(p,o,0')1d,

where,
B ifo(2p—1)=0'(2p—1) and o(2p) = o’ (2p),
(5.34) K(p,o,0')={1 ifo(2p—1)=0'(2p) and o(2p) =o' (2p — 1),

0 otherwise.

Note that K(p,o,0') = K(p,id,0~! o ¢’), where id stands for the identity permutation.

Then, setting 7 = o~ o ¢”,

(535 Y. e(oo) ﬁ <U/, ( AU(QP—1)0/(2:0—1),0(2:0)0/(21?)) U,>

o,0'€Ga, p=1

= Y elo0) |\U'||2’”HKp,o—o—>

0,0'€ESam, p=1

= @)U > e(n) [ K (p,id, 7).

TEG2m p=1

From the definition (5.34) of K(p,id,7), we get that [[)"; K(p,id, ) # 0 if and only if 7
is a product of transpositions of the type ((2p — 1) (2p)). Now, if I C {1,...,m} and
T = Hpel((Qp —1) (2p)), we have:

[[ 7@ =5 and () = (-1,

where |I| stands for the cardinal of I. Thus,

S e [Txmian= 5 copn=35 ()
(5.36) TE€G2m p=1 Ic{1,...,m} p=1
—(B-1)" = (-1) (m) ,

Finally, by equations (5.33), (5.35) and (5.36),

(5.37) E [Tr (<s , U’>A2’”)} = (-1)™ (” i 4)m ((ngi!)QE [||U’|\2’"} .

n+2 2m
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Then, by (5.32), (5.37) and lemma A.13,

E UdetL (L)| Tx ((S,LT*(UDAQW)}

o (n A (2m))? VoI (S*7) Vol (S"7H) Vol (S7)
= (=1 <n+2> 2mm| Var Vol (S!) ~ Vol(S") Vol (S*—1)

We conclude the proof of lemma 5.7 by computing:

r (2 | [S*—" 2T 1 Zm+1 n
V2T (m) m:v%r (m+2) ﬁ T =21 . O
2mm! 2 VLS T (m + 5)

5.5 Proof of theorem 1.4

Let us now adapt the proof of the previous section to the case of real algebraic submanifolds.
Once again, we need only consider the case where r < n and n — r is even. The framework
is the same as in sections 2.6 and 5.3.

We already know that RH?(X, £ ® L£?) is 0-ample by corollary 3.10. We also have the
estimate (5.17) for det(E,) along the diagonal, where E, is the Bergman kernel of £ ® £.
As in the harmonic case, we use (4.8) and Kac-Rice formula:

|detL (Vis)| Tr (Rs(x)™™) ‘ s(x) =0
m'\/ﬂ /mE]RX det( d(»’Cw’C))

where V¢ is any real connection on (£ ® £%) and R, denotes the Riemann tensor of Z,.

We need to compute the conditional expectation in (5.38) for some fixed € RX. Since
it does not depend on our choice of connection, we will use one that is adapted to x as in
sections 3.3 and 5.3. Let x € RX’, we consider the scaled variables:

ﬂ-n
(5.39) (ta, La,Sq) = (\/ %S \/dn+1 \/d"+2 Vivd5> ,

and (Lg, Sq) € R(E @ L), @ (TRX @ Sym(TFRX)) distributed as (Lg, Sg) given tq = 0.
As in 5.3, let (21,...,2,) be real holomorphic coordinates centered at x and such that
(aa_xl’ e ;Tn) is orthonormal at x. Let (¢, ..., (%) be an orthonormal basis of R(€ ® £%),..
We get an orthonormal basis of J2(€ ® £%) similar to the one defined by (5.5) and (5.22).
We compute the matrix A(d) of Var(tq, L4, Sq) in this basis. For this we use the estimates
for the blocks of A(d) given by proposition 3.8 and (5.39). Namely, for all 4, j, k and
le{l,...,n}, withi < kand j<lI,

(5.38)  E[x(Z)] =

|dVex|,

(5.40) AL(d) = O(d™), A (d) = 0@d™),
2I,+0(d™) ifi=j=k=1I,
(5.41) ARGy = L+Od™) ifi=j#k=1,
O(d™') otherwise.

Recall from section 5.3 that the matrix of Var(tq, L) in this basis is I,(,41) + O(d™'). By
corollary A.11, the distribution of (L4, S4) given tq = 0 is then a centered Gaussian whose
variance matrix is, by blocks,

(5.42) Ad) = 21, +0(d™),




where the empty blocks are zeros. Let A denote the leading term in equation (5.42) and let
(L,8) ~N(0,A) in RE@ L), @ (T RX BSym(TFRX)). By lemma A.12, (Lg4, Sq) converges
in distribution to (L, S).

Let U ~ N(0,1d) in T,RX be independent of all the other variables. By (4.9),

1
(5.43) R,(x) = R(z) + 3E [<Vi’ds : (vgs)f*(m“} .
As in the harmonic case (5.21), we have:

(5.44) E“deH (vgs)\Tr(Rs(x)Am)] s(z) = 0]

o () e (0 o (50 2700) ) )

The proof of lemma 5.6 adapts immediately to this setting, so that:

545 E Udetl (La)| <<R(x) +dEy st , LL*(U)>A2] > Amﬂ

- dm@Lm!)!]E Udetl (L)| Tx ((S : LT*(U)>A2’”)} (1+0(d™1Y),

where the error term is uniform in z € M.

Lemma 5.9. Let (L,S) ~ N(0,A) in R(E®LY), @(TyRX&Sym(T;RX)) and U ~ N(0,1d)
in T, M be independent of (L,S). We have:

Vol (S"~"*1) Vol (S"~1)
7 Vol (S™) Vol (S»—1)

E[ydeti (L)| Tx ((s,U*w»“’”)] = (—1)™V2r (2m)!

Once this lemma is proved, we get theorem 1.4 immediatly by (5.17), (5.38), (5.44), (5.45)
and lemma 5.9. We sketch the proof of lemma 5.9 which is, unsurprisingly, adapted from
the proof of lemma 5.7.

Proof. The only difference between lemmas 5.7 and 5.9 comes from the definition of A which
is not the same in the algebraic case. The proof is exactly the same as the proof of 5.7 until
the definition of K (5.34). The A% are now given by (5.42), hence we have to change the
definition of K. In this setting,

1 ifo(2p—1)=0'(2p) and o(2p) = o' (2p — 1),

0 otherwise,

K(p,a,a’):{

so that [, K(p,id, 7) is 0, unless 7 =70 = [[[_, ((2p — 1)(2p)). Then (5.36) becomes:

Z e(r) ﬁ K(p,id, ) = &(70) ﬁ K(p,id, 7) = (=1)™.
p=1 p=1

TEG2m

m
This explains why the factor (—Z—E) becomes (—1)™ in the algebraic case. What remains

of the proof is as in 5.7. O
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6 Two special cases

In some special cases, the covariance kernel is known explicitly. It is then possible to prove
more precise results. In this section, we sketch what happens on the flat torus and in the
real projective space. In these cases, we get the expectation of the volume and the Euler
characteristic of our random submanifolds for fixed A (resp. fixed d).

6.1 The flat torus

Let T" = R™ /(27xZ)"™ denote the torus of dimension n that we equip with the quotient of
the Euclidean metric on R™. We have Vol (T™) = (27)™. We identify functions on T™ and

(2nZ)"-periodic functions on R™. Then, the Laplacian is A = —>_" 2 and it is known

i=1 922
that its eigenvalues are the integers of the form [p||°, with p = (p1,...,pn) € N*. The
eigenspace associated to 0 is spanned by the constant function x — ﬁ For A > 0, the

eigenspace associated to A? is spanned by the normalized functions of the form:

2 2
Wsm((p,x)) and T WCOS(Q%@)’

s s

T —

where p € Z" is such that ||p|| = A, and (-, -) is the canonical scalar product on R™.
We set By = {p € Z™ | ||p|| < A}. After some computations, we get ey, the spectral
function of the Laplacian on T":

1
(6.1) VYA >0, Vo,y € T, ex(z,y) = WPEZB cos({p,x —y)).
A

Let A > 0 and r € {1,...,n}, let V) be spanned by the eigenfunctions of A associated
to eigenvalues smaller than A%, and let f ~ A(0,Id) in (V))". For all z € T", j2(f) is a
centered Gaussian variable whose variance is determined by lemma 2.4 | lemma 2.6 and the
above formula (6.1). Note that e) and its derivatives are constant along the diagonal.

We can compute explicitly the variance of j2(f) (which is independent of x) and follow
the same steps as in sections 5.2 and 5.4. Only, this time, we can make exact computations
with A fixed, instead of deriving asymptotics. These computations are not difficult, and
similar to what we already did, so we simply state the final results. Note that the scaling of
the variables has to be adapted.

Proposition 6.1. On the flat torus T™, let A > 0 and let f1, ..., fr be independent standard
Gaussian functions in Vy, with 1 <r <n. We have:

. Vol (S»7)

ENGl(Z) = (g X 0] o

B
Bl (P1s--sPn ) EBA
where By = {p € Z™ | ||p|| < A} and |B,| denotes the cardinal of By.

This result was already known, see [29], where Rudnick and Wigman compute the variance
of Vol (Z¢) when r = 1, and the references therein.

Proposition 6.2. On the flat torus T™, let A > 0 and let f1, ..., fr be independent standard
Gaussian functions in Vy, with 1 <r <n. If n —r is even, we have:

EnZ)l= (D)% [— Y 2| en

B
| )\l (P1,--sPn ) EBA

where By = {p € Z™ | ||p|| < A} and |B,| denotes the cardinal of By.

., Vol (Sm=+1) Vol (S7—1)
7 Vol (S*) Vol (S»—1)
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Remark 6.3. For this last result, one of the points that make the computations tractable is
that the Riemann tensor of the ambient manifold is zero.

6.2 The projective space

We consider the algebraic case with X = CP", £ = C" x CP™ with the standard Hermitian
metric on each fiber, and £ = O(1) the hyperplane bundle with its usual metric. Then, w is
the standard Fubini-Study form. We consider the real structures induced by the standard
conjugation in C.

Let eq denote the Bergman kernel of £¢ and E; denote the Bergman kernel of £ ® £¢.
Since £ is trivial we have a product situation, as in section 2.5, and E4 and eg4 are related
as in lemma 2.6. Let (¢1,...,(.) be any orthonormal basis of C", for all z, y € CP™,

(6.2) Eq(z,y) = ealz,y) <Z G ® Cq> :

In this case, RX = RP™ and the elements of RH®(X, £ ® L?) are r-tuples of real homoge-
neous polynomials of degree d in n + 1 variables. We denote by R?°™[Xy, ..., X,,] the space
of real homogeneous polynomials of degree d in Xo,...,X,. Let a = (ap,...,a,) € N*T1,
we set X =X - X2, |a| = ap + - - + a, and, if |a| = d, we also set (Z) = ﬁ

It is well-known that an orthonormal basis of R°™[Xj, ..., X,] for the inner prod-
uct (2.16) is given by the sections:

(6.3) Sq =

and! o

|
M(d)xa, with |a] = d,

see [5, 8, 10, 23]. Then, formally,

6.4 L, (et 3 (d)XaYa _ (n+d)! X1

mnd! @ !
|a|=d

More precisely, we consider the chart (x1,...,2,) — [1:x1 : -+ : 2,] around the point of
homogeneous coordinates [1: 0 : --- : 0], and the real holomorphic frame 5(d,0,...,0) for O(d)
around this point. In these coordinates,

(n+d)!

(6.5) ea(z,y) = W(l + (@, y)* (5(a,0,...0) () ® S(a0,...0)¥)) ,
with * = (z1,...,2,) and y = (y1,...,¥Yn). Since everything is invariant under unitary

transformations of CP™, this totally describes egq.

Let d e N, r € {1,...,n} and s ~ N(0,1d) in (RF™[X,, ..., X,])". For every z € RP",
j24(s) is a centered Gaussian variable whose variance is determined by lemma 2.13, (6.2)
and (6.5). Once again, we can compute the variance of j>?(s) explicitly, and it does not
depend on z € RP". Then, we can follow the steps of the proof of theorem 1.3, and make
exact computations for fixed degree d. This yields Kostlan’s result [23]. Note the we have
to adapt the scaling of the variables.

Theorem 6.4 (Kostlan). In the real projective space RP™, let d € N and let Py,..., P, be
independent standard Gaussian polynomials in RZO’" [Xo,..., Xn], withl <r <n. Let Zp
denote the common zero set of Py,...,P.. We have:

E[Vol (Z,)] = (\/E)Tvol (RP"7).
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Assuming that n — r is even and equals 2m, we can also adapt the proof of theorem 1.4
to get the expected Euler characteristic for fixed d. This computation is a bit more complex
than on the torus since the Riemann curvature of RP™ is not zero.

By Kac-Rice formula and equations (6.2) and (4.9),

1
e — e — ><
m\21 Jeerpr \/ea(z, z)

E ||det™ (Vgs)| Tr ((R(z) + %E (V25 (vis)™(U))"] > Am)

where R is the Riemann curvature of RP™ and U ~ N(0,1d) in T,RP™. We used the fact
that s(x), Vs and V%5 are independent in this particular case. This is why the expectation
is not conditionned on s(x) = 0.

Since everything is invariant under orthogonal transformations of RP", we only need to
compute the expectation in the integrand at the point z =[1:0:---: 0]. We do this in the
same chart as for (6.5) above. We get:

(6.6) E[x(Zs)] =

|dVRP"| )

1
R(z) = 5 Z dz; N dr; @ dx; A dx;j.

1<i,5<n

Following the computations of section 5.4, we get (after a suitable rescaling) that the
expectation in the integrand of (6.6) equals:

(6.7) fz <>E

where U’ € R", S € (RO(d),)" ® Sym(T;RP") and X, € R? (for n —r+1 < p < n) are
globally independent standard Gaussian vectors. By the same kind of computations as in
the proof of lemma 5.7, we get:

[ Xn—rioll . | Xn]l

||anr+1||2q71

E{Tr (R(x)A(m DA(S, U)AQQ)}

(6.8) Es {(S , U’)M} =1 Y dei Adey @ da; A day.
1<5,5<n
Restricting R and S to the span of (611 cee 83?)’ we have:
Ag
Vg€ {0,...,m}, Tr (R(m)””_q NEs|(S,0")"] ) = (1) g 2 U7

As in the proof of 5.7, we compute the expectation of this term with respect to the variable
U’ by lemma A.13. The same lemma allows us to compute the value of (6.7). Finally, we
recover Biirgisser’s result [10].

Theorem 6.5 (Biirgisser). In the real projective space RP", let d € N and let P,..., P, be

independent standard Gaussian polynomials in RZOW[XO, oy Xp], with 1 < r < n. Let Zp
denote the common zero set of Py,..., P.. Ifn —r is even, we have:
pP+ts
sz = () S -ar 28
NE)

A Concerning Gaussian vectors
In this appendix we survey the few facts we need concerning random vectors, especially

Gaussian ones. It is essentially borrowed from [26, appendix A]. We include it here for the
reader’s convenience.
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A.1 Variance and covariance as tensors

Let V be a real vector space of finite dimension and X a random vector with values in V. For
any £ € V*, £(X) is a real random variable. From now on, we assume that these variables
are square integrable.

Definition A.1. The expectation (or mean) of X is the linear form on V* defined by:
(A1) mx £~ E[§(X)].

If mx = 0, we say that X (resp. its distribution dPx) is centered.

Under the canonical isomorphism V** ~ V' we have mx = fv x dPx.

Definition A.2. The wvariance of X is the non-negative symmetric bilinear form on V*
defined by:

(A.2) Var(X) : (€§,1) = E]§(X —mx)n(X —mx)].

Remark A.3. Traditionally, the term “variance” is only used when V' has dimension 1 and one
speaks of “covariance” when dim(V') > 2. We chose to use the term “covariance” for couples
of distinct random vectors (see below) and “variance” otherwise. This is the convention of
[2], for example.

As a bilinear form on V* x V*, Var(X) is naturally an element of V ® V and we have
the following lemma.

Lemma A.4. Let X be a random vector in V, we have:
(A.3) Var(X) =E[(X —mx) ® (X —mx)].
Proof. For any £ and n € V*, we have:

Var(X)(&,n) = E[{(X —mx)n(X —mx)] =E[{ @) (X —mx) ® (X —mx))]
=(ENE[(X —mx)® (X —mx)]. O

Definition A.5. The variance operator of X is the linear map Ax : V* — V such that, for
any £ and n € V*,

(A4) ¢ (Axn) = Var(X)(&,n).
By lemma A.4 we have:
(A.5) Ax :n—=E[(X —mx)@n(X —mx)].

IV =Vi®V, and X = (X3, Xs), with X; a random vector in V;, then mx = mx, + mx,
and the variance form Var(X) splits accordingly into four parts:

Var(Xl) : ‘/1* X Vl* — R, COV(XlaXQ) : ‘/1* X ‘/2* - Rv
Var(Xz) : Vo x Vo = R and Cov(Xo, X1): Vo' x V" = R.

These bilinear forms are associated, as above, to the following operators:

Ay V=V, Ao 1 V" = Vi,
A22 : ‘/2* — ‘/2 and A21 : Vl* — ‘/2

Since Var(X) is symmetric, Cov(X1, X2)(§,n) = Cov(X2, X1)(n, ) for any £ and 7.
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Definition A.6. We say that Cov(X7, X5) is the covariance of X; and X5, and that A is
their covariance operator.

As above, Cov(X71, X>) is naturally an element of V; ® Va.
Lemma A.7. Let X7 and X be random vectors in Vi and Va respectively, we have:
Cov(X1, Xo) =E[(X1 —mx,) ® (X2 —mx,)].
Moreover, for any n € V5, A1a(n) = E[(X1 —mx,) @ n(X2 — mx,)].

Let L : V — V' be a linear map between finite-dimensional vector spaces and X be a
random vector in V. Then L(X) is a random vector in V' with dPpx) = L.(dPx). An
immediate consequence of (A.1), (A.2) and (A.4) is that:

(A.6) mr(xy =mx oL",

(A.7) Var(L(X)) = Var(X)(L*-, L"),
and

(A.8) Apxy=LAxL",

where L* : (V')* — V* is defined by L* : { — (o L).
If X is a random vector in a Euclidean space (V, (-,-}), we can see Var(X) as a bilinear
symmetric form on V, and Ax as a self-adjoint operator on V. Then, by (A.3) and (A.5) :

Var(X) = E[(X —mx)* ® (X —mx)*],
Ax =E[(X —mx)® (X —mx)*],

where for any v € V, we set v* = (v,-) € V*.
If V=V, &V, we can see A2 as a linear operator from V5 to V4 and by lemma A.7:

COV(Xl,XQ) = E[(Xl - le)* & (X2 - sz)*] ’
A12 = E[(Xl — mxl) ® (XQ — mXQ)*] )

Lemma A.8. Let X be a random vector in a Fuclidean space V, we have:

(A.9) YoeVVweV, E[(v,X —mx){w,X —mx)] = (v,Axw).
Proof. Let v and w € V, we have:
E[{(v,X —mx) {(w,X —mx)] = Var(X) (v, w) as a bilinear form on V,
= (v, Axw) where Ax : V — V. O

A.2 Gaussian vectors

The following material can be found either in [2, section 1.2] or [1, section 1.2]. We present
it in a coordinate-free fashion, in the spirit of [26].

Let m € R and ¢ > 0, the Gaussian (or normal) distribution on R with expectation m
and variance o2 is the distribution whose characteristic function is & ~ exp (im«E — %02«52).
If 0 = 0, this is the Dirac measure centered at m, otherwise it has a density with respect to

202
Let V be a real vector space of dimension n, a random vector X in V is said to be
Gaussian, or normally distributed, if for any £ € V* £(X) is a Gaussian variable in R.
Recall that a Gaussian vector has finite moments of all orders and that its distribution is
totally determined by its expectation and variance. We denote by N (m, A) the Gaussian
distribution with expectation m and variance operator A and by X ~ N(m, A) the fact that
X is distributed according to N (m, A). From (A.6) and (A.8) we deduce the following.

N2
the Lebesgue measure, given by x a\}ﬁ exp (— (@—m) )
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Lemma A.9. Let L:V — V' be a linear map between finite-dimensional vector spaces and

X ~N(m,A) in V. Then L(X) ~ N(Lm,LAL*) in V'.

IV =V,®V, and X = (X1, X2) ~ N(m,A) then, with the notations of section A.1,
lemma A.9 shows that X; ~ N (mx,,A11) and Xa ~ N (mx,, Aaz). Besides, X; and X are
independent if and only if Cov(X;, X3) = 0, or equivalently A1o = 0.

Proposition A.10 (Regression formula). Let X = (X1, X3) be a Gaussian vector in V1 ®Va.
If Var(Xy) is non-degenerate then X has the same distribution as

mx, + Aa1 (A1)~ (X1 —mx,)+Y

where Y is a centered Gaussian vector in Vo with variance operator Aay — Aoy (A11) " A1,
independent of X1.

This is shown in [2, prop 1.2]. From this, we deduce that the distribution of X5 given
X7 = z; is Gaussian in V with expectation my, + A1 (A11)"(z1 — my,) and variance
operator Aoy — Ag1(A11) " A12. We use this in the case where X is centered and z; = 0.

Corollary A.11. Let X = (X1, X2) be a centered Gaussian vector in Vi @ Vo and assume
that Var(Xy) is non-degenerate. Then the distribution of Xo given X1 = 0 is a centered
Gaussian in Vo with variance operator Aoy — Aoy (A1) 1 Aq2.

In what follows, we assume that V is a Euclidean space. Recall that in this case, we can
see the variance operator of a random vector as an endomorphism of V. We will say that
N(0,1d) is the standard normal distribution on V, where Id denotes the identity map on V.

If Var(X) is non-degenerate, then dPx has the following density with respect to the
Lebesgue measure on V:

1 ) -
v s o (3 (0 e )

If Var(X) is singular, dPx is supported on ker(Ax)= .

Lemma A.12. Let (Xi)gen be a sequence of random vectors in'V such that Xy, ~ N (mg, Ag)

for all k € N. We assume that my —— m and Ay, —— A. Then X} converges in
k——+oo k—+oo

distribution to N'(m, A).

Proof. Under the hypothesis of the lemma, the characteristic function of X} converges point-

wise to the characeristic function of a Gaussian vector X ~ N(m, A). Then, Lévy’s continuity
theorem gives the result. O

We conclude this appendix by computing two Gaussian expectations.

Lemma A.13. Let X ~ N(0,1d) with values in a Fuclidean space of dimension n and let
k € Z such that k > —n. Then,

5 Vol (S"1)

E[Hxn’“} = Vor Vol T

Proof.

n—1 —+o0
E[Ix]*] = ﬂl_n/ ]F e~ Hel? g — %/ P
m 174 /21 0
k
_ Vol(S"Y) [ kin2 V2T VL(S"T) F(k—i—n).

2 O
Va2 Jo 2/m " 2
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Assuming we proved proposition 5.8 (more precisely its corollary B.3), we have the following.

Lemma A.14. Let V and V' be two Fuclidean spaces of dimension n and r respectively,
with 1 <r <n. Let L ~N(0,1Id) in V' @ V*. Then:

Vol (S~ )
E[|det* (L)|] = vV2r ———=.
[[det™ (L)]] & Vol (S)
Proof. By corollary B.3, |det* (L)‘ is distributed as || Xp—r41] - - - | Xnl, with X, a standard
Gaussian in R? for all p and X,,_,41,..., X, independent. Then, using lemma A.13,
° Vol (S"~7)
E(|det™ (L)|] = E[|Xn—rial -1 Xall= ] ElXpl]=v2r Vol (87 0
p=n—r+1

B Proof of proposition 5.8

This section is devoted to the proof of proposition 5.8 which is a reformulation of [10,
prop 3.12]. Let V and V' be two Euclidean spaces of dimension n and r respectively, with
1 < r < n. The space V' @ V* of linear maps from V to V' comes with a natural scalar
product induced by those on V and V’. The set of linear maps of rank less than r is an
algebraic submanifold of V/ ® V* of codimension at least 1, hence it has measure 0 for any
non-singular Gaussian measure. Let L be a standard Gaussian vector in V' ® V*, the rank
of L is r almost surely. Hence L' is well-defined almost surely (recall definition 4.7).

We introduce some further notations. Let B C V' ® V* denote the set of maps of rank r.
We set F = {(L,U) e BxV |U € ker(L)*} and S = {(L,U) € BxV | U € S(ker(L)4)}.
Here and in the sequel, S(-) stands for the unit sphere of the concerned space. Given L € B

and U € V, we denote by U the orthogonal projection of U onto ker(L)*. Then we set:

- U (L1 o
B o=, b= and g (L0
171 DR
wpgr _ (LTD)*0 ) ol 1 .
Note that L*0" = CET+eT = Tee=ay> hence |IL*¢'|| = mEyeey and finally:
L*¢ - p
(B.Q) 0= — and LU = LU = pLT*e _ ! 0.
[ L*0"]] [L*0"]]
We choose orthonormal basis (e, ..., e,) and (€],...,e..), of V and V' respectively, such

that e, = 0, ¢/. = and (ey,...,e,) is a basis of ker(L)*. Then,
Vie{l,...,n}, (Le;,0) =/ e;,L*0") = |L*0'| (e;,0).

Thus the matrix of L in these basis has the form:
4 ‘ o

* ’

(B.3)

00 [[[L*0'] | 00

and |det (L)| = |det(A)| || L*¢"].

Let 7y and mgs denote the orthogonal projections along R -# in V and along R - 6" in V'
respectively. We define L' : V — (R-0')L by L’ = mp o Lo mp. Then |det(A)| = ‘detJ- (L’)‘,
and L’ does not depend on our choice of basis. Finally, we have:

pt’

(B.4) (|det™ (L)], L™*U) = (\detL e, W) :
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To prove proposition 5.8, we will show that ’detl- (L’)’, IL*¢'||, p and € are independent
and identify their distributions.

If L and U are independant standard Gaussians, then almost surely L € B and we can
consider (L,U) as a random element of B x V. Then (L,U) is a random element of F and
its distribution is characterized by:

Blo.0)] = [ ([ o0)am @) duur(r)

:/ </ ¢(L,f])dm(f])> dpinr(L),
LeB Ueker(L)+

for any bounded continuous function ¢ : F — R. Recall that duy stands for the standard
Gaussian measure in dimension N. We get the distribution of (L, 8, p) € S x R4 by a polar
change of variables in the innermost integral: for any bounded continuous ¢ : & x Ry — R,

+oo 2 d
Bz = [ | [ o0t T L (L),
LeB JoeS(ker(L)+) J p=0 V2T

where dp is the Lebesgue measure on R and df is the Euclidean measure on the sphere
S(ker(L)™L).

This distribution is a product measure on & x Ry, thus (L,0) and p are independent
variables. Since (‘detJ- (L’)’ O ||L*0"||) only depends on (L, ), this triple is independent
of p. Besides, p is distributed as the norm of a standard Gaussian vector in R" since its

Vol(s™—1 22 .
A G "~le~% on R, and vanishes

density with respect to the Lebesgue measure is p +—

Nord
elsewhere. Finally, the distribution of (L, 6) satisfies:
(B.5) Bowol= [ [ B(L0) S (L)
. ) = ) T3 7qr =1y Qlnr )
LeB Joes(ker(L)L) Vol (S7—1)

for any bounded and continuous ¢ : S — R.
We will now compute the distribution of (L, ") in B x S(V').

Lemma B.1. For any bounded and continuous ¢ : B x S(V') — R,

det* (L) _ui2  d¢’ dL
B.6) E[¢(L,0) =/ / ¢L,e’)| e e -
( [¢(L,0")] s Jres ( Lo Vol () Vs

where 40 is the Euclidean measure on S(V'), dL is the Lebesgue measure on V' @ V* and
L’ is defined as in (B.4).

Proof. Fixing some ¢, we see from (B.5) and (B.1) that:

, (L1)*0 > iz de dL
E[¢(L,0')] = L, : .
(L, 6] /Leg/eeyker(Lw)"ﬁ( @) ¢ e van

Then we make the change of variables 6/ = ¢(0) = Hgﬁiﬁgn

L fixed. Recalling (B.2), we have ¢~ : 6/ — % from S(V') to S(ker(L)1). Now, the
differential of ¢p=1 at 6’ € S(V') satisfies:

in the innermost integral, with

1
Vo ®-0)5, dp(v) v = g (L*”‘ <L |

L+’ > L+’ )_ 7o (L*v)
[L*0"[| /|| L6"]] [L=0|| -
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As above, we choose an orthonormal basis (ef,...,e/._;) of (R-#)+ and an orthonormal

basis (e1,...,er—1) of (R0 @ker(L))™. In these coordinates we have:

iy ’det (o OL?w/)L)\ [det(A)|  |det(A)]  |det (L))]
’det(del(w ))‘ - wnr|T—1 - worr—1 worm—1 wpr|T—17
[L0"]| [L+0"]| L") L6
where A is as in (B.3) and L’ as in (B.4). This proves (B.6). O

We can now compute the joint distribution of (|det* (L)|,’,||L*¢'||) from the one of
(L,0"). We fix @ € S(V') and an orthonormal basis (e,...e.) of V' such that e]. = ¢’. The
choice of L € V' ® V* is equivalent to the choice of the r independent standard Gaussian
vectors L*e}, ..., L*e] in V. For simplicity, we set L; = L*e}. Note that if we choose a basis
for V as well, these are the rows of the matrix of L. We can rewrite (B.6) as:

det* (L)| e=3 ZIL:1* 49 AL, - - - AL,
o= [ f / o(r, 2 L) CAvdb Al
1eS(V?") JL1,osLr1€V J L€V | L] Vol (S7—1) Vo

where dL; denotes the Lebesgue measure in the i-th copy of V. We set o, = HE—T” and

pr = ||L||. Here, L' = mg: o L o m,, depends on «,. and 6’ but not on p,. Making a polar
change of variables, the above integral equals:

2 1 —
/ /+oo o Hl)pg—re—’% dp, e 3 izt IL” |det (L')] 40 da, ALy - --d L,
0'eS(V") 020 ’ mn—r-{-l Vol (Srfl) \/ﬂ(n-i-l)(r—l)

areS(V)
LiyesLp 1€V
Then, p, = ||L*0'| is independent of (¢’,«;, L1,...,Ly_1), hence of (9’, ‘detl (L’)‘)
Moreover p, is distributed as the norm of a standard Gaussian in R®~"+!, since it has the
same density. Finally, (', o, L1, ..., Ly—1) has the density:

67% Z:;EHLJ\Z ‘detJ- (L/)‘
\/ﬁ(nJrl)(rfl) Vol (Sr—l) Vol (Sn—r)

(9/, A, Ll, ceey erl) —

with respect to df’ @ da, ® dL1 ® - - @ dL,_1.
Fori € {1,...,7—1} we denote by Li- the orthogonal projection of L; onto the orthogonal
of the subspace spanned by (., L1,...,L;—1).

Lemma B.2. For any L € B, |det (L')| = ||L{ || - - - || L=, |-

Proof. If one of the LiL is zero, then the vectors ., L1, ..., L._1 are linearly dependent and

1 €
L is singular. Since we assumed L € B this is not the case and (ﬁin e |§11|) is
1 r—1

an orthonormal basis of ker(L’). Writing the matrix of the restriction of L’ to ker(L')*
in this basis and (ef,...,el._;), we see that it is lower triangular with diagonal coefficients
HL{- Li‘_lH. This proves the lemma. O

ge e ey

Let ¢ be a continuous bounded function from S(V’) x Ry to R. We have:

e~ 2 ZIEI [dett (L')] A6’ da, dLy ... AL,y
\/ﬂ(""‘l)(T—l) Vol (S7—1) Vol (S»—)

e SIE I T 1Lt dLt, ... dLi 49’ da,

— / 1
_/ahe, /Lf“./Li ¢(9 ’HHLi H) m(nﬂ—g)(rq) Vol (Sr=1) Vol (Sn=7)

1

El¢ (¢, ]det" (L))])] = /¢>(9’, |det™ (L)])
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Then we make polar changes of variables: for each ¢ we set p; = HLZL || and a; = ” o H Note
that, when L1, ..., L;_1 are fixed, Li is a vector in a space of dimension n —i. We have:
zZmH"Zd Jdp,_1da; ... da, d¢’
E 9/ d tL 9/ i € P P1 - Pr—1 1--- T
[¢ ( ) ‘ e ( /(’b Hp n+17§)(r 1) Vol (Sr—l) Vol (Sn—r)

- i) e~ P! de’
:/pl,...p”,e/qﬁ(el’npi)l:[ Vol (") =l | don oy

This shows that €, p1,...,p._1 are independent variables, that ¢’ is uniformly distributed

in S(V') and that, for all ¢ € {1,...,r — 1}, p; is distributed as the norm of a standard

Gaussian vector in R"*1=%. Finally, this shows that |det* (L")| is distributed as H:ll Di-
Putting all we have done so far together, we see that (’detL (L)’ ,LT*U) is distributed

s (||Xn|\ NXn—rt1ll s ﬁ), where X, is a standard Gaussian vector in R? for all p.

Moreover, §' is uniformly distributed in S(V'), p is distributed as the norm of a standard
Gaussian vector in R”, and all these variables are globally independent. Finally U’ = p#’ is a
standard Gaussian in V', independent of X, ..., X,,_,+1 so we have proved proposition 5.8.
An immediate corollary of this is the following.

Corollary B.3. Let V and V' be two Euclidean spaces of dimension n and r respec-
tively, with 1 < r < n. Let L ~ N(0,Id) in V' @ V*. Then ’detl‘ (L)’ is distributed as
| X —rs1ll - - [| Xnll, where for allp € {n —r+1,...,n}, X, ~ N(0,Id) in RP and these
vectors are globally independent.

C Proof of the Kac-Rice formula

In this section, we give a proof of the Kac-Rice formula using Federer’s coarea formula. This
was already done by Bleher, Shiffman and Zelditch in [6, thm 4.2]. See also [2, chap 6].

C.1 The coarea formula

We start by stating the coarea formula in the case of a smooth map between smooth Rie-
mannian manifolds. A proof in this special case can be found in [19, Appendix] (see [12,
thm 3.2.12] for the general case).

Let m : M — M be a smooth map between smooth Riemannian manifolds of respective
dimensions m and n. We assume that m > n. Let |[dVy;| (resp. |dVas|) denote the Rieman-
nian measure on M (resp. M) induced by its metric. By Sard’s theorem, for almost every
y € M, 7 1(y) is a smooth submanifold of dimension (m — n) of M. For such y € M, we
denote by |dV,| the Riemannian measure on 7~ '(y) induced by the metric of M. When
m = n, the dimension 7~!(y) is 0 and |dV,,| is just > wen—1(y) Oz, Where 0y is the Dirac
measure at x.

Theorem C.1 (Coarea formula, Federer). Letw: M — M be a smooth map between smooth
Riemannian manifolds of dimension m and n respectively, with m > n. Let ¢ : M — R be
a Borel measurable function. Then:

o) et (d,m)| [avig| = [ ( [ e |dvy|> Vil
zeM yeM \Jzer—'(y)

whenever one of these integrals is well-defined.

Note that the innermost integral on the right-hand side is only defined almost everywhere.
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C.2 The double-fibration trick

We now describe the double-fibration trick, which consists in applying the coarea formula
twice, for different fibrations. Let M; and Ms be two smooth Riemannian manifolds of
dimension n1 and no respectively. Let F': My x My — R” be a smooth submersion, and let
»=F"1 (0). We equip X with the restriction of the product metric on M; x M3 and denote by
|dVar, |, |dVas, | and |dVs| the Riemannian measures on the corresponding manifolds. Finally,
let 1 : 3% — M; and 73 : X — Ms be the projections from ¥ to each factor. Assuming
that » < min(ny,ns2), we have dim(X) = ny + no — r > max(ni,n2). Thus we can apply the
coarea formula both to w1 and ms.
Let ¢ : ¥ — R be a Borel measurable function, then:

: d d = det™ (dym)||d
cn (/meml(yl)mn vy1|>| Vanl = [ _ola) jder* (dom)ave|

det (dymy)|
_ sl @ N
/yZe]\/IZ </Z67r21(y2) ( ) |d€tL (dzﬂ'g)| | y2| | M2|

whenever one of these integrals is well-defined. Note that if |det™ (d,72)| vanishes then 72 ()
is a critical value of 7o, and the set of such critical values has measure 0 in Ms.

We would like the integrand on the right-hand side to depend on F' rather than on m;
and mo. Let 01 F and 0> F denote the partial differentials of F' with respect to the first and
second variable respectively. For any = = (z1,22) € X,

T, = {(1}1,’02) S Tlel X T12M2 | 81F(x) -v1 + 82F(:c) c Vg = 0}

Lemma C.2. Let z € 3, then |det™ (dym2)| = 0 if and only if |det™ (81 F(x))| = 0. More-
over,

(C.2) |det™ (dym1)| |det™ (01F ()| = |det™ (dyma)| |det™ (02F(z))] .

Proof. First note that d,F' = 01F(x) o dym + 02F(x) o dyme = 0 on T, X, This shows that:
(C.3) ker(d,m ) = {0} x ker(02F(z)) and ker(d,ms) = ker(d1 F(z)) x {0}.
The space T, X splits as the following orthogonal direct sum:

(C4) T,% = ker(d,m1) @ ker(d,m) & G,

where G is the orthogonal complement of ker(d,m1) ® ker(d,ms) in T,3.

Then, }detJ- (dz7r2)| = 0 if and only if d, 7o is not onto. Recalling that dim(Mz) = no
and dim(X) = n; + ng — r, this is equivalent to dim(ker(d,m2)) > n; — r. In the same
way, |det™ (01F(x))| = 0 if and only if dim(ker(d1F(z))) > ny — 7. But the kernels of
dymy and Oy F () have the same dimension by (C.3), so that |det™ (d,m2)| = 0 if and only
if |det™ (91 F(x))| = 0. A similar argument shows that |det™ (d,m)| = 0 if and only if
|det* (92 F ()| = 0. Thus the lemma is true if any of the four maps in (C.2) is singular.

From now on, we assume that these maps are all surjective. In this case, we have:

dim(G) = r, dim(ker(01 F(z))) = dim(ker(d,m2)) = n1 — r,
and dim(ker(02 F(x))) = dim(ker(dym)) = ng —r.

We choose an orthonormal basis of T, M; adapted to ker(d; F(x)) @ ker(d; F(x))* and an
orthonormal basis of T, M, adapted to ker(ds F(z)) ® ker(0oF (z))*. From these, we deduce
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orthonormal basis of ker(d,m) = {0} x ker(02F(x)) and ker(d,ms) = ker(01 F(x)) x {0}.
Finally we complete the resulting basis of ker(d,m) @ ker(d,m2) in an orthonormal basis
of T,X adapted to the splitting (C.4). In these basis the matrix of d,m; has the form
(8 Inbﬂ gl) where I,,, _, stands for the identity matrix of size n; — r. Similarly, the
1
In27r 0 A2
0 0 Bs
the form (0 Cl) and (0 Cg) respectively. Thus By, B, C7 and C5 are square matrices
satisfying the following relations:

matrix of d,my has the form ) , and the matrices of 0y F(x) and 02 F(x) have

|det " (dymy)| = |det(By)], |det" (01 F(2))| = |det(C1)],
|det " (dym2)| = |det(B2)|, |det" (02 F (2))] = |det(C2)| .

Besides the relation 01 F(z) o dym + 02F(x) o dyma = 0 means that C1B; = —C2Ba, hence
|det(C1)| |det(By)| = |det(C2)| |det(Bz)|. This proves (C.2). O

An immediate consequence of (C.1) and (C.2) is the following.

Proposition C.3. Let My and Ms be two smooth Riemannian manifolds of dimension nq
and no respectively. Let F : My x My — R” be a smooth submersion, and let ¥ = F~1(0).
Let ¢ : ¥ — R be a Borel measurable function. Then:

|dett (8:F ()]
dv,,| ||dVas, | = 14t O L@ 4 ) 1y
/yl€M1 </’Tll(yl)¢(z)| y1|>| " /yz€]M2 </7r21(y2)¢($) |det (91 F'(2))] Ve | Jl4Vael,

whenever one of these integrals is well-defined.

C.3 Proof of theorem 5.3

Finally, we prove theorem 5.3. Let M be a closed Riemannian manifold of dimension n and
V be a subspace of C*°(M,R") of dimension N (recall that 1 < r < n). We assume that V
is 0-ample, so that F: (f,z) — f(x) is a smooth submersion from V x M to R" and

S=F70)={(f,z) €V x M| f(z) =0}

is a submanifold of codimension r of V' x M. Let df denote the Lebesgue measure on V or
on a subspace of V. Let ¢ : ¥ — R be a Borel measurable function, by proposition C.3,

1 ILr12
E d 55 av) ) a
lédfmm|W| ¢5Nﬂw<égf””” |w0f

VEr Juent </feker<j2>¢(f’ v |det ! (9 F(x))] df) vl

Recall that for all z € M, 50 : f + f(x) is onto, since V is 0-ample. In particular, ker(;2)
has codimension r and V splits as ker(j0) @ ker(j2)1. We recognize the innermost integral
to be a conditional expectation given f(xz) =0 (see corollary A.11). Thus,

‘detJ- (82F(x
x

)|
|det (01 F ()]

1
pr— T ]E
V2 JrzeMm

By equation (2.4), |det* (92 F(x))| = |det* (d, f)| and
(C.6) ‘detJ‘ (01F(ac))‘ = ‘detJ‘ (jg)’ = +/det (59(59)%).

o(f,x) f(x) =0] [dVi].

«mwﬂ/d¢@wmw
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Since f ~ N(0,1d), equation (A.8) shows that j2;%* is the variance operator of f(z) = j2(f).
Then, by (2.9), det (2(50)*) = det(Var(f(z))) = det(E(z,z)). In particular, this quantity
does not depend on f € V. Equations (C.5), (C.6) and this last equality prove theorem 5.3.
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