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Abstract

In a closed manifold of positive dimension n, we estimate the expected volume

and Euler characteristic for random submanifolds of codimension r ∈ {1, . . . , n} in

two different settings. On one hand, we consider a closed Riemannian manifold and

some positive λ. Then we take r independent random functions in the direct sum of

the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues less than

λ2 and consider the random submanifold defined as the common zero set of these r

functions. We compute asymptotics for the mean volume and Euler characteristic of

this random submanifold as λ goes to infinity. On the other hand, we consider a complex

projective manifold defined over the reals, equipped with an ample line bundle L and

a rank r holomorphic vector bundle E that are also defined over the reals. Then we get

asymptotics for the expected volume and Euler characteristic of the vanishing locus of

a random real holomorphic section of E ⊗Ld as d goes to infinity. The same techniques

apply to both settings.

Keywords: Euler characteristic, Riemannian random wave, spectral function, random
polynomial, real projective manifold, ample line bundle, Bergman kernel, Gaussian field.
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1 Introduction

Zeros of random polynomials were first studied by Bloch and Pòlya [7] in the early 30’s.
About ten years later, Kac [22] obtained a sharp asymptotic for the expected number of
real zeros of a polynomial of degree d with independent standard Gaussian coefficients, as
d goes to infinity. This was later generalized to other distributions by Kostlan in [23]. In
particular, he introduced a normal distribution on the space of homogeneous polynomials of
degree d – known as the Kostlan distribution – which is more geometric, in the sense that it
is invariant under isometries of CP 1. Bogomolny, Bohigas and Leboeuf [8] showed that this
distribution corresponds to the choice of d independent roots, uniformly distributed in the
Riemann sphere.

In higher dimension, the question of the number of zeros can be generalized in at least
two ways. What is the expected volume of the zero set? And what is its expected Euler
characteristic? More generally, one can ask what are the expected volume and Euler char-
acteristic of a random submanifold obtained as the zero set of some Gaussian field on a
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Riemannian manifold. In this paper, we provide an asymptotic answer to these questions in
the case of Riemannian random waves and in the case of real algebraic manifolds.

Let us describe our frameworks and state the main results of this paper. See section 5 for
more details. Let (M, g) be a closed smooth Riemannian manifold of positive dimension n
equipped with the Riemannian measure |dVM | associated to g. This induces a L2-inner
product on C∞(M) defined by:

∀φ, ψ ∈ C∞(M), 〈φ , ψ〉 =
∫

x∈M

φ(x)ψ(x) |dVM | .

It is well-known that the subspace Vλ ⊂ C∞(M) spanned by the eigenfunctions of the
Laplacian associated to eigenvalues smaller than λ2 has finite dimension. Let 1 6 r 6 n and
let f ∈ (Vλ)

r be a standard Gaussian vector, we denote by Zf the zero set of f . Then, for λ
large enough, Zf is almost surely a submanifold ofM of codimension r (see section 7 below)
and we denote by Vol (Zf ) its Riemannian volume for the restriction of g to Zf . We also
denote by χ(Zf ) its Euler characteristic.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension n. Let Vλ be
the direct sum of the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues
smaller than λ2. Let f be a standard Gaussian vector in (Vλ)

r, with 1 6 r 6 n. Then the
following holds as λ goes to infinity:

E[Vol (Zf )] =

(

λ√
n+ 2

)r

Vol (M)
Vol (Sn−r)

Vol (Sn)
+O(λr−1).

Here and throughout this paper, E[ · ] denotes the mathematical expectation of the quantity
between the brackets.

If n − r is odd, Zf is almost surely a smooth manifold of odd dimension. In this case,
χ(Zf ) = 0 almost surely. If n− r is even, we get the following result.

Theorem 1.2. Let (M, g) be a closed Riemannian manifold of dimension n. Let Vλ be
the direct sum of the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues
smaller than λ2. Let f be a standard Gaussian vector in (Vλ)

r, with 1 6 r 6 n. Then, if
n− r is even, the following holds as λ goes to infinity:

E[χ (Zf )] = (−1)
n−r
2

(

λ√
n+ 2

)n

Vol (M)
Vol

(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)
+O(λn−1).

We also consider the framework of the papers [15, 16] by Gayet and Welschinger, see
section 5.6 for more details. Let X be a smooth complex projective manifold of complex
dimension n. Let L be an ample holomorphic line bundle over X and E be a holomorphic
vector bundle over X of rank r. We assume that X , L and E are equipped with compatible
real structures and that the real locus RX of X is non-empty. Let hL denote a Hermitian
metric on L with positive curvature ω and hE denote a Hermitian metric on E . Both metrics
are assumed to be compatible with the real structures. Then ω is a Kähler form on X and
it induces a Riemannian metric g and a volume form dVX = ωn

n! on X . For any d ∈ N, the
space Γ(E ⊗ Ld) of smooth sections of E ⊗ Ld is then equipped with the L2-inner product:

∀s1, s2 ∈ Γ(E ⊗ Ld), 〈s1 , s2〉 =
∫

x∈X
(hE ⊗ hdL)(s1(x), s2(x)) dVX .

Let RH0(X , E ⊗Ld) denote the space of real global holomorphic sections of E ⊗Ld. This
is a Euclidean space for the above inner product. Let s be a standard Gaussian section in
RH0(X , E ⊗ Ld). We denote by Zs the real part of its zero set. Once again, for d large
enough, Zs is almost surely a smooth submanifold of RX of codimension r. Let Vol (Zs)
denote the Riemannian volume of Zs and χ(Zs) denote its Euler characteristic. We get the
analogues of theorems 1.1 and 1.2 in this setting.
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Theorem 1.3. Let X be a complex projective manifold of dimension n defined over the reals
and r ∈ {1, . . . , n}. Let L be an ample holomorphic Hermitian line bundle over X and E
be a rank r holomorphic Hermitian vector bundle over X , both equipped with real structures
compatible with the one on X . Let s be a standard Gaussian vector in RH0(X , E ⊗ Ld).
Then the following holds as d goes to infinity:

E[Vol (Zs)] =
(√

d
)r

Vol (RX )
Vol (Sn−r)

Vol (Sn)
+O

(√
d
r−2
)

.

Theorem 1.4. Let X be a complex projective manifold of dimension n defined over the reals
and r ∈ {1, . . . , n}. Let L be an ample holomorphic Hermitian line bundle over X and E
be a rank r holomorphic Hermitian vector bundle over X , both equipped with real structures
compatible with the one on X . Let s be a standard Gaussian vector in RH0(X , E ⊗ Ld).
Then, if n− r is even, the following holds as d goes to infinity:

E[χ (Zs)] = (−1)
n−r
2

(√
d
)n

Vol (RX )
Vol

(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)
+O

(√
d
n−2
)

.

In the case of random eigenfunctions of the Laplacian, theorem 1.1 was already known to
Bérard [9] for hypersurfaces. See also [33, theorem 1] where Zelditch shows that, in the case
of hypersurfaces, 1

λE[Zf ] −→ |dVM | as λ → +∞, in the sense of currents. He also proves a
similar result in the case of band limited eigenfunctions.

Let us discuss theorems 1.3 and 1.4 when X equals CPn with the standard real structure
induced by the conjugation in Cn+1, with E equal to the trivial bundle X ×Cr and L = O(1)
with its usual metric. Then RX = RPn and ω is the Fubini-Study metric on CPn, normalized
so that it is the quotient of the Euclidean metric on the sphere S2n+1. Besides, RH0(X ,Ld)
is the space of real homogeneous polynomials of degree d in n+1 variables, and Zs is the set
of simultaneous real zeros of r independent Gaussian such polynomials. Then, theorems 1.3
and 1.4 read respectively:

E[Vol (Zs)] =
(√

d
)r

Vol
(

RPn−r
)

+O
(√

d
r−2
)

and,(1.1)

E[χ(Zs)] = (−1)
n−r
2

(√
d
)n Vol

(

RPn−r+1
)

Vol
(

RP r−1
)

πVol (RPn−1)
+O

(√
d
n−2
)

.(1.2)

In this setting (1.1) was proved by Kostlan [23]. In fact, Kostlan proved that for any d > 1,

E[Vol (Zs)] =
(√

d
)r

Vol (RPn−r). See also the paper [30] by Shub and Smale, where they

compute the expected number of common real roots for a system of n polynomials in n
variables. The expected Euler characteristic of a random algebraic hypersurface of degree d
in RPn was computed by Podkorytov [28]. Both Kostlan’s and Podkorytov’s results were
generalized by Bürgisser. In [10], he computed the expected volume and Euler characteristic
of a submanifold of RPn defined as the common zero set of r standard Gaussian polynomials
P1, . . . , Pr of degree d1, . . . , dr respectively. In particular, when these polynomials have the
same degree d and n− r is even, he showed that:

(1.3) E
[

χ
(

Z(P1,...,Pr)

)]

=
(√

d
)r

n−r
2
∑

p=1

(1− d)p
Γ
(

p+ r
2

)

p!Γ
(

r
2

) ,

where Γ denotes Euler’s gamma function. Equation (1.2) agrees with this result.
Recently, Gayet and Welschinger computed upper and lower bounds for the asymptotics

of the expected Betti numbers of random real algebraic submanifolds of a projective manifold,
see [15, 16]. This relies on sharp estimates for the expected number of critical points of index
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i ∈ {0, . . . , n− r} of a fixed Morse function p : RX → R restricted to the random Zs. More
precisely, letNi(Zs) denote the number of critical points of index i of p/Zs

, let Sym(i, n−r−i)
denote the open cone of symmetric matrices of size n− r and signature (i, n− r− i) and let
dµ denote the standard Gaussian measure on the space of symmetric matrices. Gayet and
Welschinger show [16, theorem 3.1.2] that:

(1.4) E[Ni(Zs)] ∼
d→+∞

√
d
n

√
π
n Vol (RX )

(n− 1)!

(n− r)!2r−1Γ
(

r
2

)eR(i, n− r − i),

where eR(i, n− r − i) =

∫

Sym(i,n−r−i)

|det(A)| dµ(A).

One can indirectly deduce theorem 1.4 from this result and from [10] in the following way.
By Morse theory:

E[χ(Zs)] =

n−r
∑

i=0

(−1)iE[Ni(Zs)] ∼
d→+∞

Cn,r

√
d
n
Vol (RX )

where Cn,r is a universal constant depending only on n and r. Specifying to the case of RPn,
equation (1.3) gives the value of Cn,r. Gayet and Welschinger also proved a result similar to
(1.4) for hypersurfaces in the case of Riemannian random waves, see [14]. It gives the order
of growth of E[χ(Zf )] in theorem 1.2, for r = 1.

In their book [1], Taylor and Adler compute the expected Euler characteristic of the
excursion sets of a centered, unit-variance Gaussian field f on a smooth manifold M . This
expectation is given in terms of the Lipshitz-Killing curvatures of M for the Riemannian
metric gf induced by f , see [1, theorem 12.4.1]. One can deduce from this result the expected
Euler characteristic of the random hypersurface f−1(0), always in terms of the Lipschitz-
Killing curvatures of (M, gf ). It might be possible to deduce theorems 1.2 and 1.4 from this
result, in the case of hypersurfaces, when the Gaussian field (f(x))x∈M (resp. (s(x))x∈RX )
has a constant covariance function (see section 5.3 for the definitions of these objects), but
one would need to estimate the Lipschitz-Killing curvatures of (M, gf) (resp. (M, gs)) as λ
(resp. d) goes to infinity.

In a related setting, Bleher Shiffman and Zelditch [5] computed the scaling limit of the
“k-points correlation function” for a random complex submanifold of a complex projective
manifold. See also [6] in a symplectic framework. In particular, for k = 1, one can deduce
the expected volume of a random submanifold from their result. It is possible to adapt
the formalism of those papers to our frameworks and to use it to prove our results on the
expected volume (theorems 1.1 and 1.3). We give a different proof of these results which is
the toy-model for the proof of theorems 1.2 and 1.4.

We now sketch the proofs of our main results in the harmonic setting. The real algebraic
case is similar. The first step is to express Vol (Zf ) (resp. χ(Zf )) as the integral of some
function on Zf . In the case of the volume this is trivial, and the answer is given by the
Chern-Gauss-Bonnet theorem (see section 3.2 below) in the case of the Euler characteristic.
Then we apply Federer’s coarea formula twice (see section 2) as in [15, 26]. This allows us
to express E[Vol (Zf )] (resp. E[χ(Zf)]) as the integral on M of some explicit function that
only depends on the geometry of M and on the covariance function of the smooth Gaussian
field defined by f .

It turns out that the covariance function of the field associated to a standard Gaussian
f ∈ (Vλ)

r is given by the Schwartz kernel of the orthogonal projection from C∞(M,Rr)
onto (Vλ)

r, for the L2-inner product defined above. In the harmonic case, this kernel is
related to the spectral function of the Laplacian. In the algebraic case, the covariance
function is given by the Bergman kernel of E ⊗ Ld. This was already used in [5, 26].
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Then, our results follow from estimates on the kernels and their derivatives (see section 6).
In the case of random waves, the estimates we need for the spectral function of the Laplacian
were proved by Bin [4], generalizing results of Hörmander [20]. In the algebraic case, much
is known about the Bergman kernel [3, 5, 25, 32] but we could not find the estimates we
needed in codimension higher than 1 in the litterature. These estimates are established in
section 6.3 using Hörmander-Tian peak sections. Peak sections were already used in this
context in [15, 16], see also [31]. The author was told by Steve Zelditch, after this paper was
written, that one can deduce estimates for the Bergman kernel in higher codimension from
the paper [3] by Berman, Berndtsson and Sjöstrand.
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2 The double-fibration trick

In this section, we start by recalling Federer’s coarea formula in the case of a smooth map
between smooth Riemannian manifolds. A proof in this special case can be found in the
appendix of [19]. See [12, theorem 3.2.12] for the general case. Then we describe what
Nicolaescu [26] refers to as the double-fibration trick, that is apply the coarea formula twice
for different fibrations, which provides an alternative to the use of Kac-Rice type formulas.
This was already used in this context in [15, 26].

2.1 The coarea formula

Let L : V → V ′ be a linear map between two Euclidean vector spaces of dimension m and
n respectively. We define the orthogonal determinant

∣

∣det⊥(L)
∣

∣ of L in the following way.

Definition 2.1. Let A be the matrix of the restriction of L to ker(L)⊥ in any orthonormal
basis of ker(L)⊥ and V ′. Then we set:

∣

∣det⊥(L)
∣

∣ =

{

|det(A)| if L has rank n,

0 otherwise.

Equivalently, one can set
∣

∣det⊥(L)
∣

∣ =
√

det(LL∗) where L∗ denotes the adjoint operator

of L. In particular,
∣

∣det⊥(L)
∣

∣ does not depend on a choice of orthonormal basis.

Let π : M̃ → M be a smooth map between two smooth Riemannian manifolds of re-
spective dimensions m and n. We assume that m > n. Let |dVM̃ | (resp. |dVM |) denote

the Riemannian measure on M̃ (resp. M) induced by its metric. By Sard’s theorem, for
almost every y ∈M , π−1(y) is a smooth submanifold of dimension (m− n) of M̃ . For such
y ∈M , we denote by |dVy| the Riemannian measure on π−1(y) induced by the metric of M̃ .
When m = n, the dimension π−1(y) is 0 and |dVy | is just

∑

x∈π−1(y) δx where δx is the Dirac

measure at the point x. The following result is proved in the appendix of [19].

Theorem 2.2 (Smooth coarea formula). Let π : M̃ →M be a smooth map between smooth
Riemannian manifolds of dimension m and n respectively, with m > n. Let φ : M̃ → R be
a Borel measurable function. Then:

∫

x∈M̃

φ(x)
∣

∣det⊥(dxπ)
∣

∣ |dVM̃ | =
∫

y∈M

(

∫

x∈π−1(y)

φ(x) |dVy |
)

|dVM | ,

whenever one of these integrals is well-defined.

Note that the innermost integral on the right-hand side is only defined almost everywhere.

2.2 The double-fibration trick

Let M1 and M2 be two smooth Riemannian manifolds of dimension n1 and n2 respectively.
Let F : M1 ×M2 → Rr be a smooth submersion, and let Σ = F−1(0). We equip Σ with
the restriction of the product metric on M1 ×M2 and denote by |dVM1 |, |dVM2 | and |dVΣ|
the Riemannian measures on the corresponding manifolds. Finally, let π1 : Σ → M1 and
π2 : Σ →M2 be the projections from Σ to each factor.

Assuming that r 6 min(n1, n2), we have dim(Σ) = n1 + n2 − r > max(n1, n2). Thus we
can apply the coarea formula twice, for π1 and π2. Let φ : Σ → R be a Borel measurable
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function, then:

(2.1)

∫

y1∈M1

(

∫

x∈π−1
1 (y1)

φ(x) |dVy1 |
)

|dVM1 | =
∫

x∈Σ

φ(x)
∣

∣det⊥(dxπ1)
∣

∣ |dVΣ|

=

∫

y2∈M2

(

∫

x∈π−1
2 (y2)

φ(x)

∣

∣det⊥(dxπ1)
∣

∣

|det⊥(dxπ2)|
|dVy2 |

)

|dVM2 | ,

whenever one of these integrals is well-defined. Note that if
∣

∣det⊥(dxπ2)
∣

∣ vanishes then π2(x)
is a critical value of π2, and the set of such critical values has measure 0 in M2.

Let ∂1F and ∂2F denote the partial differentials of F with respect to the first and second
variable respectively. For any x = (x1, x2) ∈ Σ,

TxΣ = {(v1, v2) ∈ Tx1M1 × Tx2M2 | ∂1F (x) · v1 + ∂2F (x) · v2 = 0}.
Lemma 2.3. Let x ∈ Σ, then

∣

∣det⊥(dxπ2)
∣

∣ = 0 if and only if
∣

∣det⊥(∂1F (x))
∣

∣ = 0. Moreover,

(2.2)
∣

∣det⊥(dxπ1)
∣

∣

∣

∣det⊥(∂1F (x))
∣

∣ =
∣

∣det⊥(dxπ2)
∣

∣

∣

∣det⊥(∂2F (x))
∣

∣ .

Proof. First note that dxF = ∂1F (x) ◦ dxπ1 + ∂2F (x) ◦ dxπ2 = 0 on TxΣ. This shows that:

ker(dxπ1) = {0} × ker(∂2F (x)) and ker(dxπ2) = ker(∂1F (x)) × {0}.(2.3)

The space TxΣ splits as the following orthogonal direct sum:

(2.4) TxΣ = ker(dxπ1)⊕ ker(dxπ2)⊕G,

where G is the orthogonal complement of ker(dxπ1)⊕ ker(dxπ2).
Then,

∣

∣det⊥(dxπ2)
∣

∣ = 0 means that dxπ2 is not surjective. Recalling that dim(M2) = n2

and dim(Σ) = n1 + n2 − r, this is equivalent to dim(ker(dxπ2)) > n1 − r. In the same way,
∣

∣det⊥(∂1F (x))
∣

∣ = 0 if and only if dim(ker(∂1F (x))) > n1−r. But ker(dxπ2) and ker(∂1F (x))

have the same dimension by (2.3), so that
∣

∣det⊥(dxπ2)
∣

∣ = 0 if and only if
∣

∣det⊥(∂1F (x))
∣

∣ = 0.

A similar argument shows that
∣

∣det⊥(dxπ1)
∣

∣ = 0 if and only if
∣

∣det⊥(∂2F (x))
∣

∣ = 0. Thus
the lemma is true if any of the four maps in (2.2) is singular.

From now on, we assume that these maps are all surjective. In this case, we have:

dim(G) = r, dim(ker(∂1F (x))) = dim(ker(dxπ2)) = n1 − r,

and dim(ker(∂2F (x))) = dim(ker(dxπ1)) = n2 − r.

We choose an orthonormal basis of TxM1 adapted to ker(∂1F (x)) ⊕ ker(∂1F (x))
⊥ and an

orthonormal basis of TxM2 adapted to ker(∂2F (x))⊕ ker(∂2F (x))
⊥. From these, we deduce

orthonormal basis of ker(dxπ1) = {0} × ker(∂2F (x)) and ker(dxπ2) = ker(∂1F (x)) × {0}.
Finally we complete the resulting basis of ker(dxπ1)⊕ ker(dxπ2) in an orthonormal basis of
TxΣ adapted to the splitting (2.4).

In these basis the matrix of dxπ1 has the form

(

0 In1−r A1

0 0 B1

)

where In1−r stands for the

identity matrix of size n1 − r. Similarly, the matrix of dxπ2 has the form

(

In2−r 0 A2

0 0 B2

)

,

and the matrices of ∂1F (x) and ∂2F (x) have the form
(

0 C1

)

and
(

0 C2

)

respectively.
Thus B1, B2, C1 and C2 are square matrices satisfying the following relations:

∣

∣det⊥(dxπ1)
∣

∣ = |det(B1)| ,
∣

∣det⊥(∂1F (x))
∣

∣ = |det(C1)| ,
∣

∣det⊥(dxπ2)
∣

∣ = |det(B2)| ,
∣

∣det⊥(∂2F (x))
∣

∣ = |det(C2)| .
Besides the relation ∂1F (x) ◦ dxπ1 + ∂2F (x) ◦ dxπ2 = 0 means that C1B1 = −C2B2, hence
|det(C1)| |det(B1)| = |det(C2)| |det(B2)|. This proves (2.2).
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An immediate consequence of (2.1) and (2.2) is the following.

Proposition 2.4. Let M1 and M2 be two smooth Riemannian manifolds of dimension n1

and n2 respectively. Let F : M1 ×M2 → Rr be a smooth submersion, and let Σ = F−1(0).
Let φ : Σ → R be a Borel measurable function. Then:

∫

y1∈M1

(

∫

π−1
1 (y1)

φ(x) |dVy1 |
)

|dVM1 | =
∫

y2∈M2

(

∫

π−1
2 (y2)

φ(x)

∣

∣det⊥(∂2F (x))
∣

∣

|det⊥(∂1F (x))|
|dVy2 |

)

|dVM2 | ,

where π1 : Σ →M1 and π2 : Σ →M2 denote the projections from Σ to each factor.

3 Material from Riemannian geometry

This section is mostly concerned with double forms. We start by recalling the formalism of
double forms, which was already used in this context by Taylor and Adler, see [1, section 7.2].
The Riemann curvature tensor and the second fundamental form of a submanifold being
naturally double forms, this provides a useful way to formulate the Chern-Gauss-Bonnet
theorem and the Gauss equation. Finally we express the second fundamental form of a
submanifold in terms of the derivatives of a defining function.

3.1 The algebra of double forms

We follow the exposition of [1, pp. 157–158]. Let V be a real vector space of dimension n.
For p and q ∈ {0, . . . , n} we denote by

∧p,q
(V ∗) the space

∧p
(V ∗)⊗∧q

(V ∗) of (p+ q)-linear
forms on V that are skew-symmetric in the first p and in the last q variables. The space of
double forms on V is:

∧•
(V ∗)⊗∧•

(V ∗) =
⊕

06p,q6n

∧p,q
(V ∗).

Elements of
∧p,q

(V ∗) are called (p, q)-double forms, or double forms of type (p, q). We also

set:
∧•,•

(V ∗) =
⊕n

p=0

∧p,p
(V ∗). Note that the space

∧1,1
V ∗ of (1, 1)-double forms is

merely the space of bilinear forms on V .

On
∧•

(V ∗)⊗∧•
(V ∗) we can define a double wedge product. It extends the usual wedge

product on
∧•(V ∗) ≃⊕n

p=0

∧p,0(V ∗), so we simply denote it by ∧. For pure tensors α⊗ β

and α′ ⊗ β′ ∈ ∧•
(V ∗)⊗∧•

(V ∗), we define:

(α⊗ β) ∧ (α′ ⊗ β′) = (α ∧ α′)⊗ (β ∧ β′)

and we extend ∧ to all double forms by bilinearity. This makes
∧•

(V ∗) ⊗∧•
(V ∗) into an

algebra, of which
∧•,•

(V ∗) is a commutative subalgebra. We denote by γ∧k the double
wedge product of a double form γ ∈ ∧•,•(V ∗) with itself k times.

Lemma 3.1. Let α be a symmetric (1, 1)-double form on V , then for every x, y, z and w ∈ V ,

α∧2((x, y), (z, w)) = 2 (α(x, z)α(y, w) − α(x,w)α(y, z)) .

Proof. Let (e1, . . . , en) be a basis of V and (e∗1, . . . , e
∗
n) its dual basis. We have:

α =
∑

16i,k6n

αike
∗
i ⊗ e∗k and then α∧2 =

∑

16i,j,k,l6n

αikαjl(e
∗
i ∧ e∗j )⊗ (e∗k ∧ e∗l ).
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Note that we do not restrict ourselves to indices satisfying i < j and k < l as is usually
the case with skew-symmetric forms. By multilinearity, it is sufficient to check the result on
elements of the basis. Let i, j, k and l ∈ {1, . . . , n}, then,

α∧2((ei, ej), (ek, el)) = αikαjl − αjkαil − αilαjk + αjlαik

= 2(αikαjl − αilαjk) using the the symmetry of α,

= 2(α(ei, ek)α(ej , el)− α(ei, el)α(ej , ek)).

Assume now that V is endowed with an inner product. It induces a natural inner product
on
∧•

(V ∗) such that, if (e1, . . . , en) is an orthonormal basis of V then
{

e∗i1 ∧ · · · ∧ e∗ip
∣

∣

∣
1 6 p 6 n and 1 6 i1 < i2 < · · · < ip 6 n

}

is an orthonormal basis of
∧•

(V ∗). We define the trace operator Tr on
∧•,•

(V ∗) in the
following way. If α⊗ β ∈ ∧•,•

(V ∗) is a pure tensor, then:

Tr(α⊗ β) = 〈α , β〉
and we extend Tr to

∧•,•
(V ∗) by linearity.

Notation 3.2. Here and throughout this paper 〈· , ·〉 will always denote the inner product
on the concerned Euclidean or Hermitian space.

Let M be a smooth manifold of dimension n. Applying the previous construction
pointwise to TxM , we define the vector bundle

∧•
(T ∗M) ⊗ ∧•

(T ∗M) on M . Sections
of this bundle are called differential double forms on M , and we can take the double
wedge product of two such sections. Finally, if M is equipped with a Riemannian met-
ric, we have a trace operator Tr which is C∞(M)-linear and takes sections of the subbundle
∧•,•

(T ∗M) =
⊕n

p=0

∧p,p
(T ∗M) to smooth functions.

3.2 The Chern-Gauss-Bonnet theorem

Let (M, g) be a smooth Riemannian manifold of dimension n. We denote by ∇M the Levi-
Civita connection of M , and by κ its curvature operator. That is κ is the 2-form on M with
values in End(TM) defined by:

κ(X,Y )Z = ∇M
X ∇M

Y Z −∇M
Y ∇M

X Z −∇M
[X,Y ]Z

for any vector fields X , Y and Z. We denote by R the Riemann curvature tensor of M ,
defined by:

R(X,Y, Z,W ) = g(κ(X,Y )W,Z),

for any vector fields X , Y , Z and W on M . This defines a four times covariant tensor on M
which is skew-symmetric in the first two and in the last two variables, thus R can naturally
be seen as a double form of type (2, 2). All this is standard material, except for the very last
point, see for example [21, section 3.3]. We now state the Chern-Gauss-Bonnet theorem in
terms of double forms.

Theorem 3.3 (Chern-Gauss-Bonnet). LetM be a closed (that is compact without boundary)
Riemannian manifold of even dimension n. Let R denote its Riemann curvature tensor and
χ(M) denote its Euler characteristic. We have:

χ (M) =
1

(2π)
n
2

(

n
2

)

!

∫

M

Tr
(

R∧n
2

)

|dVM | ,

where |dVM | is the Riemannian measure on M .

If M is orientable, this can be deduced from Atiyah-Singer’s index theorem. The general
case is treated in [27]. The above formula in terms of double forms can be found in [1,
theorem 12.6.18], up to a sign coming from different sign conventions in the definition of R.
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3.3 The Gauss equation

Let (M, g) be a smooth Riemannian manifold of dimension n and M̃ be a smooth submanifold
ofM of codimension r ∈ {1, . . . , n−1}. We denote by∇M and ∇̃ the Levi-Civita connections
on M and M̃ respectively. Likewise, we denote by R and R̃ their Riemann curvature tensor.
We denote by II the second fundamental form of M̃ ⊂ M which is defined as the section of
T ∗M̃ ⊗ T ∗M̃ ⊗ T⊥M̃ satisfying:

(3.1) II(X,Y ) = −
(

∇M
X Y − ∇̃XY

)

= −
(

∇M
X Y

)⊥

for any vector fields X and Y on M̃ . Here,
(

∇M
X Y

)⊥
stands for the component of ∇M

X Y in

T⊥M̃ . It is well known that II is symmetric in X and Y , see [21, lemma 3.6.2]. The second
fundamental form encodes the difference between R̃ and R in the following sense, see [21,
theorem 3.6.2].

Proposition 3.4 (Gauss equation). Let X, Y , Z and W be vector fields on M̃ , then

(3.2) R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + g(II(X,W ), II(Y, Z))− g(II(X,Z), II(Y,W )).

Let Ξ denote the four times covariant tensor on M̃ defined by:

(3.3) Ξ(X,Y, Z,W ) = g(II(X,Z), II(Y,W ))− g(II(X,W ), II(Y, Z))

for any vector fields X , Y , Z and W on M̃ . Then (3.2) can be rewritten as: R̃ = R+ Ξ.

Remark 3.5. If M̃ is an hypersurface, we can think of II(x) as a (1, 1)-double form on TxM̃
by contracting it with a unit normal vector to TxM̃ . Then Ξ = 1

2 II
∧2 whatever our choice

of normal vector. If M̃ is of higher codimension this does not even make sense, but we will
find a good substitute using Gaussian vectors, see lemma 4.16 below.

3.4 An expression for the second fundamental form

Let us now express the second fundamental form II of a submanifold M̃ of M defined as
the zero set of a smooth map. For this we need further definitions. Let V and V ′ be two
Euclidean spaces of dimension n and r respectively. Let L : V → V ′ be a linear map of
rank r, then L∗ is injective and its image is ker(L)⊥, so that LL∗ is invertible in End(V ′).

Definition 3.6. Let L : V → V ′ be a linear map of rank r, the pseudo-inverse (or Moore-
Penrose inverse) of L is defined as L† = L∗(LL∗)−1 from V ′ to V .

The map L† is the inverse of the restriction of L to ker(L)⊥. It is characterized by the fact
that LL† is the identity map on V ′ and L†L is the orthogonal projection onto ker(L)⊥. Let
f : M → Rr be a smooth submersion and assume that M̃ = f−1(0). Let ∇2f = ∇Mdf
denote the Hessian of f .

Lemma 3.7. Let M be a Riemannian manifold and let M̃ ⊂ M be a submanifold of M
defined as the zero set of the smooth submersion f : M → Rr. Let II denote the second
fundamental form of M̃ ⊂M . Then,

∀x ∈ M̃, II(x) = (dxf)
† ◦ ∇2

xf.

Proof. Since both II(x) and (dxf)
† take values in TxM̃⊥ = ker(dxf)

⊥, we only need to prove
that, for any x ∈ M̃ , dxf ◦ II(x) = ∇2

xf . Let X and Y be two vector fields on M̃ . The map
df · Y vanishes uniformly on M̃ . Hence for all x ∈ M̃ :

dx(df · Y ) ·X = (∇M
X df)x · Y + dxf · (∇M

X Y ) = 0.

Then, using that ker(dxf) = TxM̃ ,

(dxf ◦ II(x))(X,Y ) = −dxf · (∇M
X Y )⊥ = −dxf · (∇M

X Y ) = (∇M
X df)x · Y = ∇2

xf(X,Y ).
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4 Some results about Gaussian vectors

We start this section by a quick reminder of some basic facts about random vectors, especially
Gaussian ones. We then state and prove one of the key ingredients in the proof of theorems 1.2
and 1.4. The last subsection is devoted to a probabilistic version of the Gauss equation
and some useful technical result on Gaussian double forms. The first two subsections are
essentially borrowed from [26, appendix A]. We include them here for the reader’s convenience
and to introduce some notations.

4.1 Basics of random vectors

Let V be a real vector space of finite dimension and X be a random vector with values in
V . For any ξ ∈ V ∗, ξ(X) is a real random variable, and from now on, we assume that these
variables have finite first and second moments (we will shortly restrict ourselves to Gaussian
variables anyway). The expectation (or mean) of X is the linear form on V ∗ defined by:

(4.1) mX : ξ 7→ E[ξ(X)] .

Under the canonical isomorphism V ∗∗ ≃ V , mX =
∫

V x dPX where dPX stands for the
distribution of X . If mX = 0, we say that X (resp. dPX) is centered.

The variance of X is the non-negative symmetric bilinear form on V ∗ defined by:

(4.2) Var(X) : (ξ, η) 7→ E[ξ(X −mX)η(X −mX)] .

As a bilinear map from V ∗ × V ∗ to R, Var(X) is naturally an element of V ⊗ V .

Lemma 4.1. Let X be a random vector in V with finite second moment. We have:

Var(X) = E[(X −mX)⊗ (X −mX)] .

Proof. For any ξ and η ∈ V ∗, we have:

Var(X)(ξ, η) = E[ξ(X −mX)η(X −mX)] = E[(ξ ⊗ η)((X −mX)⊗ (X −mX))]

= (ξ ⊗ η)E[(X −mX)⊗ (X −mX)] .

The variance operator of X is the linear map ΛX : V ∗ → V such that, for any ξ and η ∈ V ∗,

(4.3) ξ (ΛXη) = Var(X)(ξ, η).

By lemma 4.1 we have:

ΛX : η 7→ E[(X −mX)⊗ η(X −mX)] .

If V = V1⊕V2 and X = (X1, X2) with Xi a random vector in Vi, then mX = mX1 +mX2

and the variance form Var(X) splits accordingly into four parts:

Var(X1) : V
∗
1 × V ∗

1 → R, Cov(X1, X2) : V
∗
1 × V ∗

2 → R,

Var(X2) : V
∗
2 × V ∗

2 → R and Cov(X2, X1) : V
∗
2 × V ∗

1 → R.

These bilinear maps are associated, as above, to the following operators:

Λ11 : V ∗
1 → V1, Λ12 : V ∗

2 → V1,

Λ22 : V ∗
2 → V2 and Λ21 : V ∗

1 → V2.

Since Var(X) is symmetric, Cov(X1, X2)(ξ, η) = Cov(X2, X1)(η, ξ) for any ξ and η. Equiva-
lenty (Λ12)

∗ = Λ21. We say that Cov(X1, X2) is the covariance form of X1 and X2, and that
Λ12 is their covariance operator. As above, Cov(X1, X2) is naturally an element of V1 ⊗ V2.

11



Lemma 4.2. Let X1 and X2 be random vectors in V1 and V2 respectively, with finite second
moments. We have:

Cov(X1, X2) = E[(X1 −mX1)⊗ (X2 −mX2)] .

Moreover, for any η ∈ V ∗
2 , Λ12(η) = E[(X1 −mX1)⊗ η(X2 −mX2)].

Assuming that V is endowed with an inner product, we denote by v∗ the linear form 〈v , ·〉,
for any v ∈ V . The Euclidean structure allows us to see Var(X) as a bilinear symmetric
form on V , and ΛX as a self-adjoint operator on V . Then, lemma 4.1 gives:

ΛX = E[(X −mX)⊗ (X −mX)∗] .

If X = (X1, X2), one can see Λ12 as a linear operator from V2 to V1 and by lemma 4.2:

Λ12 = E[(X1 −mX1)⊗ (X2 −mX2)
∗] .

Lemma 4.3. Let V be a Euclidean vector space and let X be a random vector in V with
finite second moment. We have:

(4.4) ∀v ∈ V, ∀w ∈ V, E[〈v ,X −mX〉 〈w ,X −mX〉] = 〈v ,ΛXw〉 .

Moreover, if V = V1 ⊕ V2 and X = (X1, X2) with Xi ∈ Vi, then:

(4.5) ∀v ∈ V1, ∀w ∈ V2, E[〈v ,X1 −mX1〉 〈w ,X2 −mX2〉] = 〈v ,Λ12w〉 .

Proof. Let v and w ∈ V , we have:

E[〈v ,X −mX〉 〈w ,X −mX〉] = Var(X)(v, w) as a bilinear form on V,

= 〈v ,ΛXw〉 where ΛX : V → V.

This proves (4.4). The proof of (4.5) is similar.

Let L : V → V ′ be a linear map between finite-dimensional vector spaces and X be a
random vector in V . Then L(X) is a random vector in V ′ whose distribution is given by
dPL(X) = L∗( dPX). An immediate consequence of definitions (4.1), (4.2) and (4.3) is that
mL(X) = L∗(mX) and Var(L(X)) = L∗(Var(X)), that is:

∀ξ ∈ V ∗, mL(X)(ξ) = mX(L∗ξ),(4.6)

∀ξ ∈ V ∗, ∀η ∈ V ∗, Var(L(X))(ξ, η) = Var(X)(L∗ξ, L∗η), and(4.7)

ΛL(X) = LΛXL
∗.(4.8)

4.2 Gaussian vectors

The following material can be found either in [2, section 1.2] or in [1, section 1.2]. In both
cases, it is written in a coordinate-dependent fashion in Rn. We present it in a more intrinsic
way, in the spirit of [26].

Let m ∈ R and σ > 0, the Gaussian (or normal) distribution on R with expectation m
and variance σ2 is the distribution whose Fourier transform is y 7→ exp

(

imy − 1
2σ

2y2
)

. If
σ = 0, this is the Dirac measure atm, otherwise it has a density with respect to the Lebesgue

measure, given by x 7→ 1
σ
√
2π

exp
(

− (x−m)2

2σ2

)

.

Let V be a real vector space of dimension n, a random vector X in V is said to be
Gaussian, or normally distributed, if for any ξ ∈ V ∗, ξ(X) is a Gaussian variable in R.
Recall that such a distribution has finite moments of all orders and that the distribution of

12



a Gaussian vector in V is totally determined by its expectation and variance. We denote
by N (m,Λ) the Gaussian distribution with expectation equal to m and variance operator
equal to Λ. We also denote by X ∼ N (m,Λ) the fact that X is distributed according to
N (m,Λ). The following lemma is a consequence of (4.6), (4.8) and of the above definition
of a Gaussian vector.

Lemma 4.4. Let L : V → V ′ be a linear map between finite-dimensional vector spaces and
X ∼ N (m,Λ) in V . Then L(X) ∼ N (Lm,LΛL∗) in V ′.

If V = V1 ⊕ V2 and X = (X1, X2) ∼ N (m,Λ) then, with the notations of section 4.1,
lemma 4.4 shows that X1 ∼ N (mX1 ,Λ11) and X2 ∼ N (mX2 ,Λ22). Besides, X1 and X2 are
independent if and only if Cov(X1, X2) = 0, or equivalently Λ12 = 0.

Proposition 4.5 (Regression formula). Let X = (X1, X2) be a Gaussian vector in V1 ⊕V2.
If Var(X1) is non-degenerate then X2 has the same distribution as

mX2 + Λ21(Λ11)
−1 (X1 −mX1) + Y

where Y is a centered Gaussian vector in V2, independent of X1, with variance operator equal
to Λ22 − Λ21(Λ11)

−1Λ12.

This is shown in [2, proposition 1.2]. See also [26, lemma A.2]. From this, we deduce that
the distribution of X2 given that X1 = x1 is a Gaussian vector in V2 with expectation equal
to mX2 + Λ21(Λ11)

−1(x1 −mX1) and variance operator equal to Λ22 − Λ21(Λ11)
−1Λ12. We

will make use of this in the special case where X is centered and x1 = 0.

Corollary 4.6. Let X = (X1, X2) be a centered Gaussian vector in V1 ⊕ V2 and assume
that Var(X1) is non-degenerate. Then the distribution of X2 given that X1 = 0 is a centered
Gaussian in V2 with variance operator Λ22 − Λ21(Λ11)

−1Λ12.

In what follows, we assume that V is a Euclidean space. Recall that in this case, we can
see the variance operator of a random vector as an endomorphism of V . We will say that
N (0, Id) is the standard normal distribution on V , where Id denotes the identity map on
V . If X ∼ N (0, Id), then, as a linear map from V ∗ to V , ΛX : v∗ 7→ v is the isomorphism
induced by 〈· , ·〉.

If Var(X) is non-degenerate, then dPX has the following density with respect to the
Lebesgue measure on V :

x 7→ 1√
2π

n√
det(ΛX)

exp

(

−1

2

〈

(ΛX)−1(x−m) , x−m
〉

)

.

Notation 4.7. We will denote by dµn the standard Gaussian measure on any Euclidean
space of dimension n.

Lemma 4.8. Let X ∼ N (0, Id) with values in a Euclidean space of dimension n and let
k ∈ R such that k > −n. Then,

E
[

‖X‖k
]

=
√
2π

k Vol
(

Sn−1
)

Vol (Sn+k−1)
.

Proof.

E
[

‖X‖k
]

=
1√
2π

n

∫

V

‖x‖k e− 1
2‖x‖

2

dx =
Vol

(

Sn−1
)

√
2π

n

∫ +∞

0

rk+n−1e−
1
2 r

2

dr

=
Vol

(

Sn−1
)

√
2π

n

∫ +∞

0

√
2t

k+n−2
e−t dt =

√
2π

k
Vol

(

Sn−1
)

2
√
π
k+n

Γ

(

k + n

2

)

.
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4.3 A useful result

Let V and V ′ be two Euclidean spaces of dimension n and r respectively, with 1 6 r 6 n.
The space V ′⊗V ∗ of linear maps from V to V ′ comes with a natural scalar product induced
by those on V and V ′. Let L be a standard Gaussian vector with values in V ′ ⊗ V ∗. This
means that L is a random linear map from V to V ′ such that, in any orthonormal basis, the
coefficients of the matrix of L are independent real standard Gaussian variables. The set of
linear maps of rank less than r is an algebraic submanifold of V ′ ⊗ V ∗ of codimension at
least 1, hence it has measure 0 for the Lebesgue measure and for any non-singular Gaussian
measure. Thus the rank of L is almost surely r. Let U be a standard Gaussian vector in V
independent of L, the random variable

(∣

∣det⊥(L)
∣

∣ , (L†)∗U
)

is defined almost surely (recall
the definition 3.6 of L†).

The remainder of this subsection is devoted to the proof of the following technical result.
This is a reformulation of proposition 3.12 in [10]. It will be one of the key arguments in the
proof of theorems 1.2 and 1.4. The proof is mostly tedious computations.

Proposition 4.9. Let V and V ′ be two Euclidean spaces of dimension n and r respec-
tively, with 1 6 r 6 n. Let L ∼ N (0, Id) in V ′ ⊗ V ∗, let U ∼ N (0, Id) in V and let
U ′ ∼ N (0, Id) in V ′. For all p ∈ {n − r + 1, . . . , n}, let Xp ∼ N (0, Id) in Rp such that
U ′, Xn, . . . , Xn−r+1 are globally independent. Then

(∣

∣det⊥(L)
∣

∣ , (L†)∗U
)

has the same dis-

tribution as
(

‖Xn‖ ‖Xn−1‖ · · · ‖Xn−r+1‖ , U ′

‖Xn−r+1‖

)

.

Let us introduce some further notations. Let B ⊂ V ′⊗V ∗ denote the set of maps of rank r.
We set F = {(L,U) ∈ B × V | U ∈ ker(L)⊥} and S = {(L,U) ∈ B × V | U ∈ S(ker(L)⊥)}.
Here and in the sequel, S(·) stands for the unit sphere of the concerned space. Given L ∈ B
and U ∈ V , we denote by Ũ the orthogonal projection of U onto ker(L)⊥. Then we set:

ρ = ‖Ũ‖, θ =
Ũ

‖Ũ‖
and θ′ =

(L†)∗θ

‖(L†)∗θ‖ .

Note that L∗θ′ = (L†L)∗θ
‖(L†)∗θ‖ = θ

‖(L†)∗θ‖ , hence ‖L∗θ′‖ = 1
‖(L†)∗θ‖ and finally:

θ =
L∗θ′

‖L∗θ′‖ and L†∗U = L†∗Ũ = ρL†∗θ =
ρ

‖L∗θ′‖θ
′.(4.9)

We choose orthonormal basis (e1, . . . , en) and (e′1, . . . , e
′
r), of V and V ′ respectively, such

that er = θ, e′r = θ′ and (e1, . . . , er) is a basis of ker(L)⊥. Then,

∀i ∈ {1, . . . , n}, 〈Lei , θ′〉 = 〈ei , L∗θ′〉 = ‖L∗θ′‖ 〈ei , θ〉 .

Thus the matrix of L in these basis has the form:

(4.10)





A
∗
...
∗

0

0 ··· 0 ‖L∗θ′‖ 0 ··· 0



 ,

and
∣

∣det⊥(L)
∣

∣ = |det(A)| ‖L∗θ′‖.
Let πθ and πθ′ denote the orthogonal projections along R · θ in V and along R · θ′ in V ′

respectively. We define L′ : V → (R · θ′)⊥ by L′ = πθ′ ◦ L ◦ πθ. Then |det(A)| =
∣

∣det⊥(L′)
∣

∣,
and L′ does not depend on our choice of basis. Finally, we have:

(∣

∣det⊥(L)
∣

∣ , L†∗U
)

=

(

∣

∣det⊥(L′)
∣

∣ ‖L∗θ′‖ , ρθ′

‖L∗θ′‖

)

.
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To prove proposition 4.9, we will show that
∣

∣det⊥(L′)
∣

∣, ‖L∗θ′‖, ρ and θ′ are independent
and identify their distributions.

If L and U are independant standard Gaussians, then almost surely L ∈ B and we can
consider (L,U) as a random element of B × V . Then (L, Ũ) is a random element of F and
its distribution is characterized by:

E
[

φ(L, Ũ)
]

=

∫

L∈B

(

∫

Ũ∈ker(L)⊥
φ(L, Ũ)e−

‖Ũ‖2

2
dŨ√
2π

r

)

dµnr(L),

for any bounded continuous function φ : F → R, where dŨ stands for the Lebesgue measure
on ker(L)⊥. From this, we compute the distribution of (L, θ, ρ) ∈ S ×R+ by a polar change
of variables in the innermost integral: for any bounded continuous φ : S × R+ → R,

E[φ(L, θ, ρ)] =

∫

L∈B

∫

θ∈S(ker(L)⊥)

∫ +∞

ρ=0

φ(L, θ, ρ)ρr−1e−
ρ2

2
dρ√
2π

r dθ dµnr(L),

where dρ is the Lebesgue measure on R and dθ is the Euclidean measure on the sphere
S(ker(L)⊥). This distribution is a product measure on S × R+ thus (L, θ) and ρ are in-
dependent variables. Since (

∣

∣det⊥(L′)
∣

∣ , θ′, ‖L∗θ′‖) only depends on (L, θ), this triple is
independent of ρ. Besides, ρ has the distribution of the norm of a standard Gaussian vector

in Rr: its density with respect to the Lebesgue measure is ρ 7→ Vol(Sr−1)√
2π

r ρr−1e−
ρ2

2 on R+

and vanishes elsewhere. Finally, the distribution of (L, θ) satisfies:

(4.11) E[φ(L, θ)] =

∫

L∈B

∫

θ∈S(ker(L)⊥)

φ(L, θ)
dθ

Vol (Sr−1)
dµnr(L),

for any bounded and continuous φ : S → R. We will now compute the distribution of (L, θ′)
in B × S(V ′).

Lemma 4.10. For any bounded and continuous φ : B × S(V ′) → R,

(4.12) E[φ(L, θ′)] =

∫

θ′∈S(V ′)

∫

L∈B
φ(L, θ′)

∣

∣det⊥(L′)
∣

∣

‖L∗θ′‖r−1 e
−‖L‖2

2
dθ′

Vol (Sr−1)

dL√
2π

nr

where dθ′ stands for the Euclidean measure on S(V ′) and dL stands for the Lebesgue measure
on V ′ ⊗ V ∗.

Proof. Fixing some φ, we see from (4.11) that:

E[φ(L, θ′)] =

∫

L∈B

∫

θ∈S(ker(L)⊥)

φ

(

L,
(L†)∗θ

‖(L†)∗θ‖

)

e−
‖L‖2

2
dθ

Vol (Sr−1)

dL√
2π

nr .

Then we make the change of variables θ′ = ψ(θ) = (L†)∗θ
‖(L†)∗θ‖ in the innermost integral, with

L fixed. Recalling (4.9) we have ψ−1 : θ′ 7→ L∗θ′

‖L∗θ′‖ , from S(V ′) to S(ker(L)⊥). Now the

differential of ψ−1 at θ′ ∈ S(V ′) satisfies:

∀v ∈ (R · θ′)⊥, dθ′ψ−1 · v =
1

‖L∗θ′‖

(

L∗v −
〈

L∗v ,
L∗θ′

‖L∗θ′‖

〉

L∗θ′

‖L∗θ′‖

)

=
πθ(L

∗v)

‖L∗θ′‖ .

As above, we choose an orthonormal basis (e′1, . . . , e
′
r−1) of (R · θ′)⊥ and an orthonormal

basis (e1, . . . , er−1) of (R · θ ⊕ ker(L))
⊥
. In these coordinates we have:

∣

∣det(dθ′ψ−1)
∣

∣ =

∣

∣

∣det
(

πθ ◦ L∗
/(θ′)⊥

)∣

∣

∣

‖L∗θ′‖r−1 =
|det(A∗)|
‖L∗θ′‖r−1 =

|det(A)|
‖L∗θ′‖r−1 =

∣

∣det⊥(L′)
∣

∣

‖L∗θ′‖r−1 ,

where A is the same as in (4.10). This proves (4.12).
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We can now compute the joint distribution of
(∣

∣det⊥(L′)
∣

∣ , θ′, ‖L∗θ′‖
)

from the one of
(L, θ′). If we fix θ′ ∈ S(V ′) and an orthonormal basis (e′1, . . . e

′
r) of V

′ such that e′r = θ′, the
choice of L ∈ V ′ ⊗ V ∗ is equivalent to the choice of L∗e′1, . . . , L

∗e′r ∼ N (0, Id) independent
in V . For simplicity, we set Li = L∗e′i. Note that if we choose a basis for V as well, these
are the rows of the matrix of L. We can rewrite (4.12) as:

E[φ(L, θ′)] =

∫

θ′∈S(V ′)

∫

L1,...,Lr−1∈V

∫

Lr∈V

φ(L, θ′)

∣

∣det⊥(L′)
∣

∣

‖Lr‖r−1

e−
1
2

∑

‖Li‖2

dθ′

Vol (Sr−1)

dL1 · · · dLr√
2π

nr ,

where dLi denotes the Lebesgue measure in the i-th copy of V . We set αr = Lr

‖Lr‖ and

ρr = ‖Lr‖. Here, L′ = πθ′ ◦ L ◦ παr
depends on αr and θ′ but not on ρr. Making a polar

change of variables, the above integral equals:

∫

θ′∈S(V ′)
αr∈S(V )

L1,...,Lr−1∈V

∫ +∞

ρr=0

φ(L, θ′)
ρn−r
r e−

ρ2r
2 dρr√

2π
n−r+1

e−
1
2

∑r−1
i=1 ‖Li‖2 ∣

∣det⊥(L′)
∣

∣

Vol (Sr−1)

dθ′ dαr dL1 · · · dLr−1
√
2π

(n+1)(r−1)
.

Then ρr = ‖L∗θ′‖ is independent of (θ′, αr, L1, . . . , Lr−1), hence of
(

θ′,
∣

∣det⊥(L′)
∣

∣

)

. More-
over, looking at its density, we see that ρr has the distribution of the norm of a standard
Gaussian vector in Rn−r+1. Besides (θ′, αr, L1, . . . , Lr−1) has the density:

(θ′, αr, L1, . . . , Lr−1) 7→
e−

1
2

∑r−1
i=1 ‖Li‖2

√
2π

(n+1)(r−1)

∣

∣det⊥(L′)
∣

∣

Vol (Sr−1)Vol (Sn−r)

with respect to dθ′⊗dαr⊗dL1⊗· · ·⊗dLr−1. For i ∈ {1, . . . , r−1} we denote by L⊥
i the or-

thogonal projection of Li onto the orthogonal of the subspace spanned by (αr, L1, . . . , Li−1).

Lemma 4.11. For any L ∈ B,
∣

∣det⊥(L′)
∣

∣ =
∥

∥L⊥
1

∥

∥ · · ·
∥

∥L⊥
r−1

∥

∥.

Proof. If one of the L⊥
i is zero, then the vectors αr, L1, . . . , Lr−1 are linearly dependent and

L is singular. Since we assumed L ∈ B this is not the case and

(

L⊥
1

‖L⊥
1 ‖ , . . . ,

L⊥
r−1

‖L⊥
r−1‖

)

is

an orthonormal basis of ker(L′)⊥. Writing the matrix of the restriction of L′ to ker(L′)⊥

in this basis and (e′1, . . . , e
′
r−1), we see that it is lower triangular with diagonal coefficients

∥

∥L⊥
1

∥

∥,. . . ,
∥

∥L⊥
r−1

∥

∥. This proves the lemma.

Let φ be a continuous bounded function from S(V ′)× R+ to R. We have:

E
[

φ
(

θ′,
∣

∣det⊥(L′)
∣

∣

)]

=

∫

φ
(

θ′,
∣

∣det⊥(L′)
∣

∣

) e−
1
2

∑

‖Li‖2 ∣
∣det⊥(L′)

∣

∣

√
2π

(n+1)(r−1)

dθ′ dαr dL1 . . . dLr−1

Vol (Sr−1) Vol (Sn−r)

=

∫

αr,θ′

∫

L⊥
1

. . .

∫

L⊥
r−1

φ
(

θ′,
∏
∥

∥L⊥
i

∥

∥

) e−
1
2

∑‖L⊥
i ‖2

∏
∥

∥L⊥
i

∥

∥

√
2π

(n+1− r
2 )(r−1)

dL⊥
r−1 . . . dL

⊥
1 dθ′ dαr

Vol (Sr−1)Vol (Sn−r)
.

Then we make polar changes of variables, for each i we set ρi =
∥

∥L⊥
i

∥

∥ and αi =
L⊥

i

‖L⊥
i ‖ . Note

that, when L1, . . . , Li−1 are fixed, L⊥
i is a vector in a space of dimension n− i. We have:

E
[

φ
(

θ′,
∣

∣det⊥(L′)
∣

∣

)]

=

∫

φ
(

θ′,
∏

ρi

) e−
1
2

∑

ρ2
i

∏

ρn−i
i√

2π
(n+1− r

2 )(r−1)

dρ1 . . . dρr−1 dα1 . . . dαr dθ
′

Vol (Sr−1)Vol (Sn−r)

=

∫

ρ1,...,ρr−1,θ′
φ
(

θ′,
∏

ρi

)

r−1
∏

i=1



Vol
(

Sn−i
) e−

ρ2i
2 ρn−i

i√
2π

n+1−i



 dρ1 . . . dρr−1
dθ′

Vol (Sr−1)
.
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This shows that θ′, ρ1, . . . , ρr−1 are independent variables, that θ′ is uniformly distributed
in S(V ′) and that, for all i ∈ {1, . . . , r − 1}, ρi is distributed as the norm of a standard

Gaussian vector in Rn+1−i. Finally, this shows that
∣

∣det⊥(L′)
∣

∣ is distributed as
∏r−1

i=1 ρi.

Putting all we have done so far together, we see that
(∣

∣det⊥(L)
∣

∣ , L†∗U
)

is distributed

as
(

‖Xn‖ · · · ‖Xn−r+1‖ , ρθ′

‖Xn−r+1‖

)

where Xp is a standard Gaussian vector in Rp for all p.

Moreover, θ′ is uniformly distributed in S(V ′), ρ is distributed as the norm of a standard
Gaussian vector in Rr, and all these variables are globally independent. Finally U ′ = ρθ′ is a
standard Gaussian in V ′, independent of Xn, . . . , Xn−r+1 so we have proved proposition 4.9.
An immediate corollary of this is the following.

Corollary 4.12. Let V and V ′ be two Euclidean spaces of dimension n and r respectively,
with 1 6 r 6 n. Let L ∼ N (0, Id) in V ′ ⊗ V ∗.
Then

∣

∣det⊥(L)
∣

∣ has the same distribution as ‖Xn−r+1‖ · · · ‖Xn‖, where Xp ∼ N (0, Id) in Rp

for all p ∈ {n− r + 1, . . . , n}, and these vectors are globally independent.

Remark 4.13. This can also be seen as follows. Fix basis for V and V ′ and notice that
∣

∣det⊥(L)
∣

∣ is the r-dimensional volume of the parallelepiped spanned by the lines L1, . . . , Lr

of the matrix of L. Using that the volume of a parallelepiped is basis times height (r − 1)
times we get:

∣

∣det⊥(L)
∣

∣ =
∥

∥L⊥
1

∥

∥

∥

∥L⊥
2

∥

∥ . . .
∥

∥L⊥
r

∥

∥. Here we denoted by L⊥
j the component of

Lj in the orthogonal complement of the space spanned by (L1, . . . , Lj−1). Since the lines of
L are independent the distribution of Lj is the same as that of Lj given (L1, . . . , Lj−1), that
is dµn. Then, for (L1, . . . , Lj−1) fixed, L⊥

j is the orthogonal projection of Lj onto a space

of dimension n− j+1, hence its distribution is dµn−j+1. Moreover,
∥

∥L⊥
j

∥

∥ is independent of
(L1, . . . , Lj−1), even if Lj is not. One can deduce corollary 4.12 from this.

Lemma 4.14. Let V and V ′ be two Euclidean spaces of dimension n and r respectively,
with 1 6 r 6 n. Let L ∼ N (0, Id) in V ′ ⊗ V ∗. Then:

E
[∣

∣det⊥(L)
∣

∣

]

=
√
2π

rVol (Sn−r)

Vol (Sn)
.

Proof. Since by corollary 4.12
∣

∣det⊥(L)
∣

∣ is distributed as ‖Xn−r+1‖ · · · ‖Xn‖ with Xp stan-
dard Gaussian in Rp and the Xp’s independent, we have:

E
[∣

∣det⊥(L)
∣

∣

]

= E[‖Xn−r+1‖ · · · ‖Xn‖] =
n
∏

p=n−r+1

E[‖Xp‖] =
n
∏

p=n−r+1

√
2π

Vol
(

Sp−1
)

Vol (Sp)

=
√
2π

rVol (Sn−r)

Vol (Sn)
.

The last but one equality comes from lemma 4.8.

4.4 Random double forms

We will use the following result in the proof of theorems 1.2 and 1.4. See [1, lemma 12.3.1]
for a proof.

Lemma 4.15. Let V be a vector space of finite dimension n. Let α ∈ ∧1,1
V ∗ be a Gaussian

bilinear form on V . If α is centered, then for any p 6 n
2 ,

E
[

α∧2p
]

=
(2p)!

2pp!

(

E
[

α∧2
])∧p

.
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Going back to the setting of 3.3, let M̃ be a smooth submanifold of the Riemannian
manifold (M, g), with dim(M) > dim(M̃) > 1. Let II be the second fundamental form
of M̃ ⊂ M , defined by equation (3.1), and let Ξ be defined by (3.3). Let x ∈ M̃ and
U ∼ N (0, Id) be a random vector in TxM . Recalling lemma 4.3, we get the following: for
any X , Y , Z and W ∈ TxM̃ ,

Ξ(X,Y, Z,W ) = 〈II(X,Z) , II(Y,W )〉 − 〈II(X,W ) , II(Y, Z)〉
= E[〈II(X,Z) , U〉 〈II(Y,W ) , U〉]− E[〈II(X,W ) , U〉 〈II(Y, Z) , U〉]
= E[〈II(X,Z) , U〉 〈II(Y,W ) , U〉 − 〈II(X,W ) , U〉 〈II(Y, Z) , U〉]

=
1

2
E
[

〈II , U〉∧2
((X,Y ), (Z,W ))

]

,

where we applied lemma 3.1 to the random symmetric (1, 1)-double form 〈II , U〉. We have
proved the following version of the Gauss equation.

Lemma 4.16. Let (M, g) be a Riemannian manifold and let M̃ be a smooth submanifold of
M , such that dim(M) > dim(M̃) > 1. Let R and R̃ denote the Riemann curvature of M
and M̃ respectively, and let II be the second fundamental form of M̃ ⊂M . Then:

∀x ∈ M̃, R̃ = R+
1

2
E
[

〈II , U〉∧2
]

,

where U ∼ N (0, Id) with values in TxM .

5 Random submanifolds

This section is concerned with the precise definition of the random submanifolds we consider.
The first two subsections explain how we produce them in a quite general setting. The third
one introduces the covariance kernel, which characterizes their distribution. We also describe
the distribution induced on the bundle of 2-jets in terms of this kernel. Then we describe
what we called the harmonic setting, before explaining how to adapt all this in the real
algebraic case. This kind of random submanifolds has already been considered by Bérard
[9], Zelditch [33] and Nicolaescu [26] in the harmonic case, and by Gayet and Welschinger in
the real algebraic case, see [15, 16, 17]. See also [10, 11, 24] in special cases.

5.1 General setting

Let (M, g) be a smooth closed manifold of positive dimension n. We denote by |dVM | the
Riemannian measure on M induced by g. Let 〈· , ·〉 denote the L2-scalar product induced by
|dVM |, that is for any ϕ1 and ϕ2 ∈ C∞(M),

(5.1) 〈ϕ1 , ϕ2〉 =
∫

x∈M

ϕ1(x)ϕ2(x) |dVM | .

Let V be a subspace of C∞(M) of finite dimension N ′.
From now on we fix some r ∈ {1, . . . , n} that will be the codimension of our random

submanifolds. We equip V r with the L2-scalar product defined by:

(5.2) ∀f1, f2 ∈ V r, 〈f1 , f2〉 =
∫

x∈M

〈f1(x) , f2(x)〉 |dVM | ,

where the inner product on the right-hand side is the standard one on Rr. Let N = rN ′

denote the dimension of V r.
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Let f ∈ V r, we denote by Zf the zero set of f :M → Rr. If f vanishes transversally then
Zf is a smooth submanifold of M of codimension r and we denote by |dVf | the Riemannian
measure induced by the restriction of g to Zf . We also denote by Vol (Zf ) the volume of Zf

and by χ(Zf ) its Euler characteristic. In the case r = n, when f vanishes transversally Zf

is a finite set, so we define |dVf | =
∑

x∈Zf
δx, where δx stands for the Dirac measure at the

point x. Let D denote the discriminant locus of V r, that is the set of f ∈ V r that do not
vanish transversally.

In the sequel, we consider a random f ∈ V r with standard Gaussian distribution. This
means that the components of f are independent standard Gaussian vectors in V . Recall
that dµN ′ stands for the standard Gaussian measure on V and dµN = dµN ′ ⊗ · · · ⊗ dµN ′

stands for the standard Gaussian measure on V r. Under some further technical assumptions
on V (see 5.2 below), f vanishes transversally almost surely. Hence, the random variables
Vol (Zf) and χ(Zf) are well defined almost everywhere, and it makes sense to compute their
expectation.

5.2 The incidence manifold

Following [26], we say that V r is 0-ample if the map j0x : f 7→ f(x) is onto for every x ∈M .
For r = 1 this is just saying that V has no base point. From now on, we assume that V r is
0-ample. Note that it is equivalent to assume that V has no base point.

We introduce an incidence manifold, following the idea of Shub and Smale [30], see also
[15, 16]. Let F : (f, x) ∈ V r ×M 7→ f(x) ∈ Rr and Σ = F−1(0). For any (f0, x) ∈ V r ×M ,
we have:

d(f0,x)F : (f, v) 7→ f(x) + dxf0 · v.
Then d(f0,x)F is onto, indeed ∂1F (f0, x) = j0x is already onto. Thus F is a submersion and
Σ is a smooth submanifold of codimension r of V r ×M . As in 2.2, we set π1 : Σ → V r and
π2 : Σ →M the projections from Σ to each factor. Let (f0, x) ∈ V r ×M , we have:

T(f0,x)Σ = {(f, v) ∈ V r × TxM | dxf0 · v + f(x) = 0},
and d(f0,x)π1 : (f, v) ∈ T(f0,x)Σ 7→ f ∈ V r.

Let f ∈ V r, it is in the range of d(f0,x)π1 if and only if there exists some v ∈ TxM such
that (f, v) ∈ T(f0,x)Σ, that is f(x) is in the range of dxf0. Since V r is 0-ample, the map j0x
is onto, and dxf0 is surjective if and only if d(f0,x)π1 is. Thus the discriminant locus D is
exactly the set of critical values of π1. By Sard’s theorem, D has measure 0 in V r, both for
the Lebesgue measure and dµN , and f vanishes transversally almost surely.

Later on we will apply the double-fibration trick of section 2.2 for the fibrations induced
by π1 and π2. For this we will need the partial differentials of F :

∂1F (f, x) = j0x and ∂2F (f, x) = dxf.(5.3)

We also equip Σ with the restriction of the product metric on V r ×M . Then, whenever
f /∈ D, (π1)

−1(f) = {f}×Zf is isometric to Zf , hence we will identify those sets. Similarly,
we will identify (π2)

−1(x) = ker(j0x)× {x} with ker(j0x).

5.3 The covariance kernel

In this subsection we introduce the Schwarz kernel and covariance function associated to our
space of random functions. It turns out (see proposition 5.2 below) that these objects are in
fact the same. The first to use this fact seem to have been Bleher, Shiffman and Zelditch in
the case of complex projective manifolds [5] and in the case of symplectic manifolds [6]. In
the harmonic setting this was used by Zelditch [33] and Nicolaescu [26].
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We denote by Rr the trivial bundle Rr ×M over M and by ∇ the trivial flat connection
on Rr. This connection and ∇M induce the connection ∇M ⊗ Id+ Id⊗∇ on T ∗M ⊗ Rr.
Let ∇2 = (∇M ⊗ Id+ Id⊗∇) ◦ ∇ denote the second covariant derivative on Rr. In what
follows, we identify canonically smooth functions from M to Rr with sections of Rr. Under
this identification, ∇ corresponds to the exterior differential d and, ∇2 corresponds to the
usual Hessian defined in 3.3. Let P1 (resp. P2) denote the projection from M ×M onto the
first (resp. second) factor. Recall that Rr ⊠ Rr denotes the bundle P ∗

1 (R
r) ⊗ P ∗

2 (R
r) over

M ×M .
In C∞(M) equipped with the L2-inner product (5.1), the orthogonal projection onto V

can be represented by its Schwartz kernel, denoted by e. That is there exists a unique
e : M ×M → R such that for any smooth ϕ : M → R, the projection of ϕ onto V is given
by x 7→ 〈e(x, ·) , ϕ〉. This function has the following reproducing kernel property :

∀ϕ ∈ V, ∀x ∈M, ϕ(x) = 〈e(x, ·) , ϕ〉 =
∫

y∈M

e(x, y)ϕ(y) |dVM | .

Likewise, there exists a kernel for the orthogonal projection onto V r in C∞(M,Rr). It is
the unique section E of Rr ⊠Rr such that, for any smooth f :M → Rr, the projection of f
onto V r is given by:

(5.4) x 7→ 〈E(x, ·) , f〉 =
∫

y∈M

〈E(x, y) , f(y)〉 |dVM | .

In the previous formula, the inner product on the right-hand side is the usual one on Rr,
acting on the second factor of Rr ⊗ Rr. Note that 〈E(x, y) , f(y)〉 ∈ (Rr)x, the fiber of Rr

over x. Again, E has a reproducing kernel property:

(5.5) ∀f ∈ V r, ∀x ∈M, f(x) =

∫

y∈M

〈E(x, y) , f(y)〉 |dVM | .

Remark 5.1. It may seem odd to consider E as a section instead of a map from M ×M to
Rr ⊗ Rr. It turns out to be the right point of view when we consider sections of a vector
bundle instead of functions, as will be the case in the real algebraic setting.

If (f1, . . . , fN ) is any orthonormal basis of V r, one can check that E is defined by:

(5.6) E : (x, y) 7→
N
∑

i=1

fi(x) ⊗ fi(y).

Then E is smooth, for all x ∈ M , E(x, x) is in the span of {ζ ⊗ ζ | ζ ∈ Rr}, and for all
ζ ∈ Rr:

(5.7) 〈E(x, x) , ζ ⊗ ζ〉 =
N
∑

i=1

〈fi(x) ⊗ fi(x) , ζ ⊗ ζ〉 =
N
∑

i=1

(〈fi(x) , ζ〉)2 > 0.

Thus V r is 0-ample if and only if for all x ∈M and ζ ∈ Rr \ {0}, 〈E(x, x) , ζ ⊗ ζ〉 > 0. That
is if and only if E(x, x) is a positive-definite bilinear form on (Rr)∗ for any x ∈M .

Let (ϕ1, . . . , ϕN ′) be an orthonormal basis of V . As above, e can be expressed as:

e : (x, y) 7→
N ′
∑

i=1

ϕi(x)ϕi(y).

Thus e is smooth and e(x, ·) ∈ V for all x ∈ M . Moreover e(x, x) =
∑N ′

i=1 ϕi(x)
2 > 0, and

equality holds if and only if x is a base point of V . Then, e and E are related as follows.
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Let (ζ1, . . . , ζr) denote the canonical basis of Rr and let ϕ
(q)
i = ϕiζq for 1 6 i 6 N ′ and

1 6 q 6 r. Then (ϕ
(q)
i )(i,j) is an orthonormal basis of V r and, for all x and y ∈M ,

E(x, y) =

r
∑

q=1

N ′
∑

i=1

ϕ
(q)
i (x)⊗ ϕ

(q)
i (y) =

r
∑

q=1





N ′
∑

i=1

ϕi(x)ϕi(y)



 ζq ⊗ ζq =

r
∑

q=1

e(x, y)ζq ⊗ ζq.

Thus, for any x, y ∈M and any ζ, ζ′ ∈ Rr,

(5.8) 〈E(x, y) , ζ ⊗ ζ′〉 = e(x, y) 〈ζ , ζ′〉 .
On the other hand, the standard Gaussian vector f ∈ V r defines a smooth centered Gaus-

sian field (f(x))x∈M indexed by M , with values in Rr. Its distribution is totally determined
by its covariance function, that is the section of Rr⊠Rr defined by (x, y) 7→ Cov(f(x), f(y)).
By this we mean that the covariance function determines all finite-dimensional marginal
distributions (cf. [1, section 1.2], for example).

Proposition 5.2. Let V be a finite-dimensional subspace of C∞(M) and let E be the
Schwartz kernel of V r. Let f ∼ N (0, Id) in V r. Then,

∀x, y ∈M, Cov(f(x), f(y)) = E[f(x) ⊗ f(y)] = E(x, y).

Proof. Let x and y ∈ M , the first equality is given by lemma 4.2. We will now show that
E[f(x)⊗ f(y)] satisfies condition (5.4) to prove the second equality. Let f0 : M → Rr be a
smooth function and x ∈M ,
∫

y∈M

〈E[f(x)⊗ f(y)] , f0(y)〉 |dVM | =
∫

y∈M

E[〈f(x)⊗ f(y) , f0(y)〉] |dVM |

=

∫

y∈M

E[f(x) 〈f(y) , f0(y)〉] |dVM | = E[f(x) 〈f , f0〉] .

If f0 ∈ (V r)⊥, this equals 0. If f0 ∈ V r, we have:

E[f(x) 〈f , f0〉] = E[〈E(x, ·) , f〉 〈f0 , f〉] = 〈E(x, ·) , f0〉 = f0(x),

where we applied lemma 4.3 to f ∼ N (0, Id) and made use of the reproducing kernel prop-
erty (5.5) for f0. In both cases, x 7→ 〈E[f(x)⊗ f ] , f0〉 is the projection of f0 onto V r. This
shows the second equality in proposition 5.2.

Remark 5.3. Similarly, for the field induced by ϕ ∼ N (0, Id) in V , we have:

∀(x, y) ∈M ×M, E[ϕ(x)ϕ(y)] = e(x, y).

This tells us that the distribution of our Gaussian field is totally determined by the
Schwartz kernel E. It is the main motivation for the use of the L2-scalar product on V . In
our cases of interest, asymptotics are known for E and its derivatives, see section 6 below.
This is what allows us to derive asymptotics for the expectation of the volume and Euler
characteristic of Zf .

5.4 Random jets

We will now describe the distribution induced by our random f on the bundle of 2-jets. Let
x ∈ M , we denote by J k

x (R
r) the vector space of k-jets of smooth sections of Rr at x. Let

Sym(T ∗
xM) denote the space of symmetric bilinear forms on T ∗

xM , and let

j2x : C∞(M,Rr) → Rr ⊗ (R⊕ T ∗
xM ⊕ Sym(T ∗

xM)),

f 7→ (f(x),∇xf,∇2
xf)
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where ∇ and ∇2 are as in section 5.3. This maps induces an isomorphism between J 2
x (R

r)
and Rr ⊗ (R ⊕ T ∗

xM ⊕ Sym(T ∗
xM)), and in the sequel we will identify these spaces via j2x.

Note that the isomorphism depends on our choices of connection on Rr and T ∗M . We
still denote by j2x the restriction of j2x to V r, which takes f ∈ V r to its 2-jet. Likewise,
we denote by j1x : f 7→ (f(x),∇xf) the map that takes a smooth function to its 1-jet in
J 1
x (R

r) ≃ Rr ⊗ (R⊕ T ∗
xM).

Since j2x is linear and f ∼ N (0, Id), lemma 4.4 shows that j2x(f) is a centered Gaussian
random vector. Let t ∈ Rr, L ∈ Rr⊗T ∗

xM and S ∈ Rr⊗Sym(T ∗
xM) be random vectors such

that (t, L, S) is distributed as j2x(f). Then t, L and S are three centered Gaussian vectors,
and their variances and covariances are determined by Var(j2x(f)).

Let ∂x (resp. ∂y) denote the partial covariant derivative with respect to the first (resp. sec-
ond) variable for sections of Rr⊠Rr. When these sections are seen as functions fromM ×M
to Rr ⊗ Rr, ∂x and ∂y are just the usual partial differentials. Likewise, we denote by ∂x,x
(resp. ∂y,y) the second partial derivative with respect to the first (resp. second) variable
twice.

Lemma 5.4. Let V be a finite-dimensional subspace of C∞(M) and let E be the Schwartz
kernel of V r. Let f ∼ N (0, Id) in V r. Let x ∈ M and let (t, L, S) ∈ J 2

x (R
r) be distributed

as j2x(f), the 2-jet of f at x. Then (t, L, S) is a centered Gaussian vector, and its variance
is characterized by the following relations:

Var(t) = E[f(x)⊗ f(x)] = E(x, x),(5.9)

Var(L) = E[∇xf ⊗∇xf ] = (∂x∂yE)(x, x),(5.10)

Var(S) = E
[

∇2
xf ⊗∇2

xf
]

= (∂x,x∂y,yE)(x, x),(5.11)

Cov(t, L) = E[f(x)⊗∇xf ] = (∂yE)(x, x),(5.12)

Cov(t, S) = E
[

f(x)⊗∇2
xf
]

= (∂y,yE)(x, x),(5.13)

Cov(L, S) = E
[

∇xf ⊗∇2
xf
]

= (∂x∂y,yE)(x, x).(5.14)

Proof. The vector t is the projection on the factor Rr of (t, L, S), thus it is distributed
as f(x). Hence Var(t) = Var(f(x)) = E[f(x)⊗ f(x)] = E(x, x), by proposition 5.2. This
proves the first equation (5.9). Likewise, one shows that Cov(t, L) = Cov(f(x),∇xf). Then
by lemma 4.2 this equals E[f(x)⊗∇xf ], and the first equality in (5.12) is proved. Applying
∂y to the relation given by proposition 5.2, one gets:

E[f(x)⊗∇yf ] = (∂yE)(x, y).

For x = y, this establishes the second part of (5.12). The remaining relations are proved in
the same way.

With this lemma, we have characterized the distribution of j2x(f) only in terms of E.
Since j0x(f) and j

1
x(f) are the projections of j

2
x(f) onto Rr and Rr ⊗ (R⊕T ∗

xM) respectively,
their distributions are also given by lemma 5.4. Precisely j0x(f) has the same distribution
as t and j1x(f) has the same distribution as (t, L).

5.5 The harmonic setting

Let ∆ denote the Laplace-Beltrami operator on the closed Riemannian manifold (M, g). Re-
call the following classical facts from the theory of elliptical operators, see [13, theorem 4.43].

Theorem 5.5. 1. The eigenvalues of ∆ : C∞(M) → C∞(M) can be arranged into a
strictly increasing sequence of non-negative numbers (λ2k)k∈N such that λ2k −−−−−→

k→+∞
+∞.
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2. The associated eigenspaces are finite-dimensional, and they are pairwise orthogonal for
the L2-inner product defined by equation (5.2)

Let λ > 0, we denote by Vλ the subspace of C∞(M) spanned by the eigenfunctions of ∆
associated to eigenvalues that are less or equal to λ2. This space is finite-dimensional and
we can apply the construction of sections 5.1 to 5.4 to Vλ. We denote by eλ the Schwartz
kernel of the projection onto Vλ. In this case, eλ is known as the spectral function of the
Laplacian. We also denote by Eλ the Schwartz kernel of (Vλ)

r.

Remark 5.6. Note that for every λ > 0, Vλ is base-point-free since the constant functions
on M are eigenfunctions of ∆ associated to the eigenvalue 0.

5.6 The real algebraic setting

Let us now describe more precisely the framework of the algebraic case. It is the same as
in [15, 16]. Let X be a smooth complex projective manifold of complex dimension n. We
equip X with a real structure, that is with an antiholomorphic involution cX . We assume
that its real locus, the set of fixed points of cX , is not empty and we denote it by RX . Let L
be an ample holomorphic line bundle over X equipped with a real structure cL compatible
with the one on X . By this we mean that cX ◦ π = π ◦ cL, where π : L → X stands for the
projection map onto the base space. Similarly, let E be a holomorphic vector bundle of rank
r over X , with a compatible real structure cE .

Let hL and hE be real Hermitian metrics on L and E respectively, that is c∗L(hL) = hL
and c∗E(hE) = hE . We assume that hL is positive in the sense that its curvature form ω is
Kähler. Locally we have:

ω/Ω =
1

2i
∂∂̄ ln (hL(ζ, ζ))

where ζ is any non-vanishing local holomorphic section of L on the open set Ω ⊂ X . This
form corresponds to a Hermitian metric gC = ω(·, i·) on X whose real part is a Riemannian
metric g on X . We denote by dVX the volume form ωn

n! on X .

Remark 5.7. The normalization of ω is the one of [3, 5], but differs from our references
concerning peak sections [16, 31]. This will cause some discrepancies with the latter two in
section 6.2. With our convention, the Fubini-Study metric on RPn induced by the standard
metric on O(1) is the quotient of the Euclidean metric on Sn.

Let d ∈ N, the vector bundle E ⊗Ld comes with a real structure cd = cE ⊗ cdL compatible
with cX and a real Hermitian metric hd = hE ⊗hdL. We equip the space Γ(E ⊗Ld) of smooth
sections of E ⊗ Ld with the L2 Hermitian product defined by:

(5.15) ∀s1, s2 ∈ Γ(E ⊗ Ld), 〈s1 , s2〉 =
∫

X
hd(s1, s2) dVX .

We know from the vanishing theorem of Kodaira and Serre that the space H0(X , E ⊗ Ld)
of global holomorphic sections of E ⊗ Ld has finite dimension Nd and that Nd grows as a
polynomial of degree n in d, when d goes to infinity. We denote by:

RH0(X , E ⊗ Ld) =
{

s ∈ H0
(

X , E ⊗ Ld
) ∣

∣ cd ◦ s = s ◦ cX
}

the space of real holomorphic sections of E⊗Ld, which also has dimensionNd. The Hermitian
product (5.15) induces a Euclidean inner product on RH0(X , E ⊗ Ld). Notice that we
integrate on the whole of X and not only on the real locus, even when we consider real
sections. Finally, we equip RH0(X , E ⊗ Ld) with the standard Gaussian measure dµNd

.
If s ∈ RH0(X , E ⊗ Ld) is such that its restriction to RX vanishes transversally, then its

real zero set Zs = s−1(0) ∩ RX is a (possibly empty) submanifold of RX of codimension r,
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and we denote by |dVs| the Riemannian measure induced on this submanifold by the metric g.
As in 5.2, we consider the incidence manifold:

Σ =
{

(s, x) ∈ RH0(X , E ⊗ Ld)× RX
∣

∣ s(x) = 0
}

.

In this setting Σ is the zero set of the bundle map F : RH0(X , E ⊗ Ld)× RX → R(E ⊗ Ld)
over RX defined by F (s, x) = s(x). In a trivialization, the situation is similar to the one
in 5.2. Thus, if RH0(X , E ⊗ Ld) is 0-ample, Σ is a smooth manifold equipped with two
projection maps, π1 and π2, onto RH0(X , E ⊗Ld) and RX respectively. By Sard’s theorem,
the discriminant locus of RH0(X , E ⊗Ld) has measure 0, since it is the set of critical values
of π1, as in section 5.2. Here, by 0-ample we mean that j0x : RH0(X , E ⊗Ld) → R(E ⊗Ld)x
is onto for every x ∈ RX .

Let ∇d denote any real connection on E⊗Ld, that is such that for every smooth section s,
∇d (cd ◦ s ◦ cX ) = cd ◦

(

∇ds
)

◦dcX . For example one could choose the Chern connection. We
consider the vertical component ∇dF of the differential of F , whose kernel is the tangent
space to Σ. For any (s0, x) we have:

(5.16) ∇d
(s0,x)

F · (s, v) = s(x) +∇d
xs0 · v.

As in 5.2, we have ∂d1F (s0, x) = j0x and ∂d2F (s0, x) = ∇d
xs0. Note that we only consider point

of the zero section of E ⊗ Ld, hence all this does not depend on the choice of ∇d.
Let Ed denote the Schwartz kernel of the orthogonal projection from the space of real

smooth sections of E ⊗ Ld onto RH0(X , E ⊗ Ld). It is the section of (E ⊗ Ld) ⊠ (E ⊗ Ld)
over X × X such that, for every real smooth section s of E ⊗ Ld, the projection of s onto
RH0(X , E ⊗ Ld) is given by:

x 7→ 〈Ed(x, ·) , s〉 =
∫

y∈X
hd(Ed(x, y), s(y)) dVX .

Here, hd acts on the second factor of (E ⊗ Ld)x ⊗ (E ⊗ Ld)y. The kernel Ed satisfies a
reproducing kernel property similar to (5.5). If (s1, . . . , sNd

) is an orthonormal basis of
RH0(X , E ⊗ Ld) then for all x and y ∈ X ,

(5.17) Ed(x, y) =

Nd
∑

i=1

si(x)⊗ si(y).

For any x and y ∈ RX this shows that Ed(x, y) ∈ R(E ⊗ Ld)x ⊗ R(E ⊗ Ld)y, and for x = y,
Ed(x, x) is in the span {ζ ⊗ ζ | ζ ∈ R(E ⊗ Ld)x}. Moreover, RH0(X , E ⊗ Ld) is 0-ample if
and only if for any x ∈ RX , Ed(x, x) is a positive-definite bilinear form on (R(E ⊗ Ld)x)

∗.
This time, (s(x))x∈X defines a Gaussian field with values in E ⊗ Ld and its covariance

function is a section of (E ⊗ Ld)⊠ (E ⊗Ld) over X ×X . With the same proof as 5.2 we have:

∀x, y ∈ X , Cov(s(x), s(y)) = E[s(x) ⊗ s(y)] = Ed(x, y).

Remark 5.8. The kernel Ed is also the kernel of the orthogonal projection ontoH0(X , E⊗Ld)
in the space of smooth sections of E ⊗Ld, for the Hermitian inner product (5.15). It is called
the Bergman kernel of E ⊗ Ld.

Let x ∈ RX and, as in 5.4, let RJ k
x (E ⊗Ld) denote the space of real k-jets of real smooth

sections of E ⊗ Ld at x. Let j1,dx : s 7→ (s(x),∇d
xs) and j2,dx : s 7→ (s(x),∇d

xs,∇2,d
x s) be

defined on the space of smooth real sections of E ⊗ Ld. Here ∇d
xs and ∇2,d

x s are implicitly
restricted to TxRX . These two maps induce isomorphisms:

RJ 1
x (E ⊗ Ld) ≃ R(E ⊗ Ld)x ⊗ (R⊕ T ∗

xRX ), and

RJ 2
x (E ⊗ Ld) ≃ R(E ⊗ Ld)x ⊗ (R⊕ T ∗

xRX ⊕ Sym(T ∗
xRX )),
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and we still denote by j1,dx and j2,dx their restrictions to RH0(X , E ⊗ Ld). Note that the
above isomorphisms are, once again, non-canonical since they depend on our choices of
connections. Since s ∼ N (0, Id), the same arguments as in 5.4 show that j2,dx (s) is a centered
Gaussian vector in RJ 2

x (E ⊗ Ld). Let t ∈ R(E ⊗ Ld)x, L ∈ R(E ⊗ Ld)x ⊗ T ∗
xRX and

S ∈ R(E ⊗Ld)x⊗Sym(T ∗
xRX ) be random vectors such that (t, L, S) is distributed as j2,dx (s).

Then t, L and S are centered Gaussian vectors and we have the following equivalent of
lemma 5.4, with the same proof and similar notations.

Lemma 5.9. Let Ed denote the kernel of RH0(X , E ⊗ Ld) and let s be a standar Gaussian
vector in RH0(X , E ⊗ Ld). Let x ∈ RX and let (t, L, S) ∈ RJ 2

x (E ⊗ Ld) be distributed
as j2,dx (s), the 2-jet of s at x. Then (t, L, S) is a centered Gaussian vector, and its variance
is characterized by:

Var(t) = E[s(x) ⊗ s(x)] = Ed(x, x),(5.18)

Var(L) = E
[

∇d
xs⊗∇d

xs
]

= (∂x∂yEd)(x, x),(5.19)

Var(S) = E
[

∇2,d
x s⊗∇2,d

x s
]

= (∂x,x∂y,yEd)(x, x),(5.20)

Cov(t, L) = E
[

s(x)⊗∇d
xs
]

= (∂yEd)(x, x),(5.21)

Cov(t, S) = E
[

s(x)⊗∇2,d
x s
]

= (∂y,yEd)(x, x),(5.22)

Cov(L, S) = E
[

∇d
xs⊗∇2,d

x s
]

= (∂x∂y,yEd)(x, x).(5.23)

6 Estimates for the covariance kernels

We state in this section the estimates for the kernels described above and their first and
second derivatives. These estimates will allow us to compute the limit distribution for the
random 2-jets induced by the Gaussian field (f(x))x∈M (resp. (s(x))x∈X ).

In the case of the spectral function of the Laplacian eλ, the asymptotics of 6.1 were
established by Bin [4], extending results of Hörmander [20]. In the algebraic case, Bleher
Shiffman and Zelditch used estimates for the related Szegö kernel instead of the Bergman
kernel, see [5, theorem 3.1]. In terms of the Bergman kernel, a similmar result was established
in [3]. Both these results concern line bundles. Here, we establish the estimates we need for
the Bergman kernel in the case of a higher rank bundle using Hörmander-Tian peak sections
(see 6.2 and 6.3 below).

6.1 The spectral function of the Laplacian

We consider the harmonic setting of section 5.5. LetM be a Riemannian manifold of dimen-
sion n, let x ∈M and let (x1, . . . , xn) be normal coordinates centered at x. Let (y1, . . . , yn)
denote the same coordinates in a second copy of M , so that (x1, . . . , xn, y1, . . . , yn) are nor-
mal coordinates around (x, x) ∈M ×M . We denote by ∂xi

(resp. ∂yi
) the partial derivative

with respect to xi (resp. yi), and similarly we denote by ∂xi,xj
(resp. ∂yi,yj

) the second
derivative with respect to xi and xj (resp. yi and yj). Let

γ0 =
1√

4π
n
Γ
(

1 + n
2

) , γ1 =
1

2
√
4π

n
Γ
(

2 + n
2

) and γ2 =
1

4
√
4π

n
Γ
(

3 + n
2

) .

We have:

γ0
γ1

= n+ 2 and
γ1
γ2

= n+ 4.(6.1)

Let us recall the main theorem of [4].
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Theorem 6.1 (Bin). Let Vλ be as in section 5.5 and let eλ denote its Schwartz kernel. The
following asymptotics hold uniformly in x ∈M as λ→ +∞:

eλ(x, x) = γ0λ
n +O(λn−1),(6.2)

∂xi
eλ(x, x) = O(λn),(6.3)

∂xi,xk
eλ(x, x) =

{

−γ1λn+2+O(λn+1) if i = k,

O(λn+1) if i 6= k,
(6.4)

∂xi
∂yj

eλ(x, x) =

{

γ1λ
n+2+O(λn+1) if i = j,

O(λn+1) if i 6= j,
(6.5)

∂xi,xk
∂yj

eλ(x, x) = O(λn+2),(6.6)

∂xi,xk
∂yj,yl

eλ(x, x) =











3γ2λ
n+4+O(λn+3) if i = j = k = l,

γ2λ
n+4+O(λn+3) if i = j 6= k = l or i = k 6= j = l,

O(λn+3) otherwise.

(6.7)

Since eλ is symmetric, this also gives the asymptotics for ∂yj
eλ, ∂yj ,yl

eλ and ∂xi
∂yj ,yl

eλ
along the diagonal. This theorem, together with equation (5.8), gives the estimates we need
for the kernel Eλ of (Vλ)

r. Let (ζ1, . . . , ζr) be an orthonormal basis of Rr. With obvious
notations, the following estimates hold as λ → +∞, and they do not depend on x ∈ M or
our choice of basis.

〈Eλ(x, x) , ζp ⊗ ζq〉 =
{

γ0λ
n +O(λn−1) if p = q,

0 otherwise,
(6.8)

〈∂xi
Eλ(x, x) , ζp ⊗ ζq〉 = O(λn),(6.9)

〈∂xi,xk
Eλ(x, x) , ζp ⊗ ζq〉 =

{

−γ1λn+2+O(λn+1) if p = q and i = k,

O(λn+1) otherwise,
(6.10)

〈

∂xi
∂yj

Eλ(x, x) , ζp ⊗ ζq
〉

=

{

γ1λ
n+2+O(λn+1) if p = q and i = j,

O(λn+1) otherwise,
(6.11)

〈

∂xi,xk
∂yj

Eλ(x, x) , ζp ⊗ ζq
〉

= O(λn+2),(6.12)

(6.13)

〈

∂xi,xk
∂yj,yl

Eλ(x, x) , ζp ⊗ ζq
〉

=























3γ2λ
n+4+O(λn+3) if p = q and i = j = k = l,

γ2λ
n+4+O(λn+3) if p = q and

(i = j 6= k = l or i = k 6= j = l),

O(λn+3) otherwise.

As above, Eλ is symmetric, so this also gives the asymptotics for ∂yj
Eλ, ∂yj ,yl

Eλ and
∂xi

∂yj ,yl
Eλ along the diagonal, as λ→ +∞.

6.2 Hörmander-Tian peak sections

We now recall the construction of Hörmander-Tian peak sections in the framework of 5.6.
Let X be a complex projective manifold. Let E be a rank r holomorphic Hermitian vector
bundle and L be an ample holomorphic Hermitian line bundle, both defined over X . We
assume that X , E and L are endowed with compatible real structures, and that the Kähler
metric gC on X is induced by the curvature ω of L. Let x ∈ RX and (x1, . . . , xn) be real
holomorphic coordinates centered at x and such that ( ∂

∂x1
, . . . , ∂

∂xn
) is orthonormal at x.
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The next lemma is established in [17, lemma 3.3], up to a factor π coming from different
normalisations of the metric.

Lemma 6.2. In this setting, there exists a real holomorphic frame ζ0 for L, defined over
some neighborhood of x, whose potential − ln(hL(ζ0, ζ0)) vanishes at x, where it reaches a
local minimum with Hessian gC.

We choose such a frame ζ0. Let (ζ1, . . . , ζr) be a real holomorphic frame for E over a
neighborhood of x, which is orthonormal at x. Since X is compact, we can find ρ > 0, not
depending on x, such that local coordinates and frames as above are defined at least on the
geodesic ball of radius ρ centered at x. The following results are proved in [16, section 2.3].
See also [15, section 2.2] and the paper by Tian [31, lemmas 1.2 and 2.3], without the higher
rank bundle E but with more details.

Proposition 6.3. Let p = (p1, . . . , pn) ∈ Nn, p′ > p1 + · · · + pn and q ∈ {1, . . . , r}. There
exists d0 ∈ N such that, for any d > d0, there exist Cd,p > 0 and s ∈ RH0(X , E ⊗ Ld) such
that ‖s‖ = 1 and, in some neighborhood of x,

s(x1, . . . , xn) = Cd,p

(

xp1

1 · · ·xpn
n +O

(

‖(x1, . . . , xn)‖2p
′))(

1 +O
(

d−2p′
))

ζq ⊗ ζd0 ,

where the estimate O(d−2p′
) is uniform in x ∈ RX . Moreover, Cd,p is given by:

(Cd,p)
−2

=

∫

{

‖(x1,...,xn)‖6 ln(d)√
d

}

|xp1

1 · · ·xpn
n |2 hdL

(

ζd0 , ζ
d
0

)

dVX ,

and d0 does not depend on x, p, q or our choices of local coordinates and frames.

Note that d0 does depend on p′. The following definitions make use of proposition 6.3 with
p′ = 3 and the corresponding d0.

Definitions 6.4. For any d > d0 and q ∈ {1, . . . , r} we denote the sections of RH0(X , E⊗Ld)
given by 6.3 by:

• sd,q0 for p1 = · · · = pn = 0,

• sd,qi for pi = 1 and ∀ k 6= i, pk = 0,

• sd,qi,i for pi = 2 and ∀ k 6= i, pk = 0,

• sd,qi,j for pi = pj = 1 and ∀ k /∈ {i, j}, pk = 0, when i < j.

Computing the values of the corresponding Cd,p (see [15, lemma 2.5]), we get the following
asymptotics as d goes to infinity. Once again, O(d−1) is uniform in x.

Lemma 6.5. For every q ∈ {1, . . . , r}, we have:

sd,q0 =
1√
π
n

√
d
n
(

1 +O
(

‖(x1, . . . , xn)‖6
))

(

1 +O
(

d−1
))

ζq ⊗ ζd0 ,(6.14)

∀i ∈ {1, . . . , n}, sd,qi =
1√
π
n

√
d
n+1

(

xi +O
(

‖(x1, . . . , xn)‖6
))

(

1 +O
(

d−1
))

ζq ⊗ ζd0 ,

(6.15)

∀i ∈ {1, . . . , n}, sd,qi,i =
1√
π
n

√
d
n+2

(

x2i√
2
+O

(

‖(x1, . . . , xn)‖6
)

)

(

1 +O
(

d−1
))

ζq ⊗ ζd0 ,

(6.16)
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and finally, ∀i, j ∈ {1, . . . , n} such that i < j,

sd,qi,j =
1√
π
n

√
d
n+2

(

xixj +O
(

‖(x1, . . . , xn)‖6
))

(

1 +O
(

d−1
))

ζq ⊗ ζd0 .(6.17)

Remark 6.6. These values differ from the one given in [16, lemma 2.3.5] by a factor
(∫

X dVX
)

1
2

and some power of
√
π because we do not use the same normalization for the volume form.

For the same reason they also differ from [31, lemma 2.3] by a factor
√
π
n
.

The sections defined in 6.4 are linearly independent, at least for d large enough. In fact,
they are asymptotically orthonormal in the following sense. Let Hd

2,x ⊂ RH0(X , E ⊗ Ld)
denote the subspace of sections that vanish up to order 2 at x ∈ X .

Lemma 6.7. The sections (sd,qi )16q6r
06i6n

and (sd,qi,j ) 16q6r
16i6j6n

defined in 6.4 have L2-norm equal

to 1 and their pairwise scalar product are dominated by a O(d−1) independent of x. More-
over, their scalar product with any unit element of Hd

2,x is dominated by some O(d−1) not
depending on x.

6.3 The Bergman kernel

Let X be a complex projective manifold of dimension n, let E be a rank r holomorphic
vector bundle over X and let L be an ample holomorphic line bundle over X . We assume
that X , E and L equipped with compatible real structures and that E and L are equipped
with Hermitian metrics hE and hL. Finally, we assume that RX is equipped with the
Riemannian metric induced by the curvature of L. Let x ∈ RX and let (x1, . . . , xn) be real
holomorphic coordinates around x as in 6.2. We denote by (y1, . . . , yn) the same coordinates
as (x1, . . . , xn) in a second copy of X . Let ζ0 be a real holomorphic frame for L given by
lemma 6.2 and (ζ1, . . . , ζr) be a real holomorphic frame for E that is orthonormal at x.

Let ∇d be any real connection on E⊗Ld such that ∇d(ζp⊗ζd0 ) vanishes in a neighborhood
of x for every p ∈ {1, . . . , r}. We set ∇2,d = (∇X ⊗ Id+ Id⊗∇d) ◦ ∇d the associated second
covariant derivative, where ∇X is the Levi-Civita connection of X . In a neighborhood of x,
we have for every function f :

∇d(fζp ⊗ ζd0 ) = df ⊗ ζp ⊗ ζd0 and ∇2,d(fζp ⊗ ζd0 ) = ∇2f ⊗ ζp ⊗ ζd0 .(6.18)

As usual, ∇d induces a connection on (E ⊗ Ld) ⊠ (E ⊗ Ld). We denote by ∂dxi
and ∂dyi

the partial covariant derivatives with respect to xi and yi respectively. We also denote by
∂dxi,xj

(resp. ∂dyi,yj
) the second derivative with respect to xi and xj (resp. yi and yj). For

simplicity, let ζdp denote ζp(x)⊗ ζd0 (x) for every p ∈ {1, . . . , r} and d ∈ N, so that (ζd1 , . . . , ζ
d
r )

is an orthonormal basis of R(E ⊗ Ld)x.

Proposition 6.8. In this setting, the following asymptotics hold as d→ +∞, and they are
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independent of x ∈ RX and of the choice of the holomorphic frame (ζ1, . . . , ζr).

〈

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

=







dn

πn
+O(dn−1) if p = p′,

O(dn−1) otherwise,
(6.19)

〈

∂dxi
Ed(x, x) , ζ

d
p ⊗ ζdp′

〉

= O(dn−
1
2 ),(6.20)

〈

∂dxi,xk
Ed(x, x) , ζ

d
p ⊗ ζdp′

〉

= O(dn),(6.21)

〈

∂dxi
∂dyj

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

=







dn+1

πn
+O(dn) if p = p′ and i = j,

O(dn) otherwise,

(6.22)

〈

∂dxi,xk
∂dyj

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

= O(dn+
1
2 ),(6.23)

(6.24)

〈

∂dxi,xk
∂dyj,yl

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

=























2
dn+2

πn
+O(dn+1) if p = p′ and i = j = k = l,

dn+2

πn
+O(dn+1) if p = p′ and i = j 6= k = l,

O(dn+1) otherwise.

Proof. First we build an orthonormal basis of RH0(X , E⊗Ld) by applying the Gram-Schmidt
process to the family of peak sections. Then we use formula (5.17) and the asymptotics of
lemma 6.5 to prove the proposition. We order the sections of definition 6.4 as follows:

sd,10 , . . . , sd,r0 , sd,11 , . . . , sd,r1 , . . . , sd,1n , . . . , sd,rn , sd,11,1, . . . , s
d,r
1,1, s

d,1
2,2, . . . , s

d,r
2,2, . . . , s

d,1
n,n, . . . , s

d,r
n,n,

sd,11,2, . . . , s
d,r
1,2, s

d,1
1,3, . . . , s

d,r
1,3, . . . , s

d,1
1,n, . . . , s

d,r
1,n, s

d,1
2,3, . . . , s

d,r
2,3, . . . , s

d,1
n−1,n, . . . , s

d,r
n−1,n.

This family is linearly independent for d large enough and spans a space whose direct sum
with Hd

2,x is RH0(X , E ⊗ Ld). Recall that Hd
2,x is the subspace of section whose 2-jet at x

vanishes. We complete it into a basis B of RH0(X , E ⊗ Ld) by adding an orthonormal
basis of Hd

2,x at the end of the previous list. We apply the Gram-Schmidt process to B,

starting by the last elements and going backwards. Let B̃ denote the resulting orthonormal
basis, and s̃d,10 , . . . , s̃d,rn , s̃d,11,1, . . . , s̃

d,r
n−1,n denote its first elements. This way, s̃d,rn−1,n is a linear

combination of sd,rn−1,n and elements of Hd
2,x, and s̃

d,1
0 is a linear combination of (possibly)

all elements of B.
We denote by (bi) the first elements of B listed above (with 1 6 i 6 r(n+1)(n+2)

2 ), and

by (b̃i) the corresponding elements of B̃. Let i ∈
{

1, . . . , r(n+1)(n+2)
2

}

and assume that

for any k 6 i and any j > i we have
〈

bk , b̃j

〉

= O(d−1). Note that this is the case for

i = r
2 (n+ 1)(n+ 2). Then,

(6.25) b̃i =
bi −

∑

j>i

〈

bi , b̃j

〉

b̃j − πi
∥

∥

∥bi −
∑

j>i

〈

bi , b̃j

〉

b̃j − πi

∥

∥

∥

where πi stands for the projection of bi onto H
d
2,x. By lemma 6.7, ‖πi‖2 = 〈bi , πi〉 = O(d−1).

Then by our hypothesis
∥

∥

∥bi −
∑

j>i

〈

bi , b̃j

〉

b̃j − πi

∥

∥

∥

2

= 1 + O(d−1). Using lemma 6.7 and

the above hypothesis once again, we get:

〈

bk , b̃i

〉

=
(

1 +O(d−1)
)



〈bk , bi〉 −
∑

j>i

〈

bk , b̃j

〉〈

bi , b̃j

〉

− 〈bk , πi〉



 = O(d−1),
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for any k < i. By induction, for any 1 6 i < j 6
r(n+1)(n+2)

2 ,
〈

bi , b̃j

〉

= O(d−1). Us-

ing (6.25), for any i ∈
{

1, . . . , r(n+1)(n+2)
2

}

, b̃i = (bi + O(d−1)
∑

j>i b̃j − πi)(1 + O(d−1)).

Another induction gives:

(6.26) b̃i =



bi +O(d−1)
∑

j>i

bj + π̃i





(

1 +O(d−1)
)

,

for any i, where π̃i ∈ Hd
2,x is such that ‖π̃i‖2 = O(d−1). Moreover, all the estimates are

independent of x and i ∈
{

1, . . . , r(n+1)(n+2)
2

}

.

Among the elements of B̃, only s̃d,10 , . . . , s̃d,r0 do not vanish at x. Using formula (5.17),

we get Ed(x, x) =
∑

16q6r s̃
d,q
0 (x) ⊗ s̃d,q0 (x). Then,

〈

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

=

r
∑

q=1

〈

s̃d,q0 (x) , ζdp

〉〈

s̃d,q0 (x) , ζdp′

〉

.

Because of the above decription (6.26) of b̃0 = s̃d,10 , . . . , b̃r = s̃d,r0 , for all q ∈ {1, . . . , r},

(6.27)

〈

s̃d,q0 (x) , ζdp

〉

=
〈

sd,q0 (x) , ζdp

〉

+O(d−1)





r
∑

q′=1

〈

sd,q
′

0 (x) , ζdp

〉





=







1√
π
n

√
d
n
(1 +O(d−1)) if p = q,

O(d
n
2 −1) otherwise,

where the last equality comes from lemma 6.5, equation (6.14). This etablishes (6.19).
Likewise,

〈

∂dxi
Ed(x, x) , ζ

d
p ⊗ ζdp′

〉

=

〈

∑

16q6r

∂dxi
s̃d,q0 (x)⊗ s̃d,q0 (x) , ζdp ⊗ ζdp′

〉

=
∑

16q6r

〈

∂dxi
s̃d,q0 (x) , ζdp

〉〈

s̃d,q0 (x) , ζdp′

〉

.

The description (6.26) shows that ∂dxi
s̃d,q0 (x) does not necessarily vanish, but it equals:

O(d−1)
∑

16q′6r
16j6n

∂dxi
sd,q

′

j (x).

By (6.15), one gets that
〈

∂dxi
s̃d,q0 (x) , ζdp

〉

= O(d
n−1

2 ), for all p and q. Besides by (6.27),
〈

s̃d,q0 (x) , ζdp

〉

= O(d
n
2 ) for all p and q. This proves (6.20). The remaining estimates can

be proved in exactly the same way, using lemma 6.5 and the fact that the estimates for the
elements of B̃ are the same as those for the elements of B.

7 Proofs of the main theorems

We now set to prove the main theorems. The proofs will be detailed in the harmonic case
but only sketched in the real algebraic one, since they are essentially the same. We start
with the expectation of the volume. In this case, the first part of the proof is closely related
to [5, 6], in a slightly different setting.
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7.1 Proof of theorem 1.1

For a start, we consider the general setting described in sections 5.1 to 5.4. That is M is a
closed Riemannian manifold of dimension n, V is a subspace of C∞(M) of finite dimension
without base point, and f is a standard Gaussian vector in V r. We denote by N the
dimension of V r. For almost every f ∈ V r, Zf is a smooth submanifold of M , and its
volume is Vol (Zf ) =

∫

Zf
|dVf |. We have:

E[Vol (Zf )] =

∫

f∈V r

(

∫

Zf

|dVf |
)

dµN =

∫

f∈V r

(

∫

Zf

e−
1
2‖f‖

2

√
2π

N
|dVf |

)

df,

where df stands for the Lebesgue measure on V r. Then, using the incidence manifold of
section 5.2 we apply the double-fibration trick of proposition 2.4.

E[Vol (Zf )] =

∫

x∈M

(

∫

ker(j0x)

e−
1
2 ‖f‖

2

√
2π

N

∣

∣det⊥(∂2F (f, x))
∣

∣

|det⊥(∂1F (f, x))|
df

)

|dVM |

=
1√
2π

r

∫

x∈M

1

|det⊥(j0x)|

(

∫

f∈ker(j0x)

∣

∣det⊥(dxf)
∣

∣ dµ(N−r)

)

|dVM | .

Where j0x : f 7→ f(x) and the last equality comes from equation (5.3) and the fact that
∣

∣det⊥(j0x)
∣

∣ does not depend on f . We also used that, for every x ∈M , ker(j0x) has dimension
N − r, since V r being 0-ample.

Let us express this in terms of the Schwartz kernel E of V r. Let x ∈M and recall from
section 2.1 that

∣

∣det⊥(j0x)
∣

∣ =
√

det(j0xj
0∗
x ). Since f ∼ N (0, Id), equation (4.8) shows that

j0xj
0∗
x is the variance operator of f(x) = j0x(f). But det(Λf(x)) = det(Var(f(x))), that is

the determinant of the matrix, in any orthonormal basis, of Var(f(x)) seen as a bilinear
form. By lemma 5.4, Var(f(x)) = E(x, x) hence

∣

∣det⊥(j0x(f))
∣

∣ =
√

det(E(x, x)). Then,
V r = ker(j0x)

⊥ ⊕ ker(j0x) and by corollary 4.6 applied to this splitting,

∫

f∈ker(j0x)

∣

∣det⊥(dxf)
∣

∣dµ(N−r) = E
[∣

∣det⊥(dxf)
∣

∣

∣

∣ f(x) = 0
]

.

Thus,

(7.1) E[Vol (Zf)] =
1√
2π

r

∫

x∈M

1
√

det(E(x, x))
E
[∣

∣det⊥(dxf)
∣

∣

∣

∣ f(x) = 0
]

|dVM | .

Let x ∈ M , E
[∣

∣det⊥(dxf)
∣

∣

∣

∣ f(x) = 0
]

= E
[∣

∣det⊥(L)
∣

∣

∣

∣ t = 0
]

where (t, L) is a random
vector in Rr⊗(R⊕T ∗

xM) distributed as j1x(f). Recall section 5.4, (t, L) is a centered Gaussian
vector whose variance is given by lemma 5.4. In particular, the distribution of (t, L) only
depends on the values of E and its derivatives at (x, x). Thus E[Vol (Zf)] will only depend on
the values of E and its derivatives along the diagonal as was expected from [5, theorem 2.2].

Let (x1, . . . , xn) be normal coordinates centered at x, and (ζ1, . . . , ζr) be an orthonormal
basis of Rr. We equip Rr ⊗ (R⊕ T ∗

xM) with the orthonormal basis:

(7.2) (ζ1, . . . , ζr, ζ1 ⊗ dx1, . . . , ζ1 ⊗ dxn, ζ2 ⊗ dx1, . . . , ζ2 ⊗ dxn, . . . , ζr ⊗ dx1, . . . , ζr ⊗ dxn).

With respect to this basis, the matrix of the variance of (t, L) is:

(7.3) Λ =

(

Λ00 Λ01

Λ10 Λ11

)

,
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where Λ00 and Λ11 are the matrices of Var(t) and Var(L) respectively, and Λ10 = tΛ01 is the
matrix of Cov(L, t). We can decompose further Λ10 and Λ11 into blocks of size r × r:

Λ10 =
(

Λi
10

)

16i6n
, Λ11 =

(

Λi,j
11

)

16i,j6n
.(7.4)

Then by lemma 5.4 we have:

Λ00 =
(

〈E(x, x) , ζp ⊗ ζq〉
)

16p,q6r
,

∀i ∈ {1, . . . , n}, Λi
10 =

(

〈∂xi
E(x, x) , ζp ⊗ ζq〉

)

16p,q6r
,

∀i, j ∈ {1, . . . , n}, Λi,j
11 =

(〈

∂xi
∂yj

E(x, x) , ζp ⊗ ζq
〉)

16p,q6r
.

We now specify to the harmonic setting of section 5.5, that is V = Vλ is spanned by the
eigenfunctions of the Laplacian associated to eigenvalues smaller than λ2. The estimates of
section 6.1 suggest to consider the rescaled variables tλ = 1√

γ0λn f(x) and Lλ = 1√
γ1λn+2

dxf .

We denote by Λ(λ) =

(

Λ00(λ) Λ01(λ)
Λ10(λ) Λ11(λ)

)

the variance matrix of the rescaled variables

(tλ, Lλ). The r× r matrices Λi
10(λ) and Λi,j

11 (λ) are defined as above. Using the estimates of
section 6.1:

Λ00(λ) =
(

〈Eλ(x,x) ,ζp⊗ζq〉
γ0λn

)

16p,q6r
= Ir +O(λ−1),(7.5)

∀i ∈ {1, . . . , n}, Λi
10(λ) =

( 〈∂xi
Eλ(x,x) ,ζp⊗ζq〉√
γ0γ1λn+1

)

16p,q6r
= O(λ−1),(7.6)

and, ∀i, j ∈ {1, . . . , n},

Λi,j
11 (λ) =

( 〈∂xi
∂yj

Eλ(x,x) ,ζp⊗ζq〉
γ1λn+2

)

16p,q6r
=

{

Ir+O(λ
−1) if i = j,

O(λ−1) otherwise,
(7.7)

where Ir stands for the identity matrix of size r. Thus Λ(λ) = Ir(n+1) + O(λ−1) and by
corollary 4.6, the distribution of Lλ conditionned on tλ = 0 is a centered Gaussian with
variance operator Λ̃(λ) = Id+O(λ−1).

Lemma 7.1. Let L be a standard Gaussian vector in Rr ⊗ T ∗
xM , then:

E
[∣

∣det⊥(Lλ)
∣

∣

∣

∣ tλ = 0
]

= E
[∣

∣det⊥(L)
∣

∣

]

+O(λ−1).

Proof. By Lebesgue’s theorem,

∫

∣

∣det⊥(L)
∣

∣ exp

(

−1

2

〈

Λ̃(λ)−1L ,L
〉

)

dL −−−−−→
λ→+∞

∫

∣

∣det⊥(L)
∣

∣ e−
‖L‖2

2 dL.

Note that Λ̃(λ) is invertible for λ large enough and that these integrals are finite since
∣

∣det⊥(L)
∣

∣ is the absolute value of a polynomial in the coefficients of L. Thus we have:

E
[∣

∣det⊥(Lλ)
∣

∣

∣

∣ tλ = 0
]

=
1

√
2π

nr
√

det(Λ̃(λ))

∫

∣

∣det⊥(L)
∣

∣ exp

(

−1

2

〈

Λ̃(λ)−1L ,L
〉

)

dL

=
1√
2π

nr

∫

∣

∣det⊥(L)
∣

∣ exp

(

−1

2

〈

Λ̃(λ)−1L ,L
〉

)

dL+O(λ−1).
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Besides,

∣

∣

∣

∣

∫

∣

∣det⊥(L)
∣

∣ exp

(

−1

2

〈

Λ̃(λ)−1L ,L
〉

)

dL−
∫

∣

∣det⊥(L)
∣

∣ e−
‖L‖2

2 dL

∣

∣

∣

∣

6

∫

∣

∣det⊥(L)
∣

∣ e−
‖L‖2

2

∣

∣

∣

∣

exp

(

−1

2

〈

(Λ̃(λ)−1 − Id)L ,L
〉

)

− 1

∣

∣

∣

∣

dL,

and (Λ̃(λ)−1 − Id) is bounded by C
λ for some positive C. Then for any L,

∣

∣

∣

〈

(Λ̃(λ)−1 − Id)L ,L
〉∣

∣

∣ 6
C

λ
‖L‖2 ,

and
∣

∣

∣

∣

exp

(

−1

2

〈

(Λ̃(λ)−1 − Id)L ,L
〉

)

− 1

∣

∣

∣

∣

6

∣

∣

∣e
C
2λ‖L‖2 − 1

∣

∣

∣ 6
C

2λ
‖L‖2 e C

2λ‖L‖2

,

by the mean value theorem. Then for λ > 2C, the above integral is less than:

C

2λ

∫

∣

∣det⊥(L)
∣

∣ ‖L‖2 e− 1
4‖L‖2 dL√

2π
nr = O(λ−1).

Finally we have proved:

E
[∣

∣det⊥(Lλ)
∣

∣

∣

∣ tλ = 0
]

=
1√
2π

nr

∫

∣

∣det⊥(L)
∣

∣ e−
‖L‖2

2 dL+O(λ−1).

Note that all the above estimates do not depend on x or our choices of coordinates.

By remark 5.6, Vλ has no base point. Thus (Vλ)
r is 0-ample for all λ > 0, and we can

use formula (7.1). Besides, by equation (6.8) the matrix of Eλ(x, x) in the orthonormal basis
(ζ1, . . . , ζr) is γ0λ

n(Ir +O(λ−1)). Hence, det(Eλ(x, x)) = γr0λ
nr(1 +O(λ−1)).

E[Vol (Zf )] =
1√
2π

r

∫

x∈M

1
√

det(Eλ(x, x))
E
[∣

∣

∣det⊥(
√

γ1λn+2Lλ)
∣

∣

∣

∣

∣

∣ tλ = 0
]

|dVM |

=
1√
2π

r

∫

M

(

γ1λ
n+2

γ0λn

)
r
2

E
[∣

∣det⊥(Lλ)
∣

∣

∣

∣ tλ = 0
] (

1 +O(λ−1)
)

|dVM |

=
1√
2π

r

(

λ√
n+ 2

)r∫

M

E
[∣

∣det⊥(L)
∣

∣

]

+O(λ−1) |dVM | , by (6.1) and lemma 7.1,

=

(

λ√
n+ 2

)r
Vol (Sn−r)

Vol (Sn)
Vol (M) +O(λr−1).

In the last equality we applied lemma 4.14 to L, and used the uniformity in x of the error
term. This proves theorem 1.1.

Remark 7.2. The same proof shows that for any open set U ⊂M we have:

E[Vol (Zf ∩ U)] =

(

λ

n+ 2

)r

Vol (U)
Vol (Sn−r)

Vol (Sn)
+O(λr−1).

7.2 Proof of theorem 1.3

We now consider the real algebraic setting described in section 5.6. The proof goes along
the same lines as above. Recall that X is a complex projective manifold of dimension n,
equipped with a rank r holomorphic vector bundle E and an ample holomorphic line bundle
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L, and that X , E and L are endowed with compatible real structures. Let Ed denote the
Bergman kernel of E ⊗ Ld.

By equation (6.19), the matrix of Ed(x, x) is dnπ−n(Ir + O(d−1)) in any orthonormal
basis of R(E ⊗ L)x, and det(Ed(x, x)) = drnπ−rn(1 + O(d−1)). Since the estimates are
uniform in x ∈ RX , this shows that, for d large enough, Ed(x, x) is positive-definite for all x.
Hence RH0(X , E ⊗ Ld) is 0-ample for d large enough. Applying proposition 2.4 for d large
enough, and using the partial differentials given by equation (5.16) we get:

E[Vol (Zs)] =
1√
2π

r

∫

x∈RX

1
√

det(Ed(x, x))
E
[∣

∣det⊥(∇d
xs)
∣

∣

∣

∣ s(x) = 0
]

|dVRX | ,

where s ∼ N (0, Id) in RH0(X , E⊗Ld) and ∇d any real connection on E⊗Ld. Let (ζd1 , . . . , ζ
d
r )

be any orthonormal basis of R(E ⊗ Ld)x. We can assume that this basis is realized as the
value at x of a real holomorphic frame (ζ1 ⊗ ζd0 , . . . , ζr ⊗ ζd0 ) satisfying the conditions of
section 6.3. We will compute the variance matrices in an orthonormal basis similar to (7.2),
with ζp replaced by ζp ⊗ ζd0 .

Let x ∈ RX , E
[∣

∣det⊥(∇d
xs)
∣

∣

∣

∣ s(x) = 0
]

does not depend on the choice of ∇d, since ∇d
xs

does not depend on∇d when s ∈ ker(j0x). We choose a connection that satisfies the conditions
of section 6.3. That is, the frame (ζ1 ⊗ ζd0 , . . . , ζr ⊗ ζd0 ) is flat in a neighborhood of x.

We consider the rescaled variables td =
√

πn

dn s(x) and Ld =
√

πn

dn+1∇d
xs. Using the

estimates of proposition 6.8, we get Λ(d) = Ir(n+1)+O(d
−1), where Λ(d) denotes the variance

matrix of (td, Ld) and Ir(n+1) stands for the identity matrix of size r(n+1). More precisely,
using notations similar to (7.3) and (7.4), one gets:

Λ00(d) =
(

πn

dn

〈

Ed(x, x) , ζ
d
p ⊗ ζdq

〉)

16p,q6r
= Ir +O(d−1),(7.8)

∀i ∈ {1, . . . , n}, Λi
10(d) =

(

πn

dn+1
2
〈∂xi

Ed(x, x) , ζp ⊗ ζq〉
)

16p,q6r
= O(d−1),(7.9)

and, ∀i, j ∈ {1, . . . , n},

Λi,j
11 (d) =

(

πn

dn+1

〈

∂xi
∂yj

Eλ(x, x) , ζp ⊗ ζq
〉)

16p,q6r
=

{

Ir+O(d
−1) if i = j,

O(d−1) otherwise.
(7.10)

As in lemma 7.1, E
[∣

∣det⊥(Ld)
∣

∣

∣

∣ td = 0
]

= E
[∣

∣det⊥(L)
∣

∣

]

+O(d−1), where L is a standard
Gaussian vector in R(E ⊗ Ld)⊗ T ∗

x (RX ). Then, as above:

E[Vol (Zs)] =
1√
2π

r

(

1

πndn

)
r
2
∫

RX
E
[∣

∣det⊥(πndn+1Ld)
∣

∣

∣

∣ td = 0
]

(1 +O(d−1)) |dVRX |

=
√
d
r 1√

2π
r

∫

RX
E
[∣

∣det⊥(L)
∣

∣

]

+O(d−1) |dVRX |

=
√
d
r
Vol (RX )

Vol (Sn−r)

Vol (Sn)
+O(

√
d
r−2

).

Remark 7.3. In the same way, we can compute E[Vol (Zs ∩ U)] where U is an open subset
of RX . The result is the same with Vol (RX ) replaced by Vol (U).

7.3 Proof of theorem 1.2

Consider first the general setting of section 5.1. For almost every f ∈ V r, Zf is a closed sub-
manifold of dimension n− r. The Euler characteristic of a closed manifold of odd dimension
is 0, see [18, corollary 3.37]. Thus if n− r is odd, χ(Zf ) is almost surely 0. From now on, we
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assume that n− r is even and set m = n−r
2 . If n = r, then Zf is almost surely a finite set,

and χ(Zf ) = Vol (Zf) is just the cardinal of Zf . In this case theorems 1.2 and 1.1 coincide,
so we only need to consider the case r < n in the sequel.

For any f ∈ V r we denote by Rf the Riemann curvature tensor of Zf , and by IIf its
second fundamental form. By the Chern-Gauss-Bonnet theorem 3.3, the double-fibration
trick of proposition 2.4, and (5.3):

E[χ(Zf )] = E

[

1

(2π)mm!

∫

Zf

Tr ((Rf )
∧m) |dVf |

]

=
1

m!
√
2π

N+2m

∫

f∈V r

(

∫

Zf

e−
1
2 ‖f‖

2

Tr (Rf (x)
∧m) |dVf |

)

df

=
1

m!
√
2π

N+2m

∫

x∈M

(

∫

ker(j0x)

e−
1
2‖f‖

2

Tr (Rf (x)
∧m)

∣

∣det⊥(∂2F (f, x))
∣

∣

|det⊥(∂1F (f, x))|
df

)

|dVM |

=
1

m!
√
2π

r+2m

∫

x∈M

(

∫

f∈ker(j0x)

∣

∣det⊥(dxf)
∣

∣

|det⊥(j0x)|
Tr(Rf (x)

∧m) dµ(N−r)

)

|dVM | .

Recall that n = 2m + r and
∣

∣det⊥(j0x)
∣

∣ =
√

det(E(x, x)). As in the volume case, we can
express the innermost integral as a conditional expectation, using corollary 4.6:
(7.11)

E[χ(Zf )] =
1

m!
√
2π

n

∫

x∈M

1
√

det(E(x, x))
E
[∣

∣det⊥(dxf)
∣

∣Tr(Rf (x)
∧m)

∣

∣ f(x) = 0
]

|dVM | .

Let x ∈ M and let U ∼ N (0, Id) in TxM be independent of f . We denote by R the
Riemann curvature tensor of M . By lemmas 4.16 and 3.7,

Rf (x) = R(x) +
1

2
EU

[

〈IIf (x) , U〉∧2
]

= R(x) +
1

2
EU

[

〈

dxf
† ◦ ∇2

xf , U
〉∧2
]

.

The notation EU [ · ] means that we take the expectation with respect to the variable U only.

Remark 7.4. Here and in everything that follows, R(x) and ∇2
xf are implicitly restricted to

ker(dxf) = TxZf .

As in the volume case, let (t, L, S) ∈ Rr ⊗ (R⊕ T ∗
xM ⊕ Sym(T ∗

xM)) be a random vector
distributed as the 2-jet, j2x(f), of f at x. It is a centered Gaussian vector whose variance is
given by lemma 5.4. Then, the conditional expectation in (7.11) is:

(7.12) EL,S

[

∣

∣det⊥(L)
∣

∣Tr

(

(

R(x) +
1

2
EU

[

〈

L†S ,U
〉∧2
]

)∧m
) ∣

∣

∣

∣

∣

t = 0

]

.

As above, R(x) and S are implicitly restricted to ker(L). This shows that the expected Euler
characteristic only depends on R and the values of E and its derivatives (up to order 2 in
each variable) along the diagonal in M ×M . It turns out that the asymptotics no longer
depend on R, both in the harmonic and the algebraic case.

In the case of random eigenfunctions of the Laplacian, we will consider the following
rescaled variables:

tλ =
1√
γ0λn

f(x), Lλ =
1

√

γ1λn+2
dxf and Sλ =

1
√

γ2λn+4
∇2

xf.

As in 7.1 we choose (x1, . . . , xn) normal coordinates centered at x and (ζ1, . . . , ζr) an or-
thonormal basis of Rr. For any i and j such that 1 6 i < j 6 n, we set dxii = dxi ⊗ dxi
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and dxij = (dxi ⊗ dxj + dxj ⊗ dxi). We complete the basis of J 1
x (R

r) given in (7.2) into an
orthonormal basis of J 2

x (R
r) by adding the following elements at the end of the list:

(7.13)

ζ1 ⊗ dx11, . . . , ζr ⊗ dx11, ζ1 ⊗ dx22, . . . , ζr ⊗ dx22, . . . , ζ1 ⊗ dxnn, . . . ,ζr ⊗ dxnn,

ζ1 ⊗ dx12, . . . , ζr ⊗ dx12, ζ1 ⊗ dx13, . . . , ζr ⊗ dx13, . . . , ζ1 ⊗ dx1n, . . . ,ζr ⊗ dx1n,

. . . , ζ1 ⊗ dx(n−1)n, . . . ,ζr ⊗ dx(n−1)n.

The matrix of Var(tλ, Lλ, Sλ) with respect to this basis is:

Λ(λ) =





Λ00(λ) Λ01(λ) Λ02(λ)
Λ10(λ) Λ11(λ) Λ12(λ)
Λ20(λ) Λ21(λ) Λ22(λ)



 .

Here Λ00(λ), Λ10(λ) = tΛ01(λ) and Λ11(λ) are defined similarly to (7.3), for the rescaled
variables. Besides, Λ22(λ) is the matrix of Var(Sλ), Λ20(λ) = tΛ02(λ) is the matrix of
Cov(Sλ, tλ) and Λ21(λ) =

tΛ12(λ) is the matrix of Cov(Sλ, Lλ). We can decompose further
each of these matrices in blocks of size r× r as in (7.4). Then Λ00, Λ10 and Λ11 satisfy (7.5),
(7.6) and (7.7) respectively. Moreover,

Λ20 =
(

Λik
20

)

16i6k6n
, Λ21 =

(

Λik,j
21

)

16i6k6n
16j6n

and Λ22 =
(

Λik,jl
22

)

16i6k6n
16j6l6n

,

where for all i, j, k and l ∈ {1, . . . , n}, with i 6 k and j 6 l,

Λik
20(λ) =

( 〈∂xi,xk
Eλ(x,x) ,ζp⊗ζq〉√
γ0γ2λn+2

)

16p,q6r
=















−
√

γ21
γ0γ2

Ir+O(λ
−1) if i = k,

O(λ−1) if i 6= k,

(7.14)

Λik,j
21 (λ) =

( 〈∂xi,xk
∂yj

Eλ(x,x) ,ζp⊗ζq〉√
γ1γ2λn+3

)

16p,q6r
= O(λ−1),(7.15)

Λik,jl
22 (λ) =

( 〈∂xi,xk
∂yj ,yl

Eλ(x,x) ,ζp⊗ζq〉
γ2λn+4

)

16p,q6r
=























3Ir+O(λ
−1) if i = j = k = l,

Ir+O(λ
−1) if i = j 6= k = l

or i = k 6= j = l,

O(λ−1) otherwise.

(7.16)

Here Ir denotes the identity matrix of size r and we used (6.10), (6.12) and (6.13). Recall-

ing (6.1), we set: γ = −
√

γ2
1

γ0γ2
= −

√

n+4
n+2 . Then Λ(λ) writes, by blocks of size r × r:

Λ(λ) =













































Ir 0 · · · 0 γIr γIr · · · γIr 0 · · · 0
0 Ir
...

. . .

0 Ir
γIr 3Ir Ir · · · Ir

γIr Ir 3Ir
. . .

...
...

...
. . .

. . . Ir
γIr Ir · · · Ir 3Ir
0 Ir
...

. . .

0 Ir













































+O(λ−1),
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where the empty blocks are zeros. By corollary 4.6, the distribution of (Lλ, Sλ) given tλ = 0
is a centered Gaussian whose variance matrix is:

(7.17) Λ̃(λ) =









































Ir
. . .

Ir
β0Ir βIr · · · βIr

βIr β0Ir
. . .

...
...

. . .
. . . βIr

βIr · · · βIr β0Ir
Ir

. . .

Ir









































+O(λ−1),

where β = 1 − γ2 = − 2
n+2 and β0 = 3 − γ2 = 2n+2

n+2 . Let Λ̃(∞) denote the leading term
in (7.17). It is non-singular since

det
(

Λ̃(∞)
)

= (β0 + (n− 1)β)r(β0 − β)r(n−1) =

(

4(2n+ 4)n−1

(n+ 2)n

)r

.

Thus Λ̃(λ) is invertible for λ large enough. Let (L̃λ, S̃λ) be random variables with the same
distribution as (Lλ, Sλ) given tλ = 0 and (L̃, S̃) ∼ N (0, Λ̃(∞)). Note that we can choose all
these variables to be independent of U . We need to compute (7.12) which in this context is:

(7.18)

ELλ,Sλ

[

(γ1λ
n+2)

r
2

∣

∣det⊥(Lλ)
∣

∣Tr

((

R(x) +
1

2
EU

[

〈√

γ2
γ1
λL†

λSλ , U

〉∧2
])∧m) ∣

∣

∣

∣

∣

tλ = 0

]

=(γ1λ
n+2)

r
2EL̃λ,S̃λ

[

∣

∣det⊥(Lλ)
∣

∣Tr

(

(

R(x) +
λ2

2(n+ 4)
EU

[

〈

L̃†
λS̃λ , U

〉∧2
])∧m

)]

=

m
∑

q=1

(

m

q

)

(γ1λ
n+2)

r
2λ2q

2q(n+ 4)q
EL̃λ,S̃λ

[

∣

∣

∣det⊥(L̃λ)
∣

∣

∣Tr

(

R(x)∧m−q ∧ EU

[

〈

L̃†
λS̃λ , U

〉∧2
]∧q
)]

.

We still have to prove that the conditional expectations in this sum converge to some limit
as λ goes to infinity, and compute the asymptotic for the leading term.

When L̃λ and S̃λ are fixed,
〈

L̃†
λS̃λ , U

〉

is a Gaussian bilinear form on ker(Lλ) to which

we can apply lemma 4.15. Let q ∈ {1, . . . ,m}, we have:

(7.19) EL̃λ,S̃λ

[

∣

∣

∣det⊥(L̃λ)
∣

∣

∣Tr

(

R(x)∧m−q ∧ EU

[

〈

L̃†
λS̃λ , U

〉∧2
]∧q
)]

=
2qq!

(2q)!
EL̃λ,S̃λ

[

∣

∣

∣
det⊥(L̃λ)

∣

∣

∣
Tr

(

R(x)∧m−q ∧ EU

[

〈

L̃†
λS̃λ , U

〉∧2q
])]

=
2qq!

(2q)!
EU,L̃λ,S̃λ

[

∣

∣

∣det⊥(L̃λ)
∣

∣

∣Tr

(

R(x)∧m−q ∧
〈

L̃†
λS̃λ , U

〉∧2q
)]

.

37



Lemma 7.5. For all q ∈ {1, . . . ,m},

EU,L̃λ,S̃λ

[

∣

∣

∣det⊥(L̃λ)
∣

∣

∣Tr

(

R(x)∧m−q ∧
〈

L̃†
λS̃λ , U

〉∧2q
)]

= EU,L̃,S̃

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

R(x)∧m−q ∧
〈

S̃ , L̃†∗U
〉∧2q

)]

+O(λ−1).

Proof. First, we prove that the right-hand side is finite. Let ζ ∈ Rr, then,

(7.20) ES̃

[

Tr

(

R(x)∧m−q ∧
〈

S̃ , ζ
〉∧2q

)]

is finite since it is the expectation of some polynomial in S̃. Again S̃ is implicitly restricted
to some 2m-dimensional subspace V of TxM , and it is not obvious that (7.20) depends
only on ζ and not on V . This is the case because the distribution of S̃ is invariant under
orthogonal transformations of TxM . Thus (7.20) only depends on ζ, and it is an homogeneous
polynomial in ζ of degree 2q.

We assumed that U was independent of (L̃, S̃), and the expression (7.17) of Λ̃(∞) shows
that L̃ and S̃ are independent. Let U ′ ∼ N (0, Id) in Rr and Xn−r+1, . . . , Xn be standard
Gaussian vectors with Xp ∈ Rp such that U ′, S̃, Xn−r+1, . . . , Xn are globally independent.
Applying proposition 4.9, we have:

(7.21) EU,L̃,S̃

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

R(x)∧m−q ∧
〈

S̃ , L̃†∗U
〉∧2q

)]

= EU,L̃

[

∣

∣

∣det⊥(L̃)
∣

∣

∣ES̃

[

Tr

(

R(x)∧m−q ∧
〈

S̃ , L̃†∗U
〉∧2q

)]]

= EU ′,Xp

[

‖Xn‖ · · · ‖Xn−r+1‖ES̃

[

Tr

(

R(x)∧m−q ∧
〈

S̃ ,
U ′

‖Xn−r+1‖

〉∧2q
)]]

= EU ′,Xp

[

‖Xn‖ · · · ‖Xn−r+2‖
‖Xn−r+1‖2q−1 ES̃

[

Tr

(

R(x)∧m−q ∧
〈

S̃ , U ′
〉∧2q

)]

]

= E

[

1

‖Xn−r+1‖2q−1

]

E(U ′,S̃)

[

Tr

(

R(x)∧m−q ∧
〈

S̃ , U ′
〉∧2q

)] n
∏

p=n−r+2

E[‖Xp‖] .

Since 2q − 1 6 2m − 1 6 n − r − 1 and Xn−r+1 is a standard Gaussian in Rn−r+1,

E
[

1
‖Xn−r+1‖2q−1

]

< +∞ (see lemma 4.8). The other factors on the right-hand side of (7.21)

are all finite since they are expectations of polynomials is some Gaussian variables.
Then, (Λ̃(λ)−1 − Λ̃(∞)−1) is bounded by C

λ for some positive C. Hence, as in the proof
of lemma 7.1:

(7.22)

∫

∣

∣det⊥(L)
∣

∣Tr
(

R(x)∧m−q ∧
〈

L†S ,U ′〉∧2q
)

×
(

e−
1
2 〈Λ̃(λ)−1(L,S) ,(L,S)〉 − e−

1
2 〈Λ̃(∞)−1(L,S) ,(L,S)〉) dL dS dµn(U

′)

is bounded by:

C

2λ

∫

∣

∣det⊥(L)
∣

∣

∣

∣

∣
Tr
(

R(x)∧m−q ∧
〈

L†S ,U ′〉∧2q
)∣

∣

∣
‖(L, S)‖2 ×

e−
1
4 〈Λ̃(∞)−1(L,S) ,(L,S)〉 dL dS dµn(U

′),

for λ large enough. As for (7.21) above, this integral is finite, hence (7.22) is O(λ−1).
Moreover, det(Λ̃(λ)) = det(Λ̃(∞)) +O(λ−1), and this is enough to establish lemma 7.5.
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Using lemma 7.5 and equation (7.19), the sum in (7.18) equals:

(γ1λ
n+2)

r
2

λ2m

(n+ 4)m
m!

(2m)!
E

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

〈

S̃ , L̃†∗U
〉∧2m

)]

(1 +O(λ−1)).(7.23)

Then, for a standard Gaussian vector f in (Vλ)
r, equations (7.11), (7.12), (7.18) and (7.23)

yield:

E[χ(Zf )] = (γ1λ
n+2)

r
2

λ2m

(n+ 4)m
1

(2m)!
√
2π

n×
∫

x∈M

1
√

det(Eλ(x, x))
E

[

∣

∣

∣
det⊥(L̃)

∣

∣

∣
Tr

(

〈

S̃ , L̃†∗U
〉∧2m

)]

|dVM | (1 +O(λ−1)),

where we used the fact that all our estimates are uniform in x ∈M . Recall from section 7.1
that det(Eλ(x, x)) = (γ0λ

n)r(1 +O(λ−1)). Then, by (6.1),
(7.24)

E[χ(Zf )] =

(

γ1
γ0

)
r
2 λ2m+r

(n+ 4)m
Vol (M)

(2m)!
√
2π

nE

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

〈

S̃ , L̃†∗U
〉∧2m

)]

(1 +O(λ−1))

=
λn Vol (M)√
2π

n
(2m)!

1

(n+ 2)
r
2 (n+ 4)m

E

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

〈

S̃ , L̃†∗U
〉∧2m

)]

+O(λn−1).

We still have to compute the expectation on the right-hand side. Recall from (7.21) that:

E

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

〈

S̃ , L̃†∗U
〉∧2m

)]

= E

[

1

‖Xn−r+1‖2m−1

]

E(U ′,S̃)

[

Tr

(

〈

S̃ , U ′
〉∧2m

)] n
∏

p=n−r+2

E[‖Xp‖] ,

where U ′ ∼ N (0, Id) in Rr and Xp ∼ N (0, Id) in Rp for all p. Then, by lemma 4.8, this
equals:

(7.25)
√
2π

r−2mVol (Sn−r)

Vol (S1)

Vol
(

Sn−r+1
)

Vol (Sn)
E(U ′,S̃)

[

Tr

(

〈

S̃ , U ′
〉∧2m

)]

,

where S̃ is restricted to any 2m-dimensional subspace of TxM . We will compute this term

for S̃ restricted to the span of
(

∂
∂x1

, . . . , ∂
∂x2m

)

.

Lemma 7.6.

ES̃,U ′

[

Tr

(

〈

S̃ , U ′
〉∧2m

)]

= (−1)m
(

n+ 4

n+ 2

)m

πm ((2m)!)2

m!

Vol
(

Sr−1
)

Vol (Sn−1)
.

Proof. First we keep U ′ fixed and apply lemma 4.15 to the random bilinear form
〈

S̃ , U ′
〉

.

We have:

(7.26) ES̃

[

〈

S̃ , U ′
〉∧2m

]

=
(2m)!

2mm!
ES̃

[

〈

S̃ , U ′
〉∧2

]∧m

.

Assume that S̃/V =
∑

16i,k62m

S̃ikdxi ⊗ dxk with S̃ik ∈ Rr. Then,

〈

S̃/V , U
′
〉

=
∑

16i,k62m

〈

S̃ik , U
′
〉

dxi ⊗ dxk,
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and

(7.27)

ES̃

[

〈

S̃/V , U
′
〉∧2

]

=
∑

16i,j,k,l62m

ES̃

[〈

S̃ik , U
′
〉〈

S̃jl , U
′
〉]

(dxi ∧ dxj)⊗ (dxk ∧ dxl)

=
∑

16i,j,k,l62m

〈

U ′ ,
(

Λ̃ik,jlU ′
〉)

(dxi ∧ dxj)⊗ (dxk ∧ dxl),

where we denoted by Λ̃ik,jl the covariance operator of S̃ik and S̃jl and applied lemma 4.3 to

these random variables. The matrix of Λ̃ik,jl is the limit of Λ̃ik,jl
22 (λ) as λ → +∞, hence is

given by the leading term of (7.17). By (7.26) and (7.27), we get:

ES̃

[

〈

S̃ , U ′
〉∧2m

]

=
(2m)!

2mm!

∑

16i1,...,im62m
16j1,...,jm62m
16k1,...,km62m
16l1,...,lm62m

(

m
∏

p=1

〈

U ′ ,
(

Λ̃ipkp,jplp
)

U ′
〉

)

×

(dxi1∧dxj1 ∧ · · · ∧ dxim ∧ dxjm )⊗ (dxk1 ∧ dxl1 ∧ · · · ∧ dxkm
∧ dxlm)

=
(2m)!

2mm!

∑

σ,σ′∈S2m

ε(σ)ε(σ′)
m
∏

p=1

〈

U ′ ,
(

Λ̃σ(2p−1)σ′(2p−1),σ(2p)σ′(2p)
)

U ′
〉

(dx ⊗ dx),

where S2m is the set of permutations of {1, . . . , 2m}, ε : S2m → {−1, 1} denotes the
signature morphism and dx = dx1∧· · ·∧dx2m. We get the last line by setting σ(2p−1) = ip,
σ(2p) = jp, σ

′(2p − 1) = kp and σ′(2p) = lp and by reordering the wedge products. Now,

Tr(dx ⊗ dx) = ‖dx‖2 = 1, because our local coordinates are such that
(

∂
∂x1

, . . . , ∂
∂x2m

)

is

orthonormal at x. Thus:
(7.28)

Tr

(

ES̃

[

〈

S̃ , U ′
〉∧2m

])

=
(2m)!

2mm!

∑

σ,σ′∈S2m

ε(σ)ε(σ′)
m
∏

p=1

〈

U ′,
(

Λ̃σ(2p−1)σ′(2p−1),σ(2p)σ′(2p)
)

U ′
〉

.

By equation (7.17), for any σ, σ′ ∈ S2m and for any p ∈ {1, . . . ,m},

Λ̃σ(2p−1)σ′(2p−1),σ(2p)σ′(2p) = K(p, σ, σ′) Id,

where,

(7.29) K(p, σ, σ′) =











β if σ(2p− 1) = σ′(2p− 1) and σ(2p) = σ′(2p),

1 if σ(2p− 1) = σ′(2p) and σ(2p) = σ′(2p− 1),

0 otherwise.

Note that K(p, σ, σ′) = K(p, id, σ−1 ◦ σ′), where id stands for the identity permutation.
Then, setting τ = σ−1 ◦ σ′:

(7.30)
∑

σ,σ′∈S2m

ε(σ)ε(σ′)
m
∏

p=1

〈

U ′ ,
(

Λ̃σ(2p−1)σ′(2p−1),σ(2p)σ′(2p)
)

U ′
〉

=
∑

σ,σ′∈S2m

ε(σ)ε(σ′) ‖U ′‖2m
m
∏

p=1

K(p, σ, σ′)

= (2m)! ‖U ′‖2m
∑

τ∈S2m

ε(τ)

m
∏

p=1

K(p, id, τ).
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From the definition (7.29) of K(p, id, τ), we get that
∏m

p=1K(p, id, τ) 6= 0 if and only if τ
is a product of transpositions of the type ((2p − 1) (2p)). Now, if I ⊂ {1, . . . ,m} and
τ =

∏

p∈I((2p− 1) (2p)), then:

m
∏

p=1

K(p, id, τ) = βm−|I| and ε(τ) = (−1)|I|,

where |I| stands for the cardinal of I. Thus,

(7.31)

∑

τ∈S2m

ε(τ)

m
∏

p=1

K(p, id, τ) =
∑

I⊂{1,...,m}
(−1)|I|βm−|I| =

m
∑

p=1

(

m

p

)

(−1)pβm−p

= (β − 1)m = (−1)m
(

n+ 4

n+ 2

)m

.

Finally, by lemma 4.8, (7.28), (7.30) and (7.31):

ES̃,U ′

[

Tr

(

〈

S̃ , U ′
〉∧2m

)]

=
((2m)!)2

2mm!
E
[

‖U ′‖2m
]

(−1)m
(

n+ 4

n+ 2

)m

= (−1)m
(

n+ 4

n+ 2

)m

πm ((2m)!)2

m!

Vol
(

Sr−1
)

Vol (Sn−1)
.

By equations (7.24), (7.25) and by lemma 7.6,

(7.32) E[χ(Zf )] =
(−1)mλn

(n+ 2)
n
2

Vol (M)

Vol (Sn)

(2m)!

m!

Vol (Sn−r)Vol
(

Sr−1
)

Vol
(

Sn−r+1
)

2n−r+1π
n−r
2 +1 Vol (Sn−1)

+O(λn−1).

Then,

(2m)!

m!
Vol

(

Sn−r
)

=
2Γ(n− r + 1)

√
π
n−r+1

Γ
(

n−r+2
2

)

Γ
(

n−r+1
2

) = 2n−r+1
√
π
n−r

,

where we used that Γ(z)Γ(z+ 1
2 ) =

√
π21−2zΓ(2z). This concludes the proof of theorem 1.2.

7.4 Proof of theorem 1.4

Let us now adapt the proof of the previous section to the case of real algebraic submanifolds.
Once again we need only consider the case where r < n and n− r is even. Recall that X is
a complex projective manifold of dimension n, equipped with a rank r holomorphic vector
bundle E and an ample holomorphic line bundle L, and that X , E and L are endowed with
compatible real structures. Let Ed denote the Bergman kernel of E ⊗ Ld. Applying the
Chern-Gauss-Bonnet theorem 3.3 and the double fibration trick yields:
(7.33)

E[χ(Zs)] =
1

m!
√
2π

n

∫

x∈RX

1
√

det(Ed(x, x))
E
[∣

∣det⊥(∇d
xs)
∣

∣Tr(Rs(x)
∧m)

∣

∣ s(x) = 0
]

|dVRX | ,

where ∇d is any real connection on (E ⊗ Ld), s is a standard Gaussian in RH0(X , E ⊗ Ld)
and Rs denotes the Riemann tensor of Zs. We need to compute the conditional expectation
in (7.33) for some fixed x ∈ RX . Since it does not depend on our choice of connection, we
will use one that is adapted to x as in sections 6.3 and 7.2.

Let x ∈ RX and U ∼ N (0, Id) in TxRX . By lemmas 4.16 and 3.7 and by (6.18),

Rs(x) = R(x) +
1

2
EU

[

〈IIs(x) , U〉∧2
]

= R(x) +
1

2
EU

[

〈

(∇d
xs)

† ◦ ∇2,d
x s , U

〉∧2
]

,

41



where R is the Riemann tensor of RX and IIs stands for the second fundamental form of
Zs ⊂ RX . We consider the rescaled variables:

td =

√

πn

dn
s(x), Ld =

√

πn

dn+1
∇d

xs and Sd =

√

πn

dn+2
∇2,d

x s.

As in 7.2 let (ζd1 , . . . , ζ
d
r ) be an orthonormal basis of R(E ⊗ Ld)x that we assume to be the

value at x of a real holomorphic frame (ζ1 ⊗ ζd0 , . . . , ζr ⊗ ζd0 ) satisfying the conditions of
section 6.3. Then we get an orthonormal basis of RJ 2

x (E ⊗ Ld) similar to the one defined
by (7.2) and (7.13) and we compute the matrix Λ(d) of Var(td, Ld, Sd) in this basis. For this
we use (7.8), (7.9), (7.10), and similar estimates for the blocks implying second derivatives
given by proposition 6.8. Namely, for all i, j, k and l ∈ {1, . . . , n}, with i 6 k and j 6 l,

Λik
20(d) = O(d−1),(7.34)

Λik,j
21 (d) = O(d−1),(7.35)

Λik,jl
22 (d) =











2Ir+O(d
−1) if i = j = k = l,

Ir+O(d
−1) if i = j 6= k = l,

O(d−1) otherwise.

(7.36)

Note that in this case td, Ld and Sd are asymtoticaly independent. By corollary 4.6, the
distribution of (Ld, Sd) given td = 0 is then a centered Gaussian whose variance matrix is,
by blocks of size r × r,

(7.37) Λ̃(d) =



































Ir
. . .

Ir
2Ir

. . .

2Ir
Ir

. . .

Ir



































+O(d−1),

where the empty blocks are zeros. Let (L̃d, S̃d) be distributed as (Ld, Sd) given td = 0 and
(L̃, S̃) ∼ N (0, Λ̃(∞)) where Λ̃(∞) is the limit of Λ̃(d) as d → +∞. The proof of lemma 7.5
adapts immediately in this setting.

Lemma 7.7. For all q ∈ {1, . . . ,m},

EU,L̃d,S̃s

[

∣

∣

∣det⊥(L̃d)
∣

∣

∣Tr

(

R(x)∧m−q ∧
〈

L̃†
dS̃d , U

〉∧2q
)]

= EU,L̃,S̃

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

R(x)∧m−q ∧
〈

S̃ , L̃†∗U
〉∧2q

)]

+O(d−1).

Then the same proof as in 7.3 gives:

E
[∣

∣det⊥(∇d
xs)
∣

∣Tr(Rs(x)
∧m)

∣

∣ s(x) = 0
]

=

(

dn+1

πn

)
r
2 m
∑

q=1

(

m

q

)

dqq!

(2q)!
E

[

∣

∣

∣det⊥(L̃d)
∣

∣

∣Tr

(

R(x)∧m−q ∧
〈

S̃d , L̃
†∗
d U

〉∧2q
)]

=

(

dn+1

πn

)
r
2 dmm!

(2m)!
E

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

〈

S̃ , L̃†∗U
〉∧2m

)]

(1 +O(d−1)).
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We denote by U ′ a standard Gaussian vector in R(E ⊗Ld)x and by Xp a standard Gaussian
in Rp for every p ∈ {n− r + 1, . . . , n}. Then:

E

[

∣

∣

∣det⊥(L̃)
∣

∣

∣Tr

(

〈

S̃ , L̃†∗U
〉∧2m

)]

= E

[

1

‖Xn−r+1‖2m−1

]

E(U ′,S̃)

[

Tr

(

〈

S̃ , U ′
〉∧2m

)] n
∏

p=n−r+2

E[‖Xp‖]

=
√
2π

r−2mVol (Sn−r)

Vol (S1)

Vol
(

Sn−r+1
)

Vol (Sn)
E(U ′,S̃)

[

Tr

(

〈

S̃ , U ′
〉∧2m

)]

.

Lemma 7.8.

ES̃,U ′

[

Tr

(

〈

S̃ , U ′
〉∧2m

)]

= (−1)mπm ((2m)!)2

m!

Vol
(

Sr−1
)

Vol (Sn−1)
.

Proof. The proof is the same as for lemma 7.6. The only difference comes from the fact that
the Λ̃ik,jl are now given by (7.37). Hence we have to change the definition (7.29) of K. In
this setting:

K(p, σ, σ′) =

{

1 if σ(2p− 1) = σ′(2p) and σ(2p) = σ′(2p− 1),

0 otherwise,

so that

m
∏

p=1

K(p, id, τ) is 0, unless τ is the permutation τ0 =

m
∏

p=1

((2p− 1)(2p)). Once again,

id denotes the identity element of S2m. Then (7.31) becomes:

∑

τ∈S2m

ε(τ)

m
∏

p=1

K(p, id, τ) = ε(τ0)

m
∏

p=1

K(p, id, τ0) = (−1)m.

The same computations as in lemma 7.6 give the result.

Recalling from section 7.2 that
√

det(Ed(x, x)) =
(

dn

πn

)
r
2 (1 +O(d−1)), we get:

E[χ (Zs)] = (−1)
n−r
2

(√
d
)n

Vol (RX )
Vol

(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)
+O

(√
d
n−2
)

by the same kind of computations as in the harmonic case.

7.5 Two special cases

In some special cases, the covariance kernel is known explicitly. It is then possible to prove
more precise results. In this section, we sketch what happens on the flat torus, and in the
projective space.

The flat torus. Let Tn = Rn�(2πZ)n denote the torus of dimension n that we equip with
the quotient of the Euclidean metric on Rn. We have Vol (Tn) = (2π)n. In our notations,
we identify functions on Tn and (2πZ)n-periodic functions on Rn. Then, the Laplacian is

∆ = −∑n
i=1

∂2

∂x2
i

, and it is known that its eigenvalues are the integers of the form ‖p‖2,
with p = (p1, . . . , pn) ∈ Nn. The eigenspace associated to 0 is spanned by the constant
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function x 7→ 1√
2π

n . For λ > 0, the eigenspace associated to λ2 is spanned by the normalized

functions of the form:

x 7→ 2√
2π

n sin(〈p , x〉) and x 7→ 2√
2π

n cos(〈p , x〉),

where p ∈ Zn is such that ‖p‖ = λ, and 〈· , ·〉 is the canonical scalar product on Rn.
We set Bλ = {p ∈ Zn | ‖p‖ 6 λ}. Then, after some computations, we get eλ, the spectral

function of the Laplacian on Tn:

∀λ > 0, ∀x, y ∈ Tn, eλ(x, y) =
1

(2π)n

∑

p∈Bλ

cos(〈p , x− y〉).

Let λ > 0 and r ∈ {1, . . . , n}, let Vλ be spanned by the eigenfunctions of ∆ associated
to eigenvalues smaller than λ2, and let Eλ denote the Schwarz kernel of (Vλ)

r . Then Eλ is
determined by the above expression for eλ, see (5.8). Let f ∼ N (0, Id) in (Vλ)

r. Going back
to equation (7.1) we have:

E[Vol (Zf )] =
1√
2π

r

∫

Tn

1
√

det(Eλ)
E
[∣

∣det⊥(Lλ)
∣

∣

∣

∣ tλ = 0
]

|dVTn | ,

where (tλ, Lλ) is distributed as j1x(f). The variance of (tλ, Lλ) is explicit, and it only depends
on Eλ and its derivatives along the diagonal in Tn×Tn (see lemma 5.4). Moreover, Eλ and its
derivatives are constant along the diagonal. By computations similar to those of section 7.1
we get the following.

Proposition 7.9. On the flat torus Tn, let λ > 0 and let f ∼ N (0, Id) in (Vλ)
r. We have:

E[Vol (Zf )] =





1

|Bλ|
∑

(p1,...,pn)∈Bλ

(p1)
2





r
2

(2π)n
Vol (Sn−r)

Vol (Sn)
,

where Bλ = {p ∈ Zn | ‖p‖ 6 λ} and |Bλ| denotes the cardinal of Bλ.

This result was already known, see [29], where Rudnick and Wigman compute the variance
of Vol (Zf) when r = 1, and the references therein.

Assuming that n− r is even and equals 2m, equations (7.11) and (7.12) yield:

E[χ(Zf )]=
1

2mm!
√
2π

n

∫

Tn

1
√

det(Eλ)
E

[

∣

∣det⊥(Lλ)
∣

∣Tr

(

EU

[

〈

L†
λSλ , U

〉∧2
]∧m

)∣

∣

∣

∣

∣

tλ = 0

]

|dVTn | ,

where (tλ, Lλ, Sλ) is distributed as j2x(f) and U ∼ N (0, Id) in TxT
n. Indeed, the Riemann

curvature of Tn is uniformly 0. Once again, the variance of (tλ, Lλ, Sλ) only depends on Eλ

and its derivatives along the diagonal, and it does not depend on x ∈ Tn. Computations
similar to those of 7.3 give the following.

Proposition 7.10. On the flat torus Tn, let λ > 0 and let f ∼ N (0, Id) in (Vλ)
r. Then, if

n− r is even, we have:

E[χ(Zf )] = (−1)
n−r
2





1

|Bλ|
∑

(p1,...,pn)∈Bλ

(p1)
2





n
2

(2π)n
Vol

(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)
,

where Bλ = {p ∈ Zn | ‖p‖ 6 λ} and |Bλ| denotes the cardinal of Bλ.
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The projective space. We consider the algebraic case with X = CPn, E = Cr × CPn

with the standard Hermitian metric on each fiber, and L = O(1) with its usual metric.
Then, ω is the standard Fubini-Study form. We consider the real structures induced by
the standard conjugation in C. Let ed denote the Bergman kernel of Ld and Ed denote the
Bergman kernel of E ⊗ Ld. Since E is trivial, Ed and ed satisfy a relation similar to (5.8),
that is:

∀x, y ∈ CPn, ∀ζ, ζ′ ∈ Cr, 〈Ed(x, y) , ζ ⊗ ζ′〉 = ed(x, y) 〈ζ , ζ′〉 .
As we said in section 1, we have RX = RPn, and elements of RH0(X , E ⊗ Ld) are just

r-tuples of real homogeneous polynomials of degree d in n + 1 variables. We denote by
Rhom

d [X0, . . . , Xn] the space of real homogeneous polynomials of degree d in X0, . . . , Xn.
For any α = (α0, . . . , αn) ∈ Nn+1, we set |α| = α0 + · · · + αn and Xα = Xα0

0 · · ·Xαn
n . If

|α| = d, we also set
(

d
α

)

= d!
α0!···αn!

. It is well-known, see [5, 8, 10, 23], that an orthonormal

basis of RH0(CPn,O(d)) ≃ Rhom
d [X0, . . . , Xn] for the inner product (5.15) is given by the

sections:

sα =

√

(n+ d)!

πnd!

(

d

α

)

Xα, with |α| = d.

Then, formally,

ed =
(n+ d)!

πnd!

∑

|α|=d

(

d

α

)

XαY α =
(n+ d)!

πnd!
〈X ,Y 〉d .

More precisely, we consider the chart (x1, . . . , xn) 7→ [1 : x1 : · · · : xn] around the point of
homogeneous coordinates [1 : 0 : · · · : 0], and the real holomorphic frame s(d,0,...,0) for O(d)
around this point. In these coordinates:

ed(x, y) =
(n+ d)!

πnd!
(1 + 〈x , y〉)d

(

s(d,0,...,0)(x) ⊗ s(d,0,...,0)(y)
)

,

with x = (x1, . . . , xn) and y = (y1, . . . , yn). Since everything is invariant under unitary
transformations of CPn, this totally describes ed, and Ed.

Let d ∈ N and r ∈ {1, . . . , n}. Let s ∼ N (0, Id) in RH0(X , E⊗Ld) ≃ (Rhom
d [X0, . . . , Xn])

r.
Then, as in 7.2:

E[Vol (Zs)] =
1√
2π

r

∫

RPn

1
√

det(Ed)
E
[∣

∣det⊥(Ld)
∣

∣

∣

∣ td = 0
]

|dVRPn | ,

where (td, Ld) is distributed as j1,dx (s). Since Ed is explicit, we can compute the variance
of (td, Ld). Some further computations yield Kostlan’s result [23]:

E[Vol (Zs)] =
(√

d
)r

Vol
(

RPn−r
)

.

Assuming that n− r is even and equals 2m, we have:

E[χ(Zs)]=
1

m!
√
2π

n

∫

RPn

1
√

det(Ed)
E

[

∣

∣det⊥(Ld)
∣

∣Tr

(

(

R+
1

2
EU

[

〈

L†
dSd , U

〉∧2
])∧m

)]

|dVRPn | ,

where R is the Riemann curvature of RPn, (td, Ld, Sd) is distributed as j2,dx and U ∼ N (0, Id)
in TxRP

n. In this expression we already used the fact that td is independent of (Ld, Sd),
this is why the expectation is not conditionned on td = 0.

Since everything is invariant under orthogonal transformations of RPn, we only need to
compute the expectation on the right-hand side at the point x = [1 : 0 : · · · : 0]. In the same
chart as above we get:

R(x) =
1

2

∑

16i,j6n

dxi ∧ dxj ⊗ dxi ∧ dxj .
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Then, following the computations of section 7.3, we have:

E

[

∣

∣det⊥(Ld)
∣

∣Tr

(

(

R(x) +
1

2
EU

[

〈

L†
dSd , U

〉∧2
])∧m

)]

=
√
d
r

m
∑

q=0

(d− 1)q
(

m

q

)

×

√
2π

r−2q

2q
Vol (Sn−r)Vol

(

Sn−r+1
)

Vol (Sn)Vol (Sn−r+1−2q)
EU ′

[

Tr

(

R(x)∧m−q ∧ ES

[

〈S ,U ′〉∧2
]∧q
)]

,

where U ′ is a standard Gaussian vector in R(E ⊗ Ld)x and S = 1√
d(d−1)

Sd. Using equa-

tion (7.27) and the values of the variance of Sd, we get:

ES

[

〈S ,U ′〉∧2
]

= −‖U ′‖2
∑

16i,j6n

dxi ∧ dxj ⊗ dxi ∧ dxj .

Then, restricting R and S to the span of
(

∂
∂x1

, . . . , ∂
∂x2m

)

, we get:

∀q ∈ {0, . . . ,m}, Tr

(

R(x)∧m−q ∧ ES

[

〈S ,U ′〉∧2
]∧q
)

= (−1)q
1

2m−q
(2m)! ‖U ′‖2q .

Some further computations, similar to those of section (7.3), yield Bürgisser’s result [10]:

E[χ(Zs)] =
(√

d
)r

n−r
2
∑

p=1

(1 − d)p
Γ
(

p+ r
2

)

p! Γ
(

r
2

) .
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