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Abstract

In a closed manifold of positive dimension n, we estimate the expected volume

and Euler characteristic for random submanifolds of codimension r ∈ {1, . . . , n} in

two different settings. On one hand, we consider a closed Riemannian manifold and

some positive λ. Then we take r independent random functions in the direct sum of

the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues less than

λ and consider the random submanifold defined as the common zero set of these r

functions. We compute asymptotics for the mean volume and Euler characteristic of

this random submanifold as λ goes to infinity. On the other hand, we consider a complex

projective manifold defined over the reals, equipped with an ample line bundle L and

a rank r holomorphic vector bundle E that are also defined over the reals. Then we

get asymptotics for the expected volume and Euler characteristic of the real vanishing

locus of a random real holomorphic section of E ⊗ Ld as d goes to infinity. The same

techniques apply to both settings.

Keywords: Euler characteristic, Riemannian random wave, spectral function, random
polynomial, real projective manifold, ample line bundle, Bergman kernel, Gaussian field.
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1 Introduction

Zeros of random polynomials were first studied by Bloch and Pòlya [6] in the early 30s.
About ten years later, Kac [22] obtained a sharp asymptotic for the expected number of
real zeros of a polynomial of degree d with independent standard Gaussian coefficients, as
d goes to infinity. This was later generalized to other distributions by Kostlan in [23]. In
particular, he introduced a normal distribution on the space of homogeneous polynomials of
degree d — known as the Kostlan distribution — which is more geometric, in the sense that
it is invariant under isometries of CP1. Bogomolny, Bohigas and Leboeuf [7] showed that
this distribution corresponds to the choice of d independent roots, uniformly distributed in
the Riemann sphere.

In higher dimension, the question of the number of zeros can be generalized in at least
two ways. What is the expected volume of the zero set? And what is its expected Euler
characteristic? More generally, one can ask what are the expected volume and Euler char-
acteristic of a random submanifold obtained as the zero set of some Gaussian field on a
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Riemannian manifold. In this paper, we provide an asymptotic answer to these questions in
the case of Riemannian random waves and in the case of real algebraic manifolds.

Let us describe our frameworks and state the main results of this paper. See section 2 for
more details. Let (M, g) be a closed (that is compact without boundary) smooth Riemannian
manifold of positive dimension n, equipped with the Riemannian measure |dVM | associated
to g (defined below (2.1)). This induces a L2-inner product on C∞(M) defined by:

(1.1) ∀φ, ψ ∈ C∞(M), 〈φ , ψ〉 =
∫

x∈M

φ(x)ψ(x) |dVM | .

It is well-known that the subspace Vλ ⊂ C∞(M) spanned by the eigenfunctions of the
Laplacian associated to eigenvalues smaller than λ has finite dimension. Let 1 6 r 6 n and
let f (1), . . . , f (r) ∈ Vλ be independent standard Gaussian vectors, then we denote by Zf the
zero set of f = (f (1), . . . , f (r)). Then, for λ large enough, Zf is almost surely a submanifold
of M of codimension r (see section 2 below) and we denote by Vol (Zf) its Riemannian
volume for the restriction of g to Zf . We also denote by χ(Zf ) its Euler characteristic.

Theorem 1.1. Let (M, g) be a closed Riemannian manifold of dimension n. Let Vλ be

the direct sum of the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues

smaller than λ. Let f (1), . . . , f (r) be r independent standard Gaussian vectors in Vλ, with
1 6 r 6 n. Then the following holds as λ goes to infinity:

E[Vol (Zf )] =

(

λ

n+ 2

)
r
2

Vol (M)
Vol (Sn−r)

Vol (Sn)
+O

(

λ
r−1
2

)

.

Here and throughout this paper, E[ · ] denotes the mathematical expectation of the quantity
between the brackets and Sn is, as usual, the unit Euclidean sphere in Rn+1.

If n − r is odd, Zf is almost surely a smooth manifold of odd dimension. In this case,
χ(Zf ) = 0 almost surely. If n− r is even, we get the following result.

Theorem 1.2. Let (M, g) be a closed Riemannian manifold of dimension n. Let Vλ be

the direct sum of the eigenspaces of the Laplace-Beltrami operator associated to eigenvalues

smaller than λ. Let f (1), . . . , f (r) be r independent standard Gaussian vectors in Vλ, with
1 6 r 6 n. Then, if n− r is even, the following holds as λ goes to infinity:

E[χ (Zf )] = (−1)
n−r
2

(

λ

n+ 2

)
n
2

Vol (M)
Vol

(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)
+O

(

λ
n−1
2

)

.

We also consider the framework of the papers [14, 16] by Gayet and Welschinger, see
section 2.6 for more details. Let X be a smooth complex projective manifold of complex
dimension n. Let L be an ample holomorphic line bundle over X and E be a holomorphic
vector bundle over X of rank r. We assume that X , L and E are equipped with compatible
real structures and that the real locus RX of X is non-empty.

Let hL denote a Hermitian metric on L with positive curvature ω and hE denote a
Hermitian metric on E . Both metrics are assumed to be compatible with the real structures.
Then ω is a Kähler form and it induces a Riemannian metric g and a volume form dVX = ωn

n!
on X . For any d ∈ N, the space of smooth sections of E ⊗ Ld is equipped with a L2-inner
product similar to (1.1) (see section 2.6).

Let RH0(X , E ⊗Ld) denote the space of real global holomorphic sections of E ⊗Ld. This
is a Euclidean space for the above inner product. Let s be a standard Gaussian section in
RH0(X , E ⊗ Ld), then we denote by Zs the real part of its zero set. Once again, for d large
enough, Zs is almost surely a smooth submanifold of RX of codimension r. Let Vol (Zs)
denote the Riemannian volume of Zs and χ(Zs) denote its Euler characteristic. We get the
analogues of Theorems 1.1 and 1.2 in this setting.
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Theorem 1.3. Let X be a complex projective manifold of dimension n defined over the reals

and r ∈ {1, . . . , n}. Let L be an ample holomorphic Hermitian line bundle over X and E
be a rank r holomorphic Hermitian vector bundle over X , both equipped with real structures

compatible with the one on X . Let s be a standard Gaussian vector in RH0(X , E ⊗ Ld).
Then the following holds as d goes to infinity:

E[Vol (Zs)] = d
r
2 Vol (RX )

Vol (Sn−r)

Vol (Sn)
+O

(

d
r
2−1
)

.

Theorem 1.4. Let X be a complex projective manifold of dimension n defined over the reals

and r ∈ {1, . . . , n}. Let L be an ample holomorphic Hermitian line bundle over X and E
be a rank r holomorphic Hermitian vector bundle over X , both equipped with real structures

compatible with the one on X . Let s be a standard Gaussian vector in RH0(X , E ⊗ Ld).
Then, if n− r is even, the following holds as d goes to infinity:

E[χ (Zs)] = (−1)
n−r
2 d

n
2 Vol (RX )

Vol
(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)
+O

(

d
n
2 −1

)

.

In the case of random eigenfunctions of the Laplacian, Theorem 1.1 was already known
to Bérard [8] for hypersurfaces. See also [34, thm. 1] where Zelditch shows that, in the case
of hypersurfaces,

√

n+ 2

λ
E[Zf ] −−−−−→

λ→+∞

Vol
(

Sn−1
)

Vol (Sn)
|dVM |

in the sense of the weak convergence of measures. He also proves a similar result in the case
of band limited eigenfunctions.

Let us discuss Theorems 1.3 and 1.4 when X is CPn with the standard real structure
induced by the conjugation in Cn+1, E is the trivial bundle X × Cr and L = O(1) is the
hyperplane bundle with its usual metric. Then RX = RPn and ω is the Fubini-Study metric
on CPn, normalized so that it is the quotient of the Euclidean metric on the sphere S2n+1.
Besides, RH0(X ,Ld) is the space of real homogeneous polynomials of degree d in n + 1
variables, and Zs is the common real zero set of r independent such polynomials.

In this setting, Kostlan [23] proved that, for any d > 1,

E[Vol (Zs)] = d
r
2 Vol

(

RPn−r
)

.

See also the paper [30] by Shub and Smale, where they compute the expected number
of common real roots for a system of n polynomials in n variables. The expected Euler
characteristic of a random algebraic hypersurface of degree d in RPn was computed by
Podkorytov [28]. Both Kostlan’s and Podkorytov’s results were generalized by Bürgisser. In
[9], he computed the expected volume and Euler characteristic of a submanifold Zs of RPn

defined as the common zero set of r standard Gaussian polynomials P1, . . . , Pr of degree
d1, . . . , dr respectively. In particular, when these polynomials have the same degree d and
n− r is even, he showed that:

(1.2) E[χ (Zs)] = d
r
2

n−r
2
∑

p=0

(1− d)p
Γ
(

p+ r
2

)

p!Γ
(

r
2

) ,

where Γ denotes Euler’s gamma function. Theorems 1.3 and 1.4 agree with these previous
results.

Recently, Gayet and Welschinger computed upper and lower bounds for the asymptotics
of the expected Betti numbers of random real algebraic submanifolds of a projective manifold,
see [14, 16]. This relies on sharp estimates for the expected number of critical points of index
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i ∈ {0, . . . , n− r} of a fixed Morse function p : RX → R restricted to the random Zs. More
precisely, letNi(Zs) denote the number of critical points of index i of p/Zs

, let Sym(i, n−r−i)
denote the open cone of symmetric matrices of size n− r and signature (i, n− r− i) and let
dν denote the standard Gaussian measure on the space of symmetric matrices. Gayet and
Welschinger show [16, thm. 3.1.2] that:

(1.3) E[Ni(Zs)] ∼
d→+∞

(

d

π

)
n
2

Vol (RX )
(n− 1)!

(n− r)!

eR(i, n− r − i)

2r−1Γ
(

r
2

) ,

where eR(i, n− r − i) =

∫

Sym(i,n−r−i)

|det(A)| dν(A).

One can indirectly deduce Theorem 1.4 from this result and from [9] in the following way.
By Morse theory:

E[χ(Zs)] =

n−r
∑

i=0

(−1)iE[Ni(Zs)] ∼
d→+∞

Cn,r d
n
2 Vol (RX )

where Cn,r is a universal constant depending only on n and r. Specifying to the case of RPn,
equation (1.2) gives the value of Cn,r. Gayet and Welschinger also proved a result similar to
(1.3) for hypersurfaces in the case of Riemannian random waves, see [13]. It gives the order
of growth of E[χ(Zf )] in Theorem 1.2, for r = 1.

In their book [31], Taylor and Adler compute the expected Euler characteristic of the
excursion sets of a centered, unit-variance Gaussian field f on a smooth manifold M . This
expectation is given in terms of the Lipschitz–Killing curvatures of M for the Riemannian
metric gf induced by f , see [31, thm. 12.4.1]. One can deduce from this result the expected
Euler characteristic of the random hypersurface f−1(0), always in terms of the Lipschitz-
Killing curvatures of (M, gf ). It might be possible to deduce Theorems 1.2 and 1.4 from this
result, in the case of hypersurfaces, when the Gaussian field (f(x))x∈M (resp. (s(x))x∈RX )
has unit variance, but one would need to estimate the Lipschitz-Killing curvatures of (M, gf )
(resp. (M, gs)) as λ (resp. d) goes to infinity.

In a related setting, Bleher, Shiffman and Zelditch [4] computed the scaling limit of the
k-points correlation function for a random complex submanifold of a complex projective
manifold. See also [5] in a symplectic framework. Our proofs of Theorems 1.2 and 1.4 use
the same formalism as these papers, adapted to our frameworks.

We now sketch the proofs of our main results in the Riemannian setting. The real
algebraic case is similar. The first step is to express Vol (Zf ) (resp. χ(Zf )) as the integral of
some function on Zf . In the case of the volume this is trivial, and the answer is given by the
Chern–Gauss–Bonnet theorem (see section 4.2 below) in the case of the Euler characteristic.
Then we use the Kac–Rice formula (see Theorem 5.3) which allows us to express E[Vol (Zf )]
(resp. E[χ(Zf )]) as the integral on M of some explicit function that only depends on the
geometry of M and on the covariance function of the smooth Gaussian field defined by f .

It turns out that the covariance function of the field associated to the r independent
standard Gaussian functions f (1), . . . , f (r) in Vλ is given by the spectral function of the
Laplacian. In the algebraic case, the covariance function is given by the Bergman kernel of
E ⊗ Ld. This was already used in [4, 26].

Then, our results follow from estimates on the spectral function of the Laplacian (resp.
the Bergman kernel) and their derivatives (see section 3). In the case of random waves, the
estimates we need for the spectral function were proved by Bin [3], generalizing results of
Hörmander [20]. In the algebraic case, much is known about the Bergman kernel [2, 4, 25, 33]
but we could not find the estimates we needed in codimension higher than 1 in the literature.
These estimates are established in section 3.3 using Hörmander–Tian peak sections. Peak
sections were already used in this context in [14, 16], see also [32]. The author was told by
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Steve Zelditch, after this paper was written, that one can deduce estimates for the Bergman
kernel in higher codimension from the paper [2] by Berman, Berndtsson and Sjöstrand.

This paper is organized as follows. In section 2 we describe how our random submanifolds
are generated and the setting of the main theorems. Section 3 is dedicated to the estimates
we need for the spectral function of the Laplacian and the Bergman kernel. In section 4 we
derive an integral formula for the Euler characteristic of a submanifold. The main theorems
are proved in section 5, and we deal with two special cases in section 6: the flat torus and
the real projective space. For these examples, it is possible to compute expectations for
fixed λ (resp. d) and we recover the results of Kostlan and Bürgisser. Three appendices deal
respectively with: some standard results about Gaussian vectors, a rather technical proof
we postponed until the end, and a derivation of the Kac–Rice formula using Federer’s coarea
formula.

Acknowledgements. I am thankful to Damien Gayet for his help and support in the
course of this work. I would also like to thank Benôıt Laslier for answering many of my
questions about probability theory.

Contents

1 Introduction 1

2 Random submanifolds 6

2.1 General setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The incidence manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 The covariance kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Random jets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Riemannian random waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 The real algebraic setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Estimates for the covariance kernels 13

3.1 The spectral function of the Laplacian . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Hörmander–Tian peak sections . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 The Bergman kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 An integral formula for the Euler characteristic of a submanifold 18

4.1 The algebra of double forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2 The Chern–Gauss–Bonnet theorem . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 The Gauss equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 An expression for the second fundamental form . . . . . . . . . . . . . . . . . 21

5 Proofs of the main theorems 23

5.1 The Kac–Rice formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.3 Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.4 Proof of Theorem 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Proof of Theorem 1.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Two special cases 36

6.1 The flat torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 The projective space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5



A Concerning Gaussian vectors 39

A.1 Variance and covariance as tensors . . . . . . . . . . . . . . . . . . . . . . . . 39

A.2 Gaussian vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

B Proof of Proposition 5.8 42

C Proof of the Kac–Rice formula 45

C.1 The coarea formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C.2 The double-fibration trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

C.3 Proof of Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Random submanifolds

This section is concerned with the precise definition of the random submanifolds we consider.
The first two subsections explain how we produce them in a quite general setting. The third
one introduces the covariance kernel, which characterizes their distribution. We also describe
the distribution induced on the bundle of 2-jets in terms of this kernel. Then we describe
what we called Riemannian random waves, before explaining how to adapt all this in the real
algebraic case. This kind of random submanifolds has already been considered by Bérard
[8], Zelditch [34] and Nicolaescu [26] in the Riemannian case, and by Gayet and Welschinger
in the real algebraic case, see [14, 16, 15]. See also [9, 10, 24] in special cases.

2.1 General setting

Let (M, g) be a smooth closed manifold of positive dimension n. We denote by |dVM | the
Riemannian measure on M induced by g. That is, if x = (x1, . . . , xn) are local coordinates
in an open set U ⊂M and φ is a smooth function with compact support in U ,

(2.1)

∫

M

φ |dVM | =
∫

x∈U

φ(x)
√

det(g(x)) dx1 . . . dxn.

From now on, we fix some r ∈ {1, . . . , n} that we think of as the codimension of our
random submanifolds. Let 〈· , ·〉 denote the L2-scalar product on C∞(M,Rr) induced by
|dVM |: for any f1 and f2 ∈ C∞(M,Rr),

(2.2) 〈f1 , f2〉 =
∫

x∈M

〈f1(x) , f2(x)〉 |dVM | ,

where the inner product on the right-hand side is the standard one on Rr.

Notation 2.1. Here and throughout this paper 〈· , ·〉 will always denote the inner product
on the concerned Euclidean or Hermitian space.

Let V be a subspace of C∞(M,Rr) of finite dimension N . For any f ∈ V , we denote by
Zf the zero set of f . Let D denote the discriminant locus of V , that is the set of f ∈ V that
do not vanish transversally.

If f vanishes transversally, Zf is a (possibly empty) smooth submanifold of M of codi-
mension r and we denote by |dVf | the Riemannian measure induced by the restriction of g
to Zf . We also denote by Vol (Zf ) the volume of Zf and by χ(Zf ) its Euler characteristic.
In the case r = n, when f /∈ D, Zf is a finite set and |dVf | is the sum of the Dirac measures
centered on points of Zf .
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We consider a random vector f ∈ V with standard Gaussian distribution. That is the
distribution of f admits the density function:

(2.3) x 7→ 1

(2π)
N
2

exp

(

−1

2
‖x‖2

)

with respect to the Lebesgue measure of V . Under some further technical assumptions on V
(see section 2.2 below), f vanishes transversally almost surely. Hence, the random variables
Vol (Zf) and χ(Zf ) are well-defined almost everywhere, and it makes sense to compute their
expectation.

For the convenience of the reader, we gathered the few results we need about Gaussian
vectors in Appendix A. We introduce some notations here and refer to Appendix A for
further details. In the sequel, we will denote by X ∼ N (m,Λ) the fact that the random
vector X is distributed according to a Gaussian with mean m and variance Λ. A standard
Gaussian vector is X ∼ N (0, Id). We will denote by dνN the standard Gaussian measure
on a Euclidean space of dimension N , that is the measure with density (2.3) with respect to
the Lebesgue measure.

2.2 The incidence manifold

Following [26], we say that V is 0-ample if the map j0x : f 7→ f(x) is onto for every x ∈ M .
From now on, we assume that this is the case and we introduce an incidence manifold as
Shub and Smale in [30] (see also [14, 16]).

Let F : (f, x) ∈ V ×M 7→ f(x) ∈ Rr and let ∂1F and ∂2F denote the partial differentials
of F with respect to the first and second variable respectively. For any (f, x) ∈ V ×M ,

∂1F (f, x) = j0x and ∂2F (f, x) = dxf.(2.4)

We assumed j0x to be surjective for every x ∈M , thus F is a submersion. Then Σ = F−1(0)
is a smooth submanifold of codimension r of V ×M , called the incidence manifold, and for
any (f0, x) ∈ V ×M :

T(f0,x)Σ = {(f, v) ∈ V × TxM | f(x) + dxf0 · v = 0}.

We set π1 : Σ → V and π2 : Σ → M the projections from Σ to each factor. A vector
f ∈ V is in the range of d(f0,x)π1 if and only if there exists some v ∈ TxM such that
(f, v) ∈ T(f0,x)Σ, that is f(x) is in the range of dxf0. Since V is 0-ample, the map j0x is onto,
and dxf0 is surjective if and only if d(f0,x)π1 is. Thus, the discriminant locus D is exactly the
set of critical values of π1. By Sard’s theorem, D has measure 0 in V , both for the Lebesgue
measure and for dνN , and f vanishes transversally almost surely.

We equip Σ with the restriction of the product metric on V ×M . Then, whenever f /∈ D,
(π1)

−1(f) = {f}×Zf is isometric to Zf , hence we will identify these sets. Similarly, we will
identify (π2)

−1(x) = ker(j0x)× {x} with the subspace ker(j0x) of V .

2.3 The covariance kernel

In this subsection we introduce the Schwarz kernel and covariance function associated to
our space of random functions. It turns out (see Proposition 2.3 below) that these objects
are equal. The first to use this fact were Bleher, Shiffman and Zelditch in the case of
complex projective manifolds [4] and in the case of symplectic manifolds [5]. In the setting
of Riemannian random waves this was used by Zelditch [34] and Nicolaescu [26].

In C∞(M,Rr) equipped with the L2-inner product (2.2), the orthogonal projection onto
V can be represented by its Schwartz kernel, denoted by E. That is there exists a unique
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E :M ×M → Rr ⊗Rr such that for any smooth f : M → Rr, the projection of f onto V is
given by:

(2.5) x 7→ 〈E(x, ·) , f〉 =
∫

y∈M

〈E(x, y) , f(y)〉 |dVM | .

In the previous formula, the inner product on the right-hand side is the usual one on Rr,
acting on the second factor of Rr ⊗ Rr. The kernel E has the following reproducing kernel
property:

(2.6) ∀f ∈ V, ∀x ∈M, f(x) = 〈E(x, ·) , f〉 .
If (f1, . . . , fN ) is any orthonormal basis of V , one can check that E is defined by:

(2.7) E : (x, y) 7→
N
∑

i=1

fi(x) ⊗ fi(y).

This proves that E is smooth. Besides, for all x ∈M , E(x, x) is in the span of {ζ⊗ζ | ζ ∈ Rr},
and for all ζ ∈ Rr:

(2.8) 〈E(x, x) , ζ ⊗ ζ〉 =
N
∑

i=1

〈fi(x) ⊗ fi(x) , ζ ⊗ ζ〉 =
N
∑

i=1

(〈fi(x) , ζ〉)2 > 0.

This last equation shows that we can check the 0-amplitude condition for V on its kernel.

Lemma 2.2. V is 0-ample if and only if, for all x ∈ M and all ζ ∈ Rr \ {0}, we have:

〈E(x, x) , ζ ⊗ ζ〉 > 0. That is if and only if E(x, x) is a positive-definite bilinear form on

(Rr)∗ for any x ∈M .

On the other hand, the standard Gaussian vector f ∈ V defines a smooth centered
Gaussian field (f(x))x∈M with values in Rr. Its distribution is totally determined by its
covariance function: (x, y) 7→ Cov(f(x), f(y)) fromM×M to Rr⊗Rr, where Cov(f(x), f(y))
stands for the covariance form of the random vectors f(x) and f(y) (cf. Appendix A).

Proposition 2.3. Let V be a finite-dimensional subspace of C∞(M,Rr) and E its Schwartz

kernel. Let f ∼ N (0, Id) in V , then we have:

∀x, y ∈M, Cov(f(x), f(y)) = E[f(x)⊗ f(y)] = E(x, y).

Proof. Let x and y ∈ M , then the first equality is given by Lemma A.7. We will now show
that E[f(x)⊗ f(y)] satisfies condition (2.5) to prove the second equality. Let f0 : M → Rr

be a smooth function and x ∈M ,
∫

y∈M

〈E[f(x)⊗ f(y)] , f0(y)〉 |dVM | =
∫

y∈M

E[〈f(x)⊗ f(y) , f0(y)〉] |dVM |

=

∫

y∈M

E[f(x) 〈f(y) , f0(y)〉] |dVM | = E[f(x) 〈f , f0〉] .

If f0 ∈ V ⊥, this equals 0. If f0 ∈ V , we have:

E[f(x) 〈f , f0〉] = E[〈E(x, ·) , f〉 〈f0 , f〉] = 〈E(x, ·) , f0〉 = f0(x),

where we used the reproducing kernel property (2.6) both for f and f0 and we applied
Lemma A.8 to f ∼ N (0, Id). In both cases, x 7→ E[f(x) 〈f , f0〉] is the projection of f0 onto
V , which shows the second equality in Proposition 2.3.

This tells us that the distribution of our Gaussian field is totally determined by the
Schwartz kernel E. In our cases of interest, asymptotics are known for E and its derivatives,
see section 3 below. This is what allows us to derive asymptotics for the expectation of the
volume and Euler characteristic of Zf .

8



2.4 Random jets

Let ∇M be the Levi-Civita connection on (M, g). For any smooth f : M → Rr, we denote
by ∇2f = ∇Mdf the Hessian of f .

Let ∂x (resp. ∂y) denote the partial derivative with respect to the first (resp. second)
variable for maps from M ×M to Rr ⊗ Rr. Likewise, we denote by ∂x,x (resp. ∂y,y) the
second partial derivative with respect to the first (resp. second) variable twice. As for the
Hessian above, all the higher order derivatives are induced by ∇M .

Now, let f ∼ N (0, Id) in V . We will describe the distribution induced by f on the 2-jets
bundle of M . Let x ∈M , then we denote by J k

x (R
r) the space of k-jets of smooth functions

from M to Rr at the point x (we will only use k ∈ {0, 1, 2}). We already defined

j0x : C∞(M,Rr) −→ Rr.

f 7→ f(x)

We define similarly,

j1x : C∞(M,Rr) → Rr ⊗ (R⊕ T ∗
xM)

f 7→ (f(x), dxf)

and j2x : C∞(M,Rr) → Rr ⊗ (R⊕ T ∗
xM ⊕ Sym(T ∗

xM)),

f 7→ (f(x), dxf,∇2
xf)

where Sym(T ∗
xM) denotes the space of symmetric bilinear forms on T ∗

xM .
The map j2x induces an isomorphism between J 2

x (R
r) and the image of j2x. In the sequel

we will identify these spaces through j2x. Likewise, J 1
x (R

r) and the image of j1x will be
identified through j1x.

Lemma 2.4. Let V be a finite-dimensional subspace of C∞(M,Rr) and E its Schwartz

kernel. Let f ∼ N (0, Id) in V and x ∈ M . Then j2x(f) = (f(x), dxf,∇2
xf) is a centered

Gaussian vector, and its variance form Var(j2x(f)) is characterized by:

Var (f(x)) = E[f(x)⊗ f(x)] = E(x, x),(2.9)

Var (dxf) = E[∇xf ⊗∇xf ] = (∂x∂yE)(x, x),(2.10)

Var
(

∇2
xf
)

= E
[

∇2
xf ⊗∇2

xf
]

= (∂x,x∂y,yE)(x, x),(2.11)

Cov (f(x), dxf) = E[f(x)⊗∇xf ] = (∂yE)(x, x),(2.12)

Cov
(

f(x),∇2
xf
)

= E
[

f(x) ⊗∇2
xf
]

= (∂y,yE)(x, x),(2.13)

Cov
(

dxf,∇2
xf
)

= E
[

∇xf ⊗∇2
xf
]

= (∂x∂y,yE)(x, x).(2.14)

Proof. The first equality on each line is given by Lemmas A.4 and A.7. Then Proposition 2.3
gives the second equality in (2.9). The other equalities are obtained by taking partial deriva-
tives of (2.9)

With this lemma, we have described the distribution of j2x(f) only in terms of E. Since
j0x(f) and j

1
x(f) are the projections of j

2
x(f) onto Rr and Rr ⊗ (R⊕T ∗

xM) respectively, their
distributions are also characterized by Lemma 2.4.

2.5 Riemannian random waves

In this section, we describe what we called Riemannian random waves, that is random linear
combinations of eigenfunctions of the Laplacian.

Let ∆ denote the Laplace-Beltrami operator on the closed Riemannian manifold (M, g).
Recall the following classical facts from the theory of elliptical operators, see [12, thm. 4.43].
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Theorem 2.5. 1. The eigenvalues of ∆ : C∞(M) → C∞(M) can be arranged into a

strictly increasing sequence of non-negative numbers (λk)k∈N such that λk −−−−−→
k→+∞

+∞.

2. The associated eigenspaces are finite-dimensional, and they are pairwise orthogonal for

the L2-inner product (1.1) on C∞(M) induced by g.

Let λ > 0, then we denote by Vλ the subspace of C∞(M) spanned by the eigenfunctions
of ∆ associated to eigenvalues that are less or equal to λ. Each f = (f (1), . . . , f (r)) ∈ (Vλ)

r

defines naturally a map fromM to Rr so that we can see (Vλ)
r as a subspace of C∞(M,Rr).

By Theorem 2.5, Vλ is finite-dimensional so we can apply the construction of sections 2.1
to 2.4 to (Vλ)

r.
Since we consider a product situation, it is possible to make several simplifications. First,

the scalar product (2.2) on (Vλ)
r is induced by the one on Vλ. Thus f = (f (1), . . . , f (r)) is a

standard Gaussian in (Vλ)
r if and only if f (1), . . . , f (r) are r independent standard Gaussian

in Vλ. For a f ∈ (Vλ)
r satisfying this condition, f (1), . . . , f (r) are independent, and so are

their derivatives of any order. This means that, for every x ∈M , the matrices of Var(f(x)),
Var(dxf) and Var(∇2

xf) in the canonical basis of Rr are block diagonal.
Another way to say this is that the kernel of (Vλ)

r is a product in the following sense.
We denote by eλ : M ×M → R the Schwartz kernel of the orthogonal projection onto Vλ
in C∞(M) and by Eλ the Schwartz kernel of (Vλ)

r. The kernel eλ is the spectral function of

the Laplacian and precise asymptotics are known for eλ and its derivatives, see section 3.
Let (ϕ1, . . . , ϕN ) be an orthonormal basis of Vλ. By (2.7),

(2.15) eλ : (x, y) 7→
N
∑

i=1

ϕi(x)ϕi(y).

Let (ζ1, . . . , ζr) denote the canonical basis of Rr. The maps ϕiζq :M → Rr with 1 6 i 6 N
and 1 6 q 6 r give an orthonormal basis of (Vλ)

r and, for all x and y ∈M ,

Eλ(x, y) =

r
∑

q=1

N
∑

i=1

(ϕi(x)ζq)⊗ (ϕi(y)ζq) = eλ(x, y)

r
∑

q=1

ζq ⊗ ζq.

Lemma 2.6. Let (ζ1, . . . , ζr) be any orthonormal basis of Rr, for all x, y ∈M ,

Eλ(x, y) = eλ(x, y)

(

r
∑

q=1

ζq ⊗ ζq

)

.

An immediate consequence of this and Lemma 2.2 is that (Vλ)
r is 0-ample if and only if

eλ(x, x) > 0 for all x ∈ M . By (2.15), this is equivalent to Vλ being base-point-free, that is
for every x ∈M , there exists f ∈ Vλ such that f(x) 6= 0.

Lemma 2.7. For all λ > 0, (Vλ)
r is 0-ample.

Proof. The constant functions on M are eigenfunctions of ∆ associated to the eigenvalue 0.
Thus for every λ > 0, Vλ contains all constant functions on M , hence is base-point-free. By
the above remark, (Vλ)

r is then 0-ample.

2.6 The real algebraic setting

Let us now describe more precisely the real algebraic framework. The main difference with
what we did previously is that we consider sections of a rank r vector bundle instead of
maps to Rr. The local picture is the same as in sections 2.1 to 2.5, so that we can adapt
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everything to this setting. But the formalism is a bit heavier. A classical reference for most
of this material is [17].

Let X be a smooth complex projective manifold of complex dimension n. We equip X
with a real structure, that is with an antiholomorphic involution cX . We assume that its real
locus, the set of fixed points of cX , is not empty and we denote it by RX . Let L be an ample
holomorphic line bundle over X equipped with a real structure cL compatible with the one
on X . By this we mean that cX ◦ π = π ◦ cL, where π : L → X stands for the projection
map onto the base space. Similarly, let E be a holomorphic vector bundle of rank r over X ,
with a compatible real structure cE .

Let hL and hE be real Hermitian metrics on L and E respectively, that is c∗L(hL) = hL
and c∗E(hE) = hE . We assume that hL is positive in the sense that its curvature form ω is
Kähler. Locally we have:

ω/Ω =
1

2i
∂∂̄ ln (hL(ζ, ζ))

where ζ is any non-vanishing local holomorphic section of L on the open set Ω ⊂ X . This
form corresponds to a Hermitian metric gC = ω(·, i·) on X whose real part is a Riemannian
metric g. We denote by dVX the volume form ωn

n! on X .

Remark 2.8. The normalization of ω is the one of [2, 4], but differs from our references
concerning peak sections [16, 32]. This will cause some discrepancies with the latter two in
section 3.2. With our convention, the Fubini-Study metric on RPn induced by the standard
metric on the hyperplane line bundle O(1) is the quotient of the Euclidean metric on Sn.

Let d ∈ N, then the vector bundle E ⊗ Ld comes with a real structure cd = cE ⊗ cdL
compatible with cX and a real Hermitian metric hd = hE⊗hdL. We equip the space Γ(E ⊗Ld)
of smooth sections of E ⊗ Ld with the L2 Hermitian product defined by:

(2.16) ∀s1, s2 ∈ Γ(E ⊗ Ld), 〈s1 , s2〉 =
∫

X
hd(s1, s2) dVX .

We know from the vanishing theorem of Kodaira and Serre that the space H0(X , E ⊗Ld)
of global holomorphic sections of E ⊗ Ld has finite dimension Nd and that Nd grows as a
polynomial of degree n in d, when d goes to infinity. We denote by:

RH0(X , E ⊗ Ld) =
{

s ∈ H0
(

X , E ⊗ Ld
) ∣

∣ cd ◦ s = s ◦ cX
}

the space of real holomorphic sections of E⊗Ld, which has real dimensionNd. The Hermitian
product (2.16) induces a Euclidean inner product on RH0(X , E ⊗ Ld). Notice that we
integrate on the whole of X , not only on the real locus, even when we consider real sections.

If s ∈ RH0(X , E ⊗ Ld) is such that its restriction to RX vanishes transversally, then its
real zero set Zs = s−1(0) ∩ RX is a (possibly empty) submanifold of RX of codimension r.
We denote by |dVs| the Riemannian measure induced on this submanifold by the metric g.

As in section 2.2, we consider the incidence manifold:

(2.17) Σd =
{

(s, x) ∈ RH0(X , E ⊗ Ld)× RX
∣

∣ s(x) = 0
}

.

In this setting, Σd is the zero set of the bundle map Fd : RH0(X , E ⊗Ld)×RX → R(E ⊗Ld)
over RX defined by Fd : (s, x) 7→ s(x). In a trivialization, the situation is similar to the
one in section 2.2. Thus, if RH0(X , E ⊗ Ld) is 0-ample, Σd is a smooth manifold equipped
with two projection maps, π1 and π2, onto RH0(X , E ⊗Ld) and RX respectively. By Sard’s
theorem, the discriminant locus of RH0(X , E ⊗Ld) then has measure 0 for any non-singular
Gaussian measure, since it is the set of critical values of π1.

Remark 2.9. Here, by RH0(X , E ⊗ Ld) is 0-ample we mean that, for every x ∈ RX , the
evaluation map j0,dx : s ∈ RH0(X , E ⊗ Ld) 7→ s(x) ∈ R(E ⊗ Ld)x is onto.
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Let ∇d denote any real connection on E⊗Ld, that is such that for every smooth section s,
∇d (cd ◦ s ◦ cX ) = cd ◦

(

∇ds
)

◦dcX . For example one could choose the Chern connection. We
consider the vertical component ∇dFd of the differential of Fd, whose kernel is the tangent
space of Σd. For any (s0, x) ∈ Σd the partial derivatives of Fd are given by:

∂d1Fd(s0, x) = j0,dx and ∂d2Fd(s0, x) = ∇d
xs0.(2.18)

Note that we only consider points of the zero section of E⊗Ld, hence all this does not depend
on the choice of ∇d.

Let P1 (resp. P2) denote the projection from X ×X onto the first (resp. second) factor.

Recall that (E ⊗ Ld)⊠ (E ⊗Ld) stands for the bundle P ∗
1 (E ⊗ Ld)⊗P ∗

2 (E ⊗Ld) over X ×X .
Let Ed denote the Schwartz kernel of the orthogonal projection from the space of real smooth
sections of E ⊗Ld onto RH0(X , E ⊗Ld). It is the unique section of (E ⊗ Ld)⊠ (E ⊗Ld) such
that, for every real smooth section s of E ⊗ Ld, the projection of s on RH0(X , E ⊗ Ld) is
given by:

x 7→ 〈Ed(x, ·) , s〉 =
∫

y∈X
hd(Ed(x, y), s(y)) dVX .

Here, hd acts on the second factor of (E ⊗ Ld)x ⊗ (E ⊗ Ld)y.
The kernel Ed satisfies a reproducing kernel property similar to (2.6):

(2.19) ∀s ∈ RH0(X , E ⊗ Ld), ∀x ∈ RX , s(x) = 〈Ed(x, ·) , s〉 ∈ R(E ⊗ Ld)x.

If (s1, . . . , sNd
) is an orthonormal basis of RH0(X , E ⊗ Ld) then for all x and y ∈ X ,

(2.20) Ed(x, y) =

Nd
∑

i=1

si(x)⊗ si(y).

For any x ∈ RX , this shows Ed(x, x) is in the span {ζ ⊗ ζ | ζ ∈ R(E ⊗ Ld)x}. We also get
the analogue of Lemma 2.7.

Lemma 2.10. RH0(X , E ⊗ Ld) is 0-ample if and only if for any x ∈ RX , Ed(x, x) is a

positive-definite bilinear form on (R(E ⊗ Ld)x)
∗.

Let s be a standard Gaussian vector in RH0(X , E ⊗ Ld), then (s(x))x∈RX defines a

Gaussian field with values in E ⊗ Ld and its covariance function is a section of (E ⊗ Ld) ⊠
(E ⊗ Ld). The same proof as for Proposition 2.3 gives the following.

Proposition 2.11. Let Ed be the Schwartz kernel of RH0(X , E ⊗ Ld). Let s ∼ N (0, Id) in

RH0(X , E ⊗ Ld), then we have:

∀x, y ∈ X , Cov(s(x), s(y)) = E[s(x) ⊗ s(y)] = Ed(x, y).

Remark 2.12. The kernelEd is also the kernel of the orthogonal projection ontoH0(X , E⊗Ld)
in Γ

(

E ⊗ Ld
)

for the Hermitian inner product (2.16), that is the Bergman kernel of E ⊗Ld.

As in section 2.4, let ∇RX denote the Levi-Civita connection on (RX , g). This connection
and ∇d induce the connection ∇RX ⊗ Id+ Id⊗∇d on T ∗(RX ) ⊗ (E ⊗ Ld). We denote by
∇2,d the second covariant derivative (∇RX ⊗ Id+ Id⊗∇d) ◦ ∇d.

Let x ∈ RX and let J k
x (E ⊗Ld) denote the space of real k-jets of real smooth sections of

E ⊗ Ld at x. On the space of smooth real sections of E ⊗ Ld we define

j1,dx : s 7→ (s(x),∇d
xs) and j2,dx : s 7→ (s(x),∇d

xs,∇2,d
x s),

where ∇d
xs and ∇2,d

x s are implicitly restricted to TxRX . These maps induce isomorphisms
from J 1

x (E ⊗Ld) to the image of j1,dx in R(E ⊗Ld)x ⊗ (R⊕ T ∗
xRX ) and from J 2

x (E ⊗Ld) to
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the image of j2,dx in R(E ⊗ Ld)x ⊗ (R ⊕ T ∗
xRX ⊕ Sym(T ∗

xRX )) respectively. Note that the
above isomorphisms are not canonical since they depend on the choice of ∇d.

We have the following equivalent of Lemma 2.4, with the same proof, and similar notations
for the partial covariant derivatives.

Lemma 2.13. Let Ed denote the Bergman kernel of RH0(X , E ⊗Ld) and let s be a standard

Gaussian vector in RH0(X , E ⊗Ld). Let x ∈ RX , then j2,dx (s) is a centered Gaussian vector,

and its variance form is characterized by:

Var (s(x)) = E[s(x)⊗ s(x)] = Ed(x, x),(2.21)

Var
(

∇d
xs
)

= E
[

∇d
xs⊗∇d

xs
]

= (∂x∂yEd)(x, x),(2.22)

Var
(

∇2,d
x s
)

= E
[

∇2,d
x s⊗∇2,d

x s
]

= (∂x,x∂y,yEd)(x, x),(2.23)

Cov
(

s(x),∇d
xs
)

= E
[

s(x)⊗∇d
xs
]

= (∂yEd)(x, x),(2.24)

Cov
(

s(x),∇2,d
x s

)

= E
[

s(x)⊗∇2,d
x s
]

= (∂y,yEd)(x, x),(2.25)

Cov
(

∇d
xs,∇2,d

x s
)

= E
[

∇d
xs⊗∇2,d

x s
]

= (∂x∂y,yEd)(x, x).(2.26)

3 Estimates for the covariance kernels

We state in this section the estimates for the kernels described above and their first and
second derivatives. These estimates will allow us to compute the limit distribution for the
random 2-jets induced by the Gaussian field (f(x))x∈M (resp. (s(x))x∈RX ).

In the case of the spectral function of the Laplacian eλ, the asymptotics of section 3.1
were established by Bin [3], extending results of Hörmander [20]. In the algebraic case,
Bleher, Shiffman and Zelditch used estimates for the related Szegö kernel, see [4, thm. 3.1].
In terms of the Bergman kernel, a similar result was established in [2]. Both these results
concern line bundles. Here, we establish the estimates we need for the Bergman kernel in the
case of a higher rank bundle using Hörmander–Tian peak sections (see sections 3.2 and 3.3
below).

3.1 The spectral function of the Laplacian

We consider the Riemannian setting of section 2.5. Let x ∈M and let (x1, . . . , xn) be normal
coordinates centered at x. Let (y1, . . . , yn) denote the same coordinates in a second copy
of M , so that (x1, . . . , xn, y1, . . . , yn) are normal coordinates around (x, x) ∈ M ×M . We
denote by ∂xi

(resp. ∂yi
) the partial derivative with respect to xi (resp. yi), and similarly

∂xi,xj
(resp. ∂yi,yj

) denotes the second derivative with respect to xi and xj (resp. yi and yj).
Let

γ0 =
1

(4π)
n
2 Γ
(

1 + n
2

) ,

γ1 =
1

2(4π)
n
2 Γ
(

2 + n
2

)

and

γ2 =
1

4(4π)
n
2 Γ
(

3 + n
2

) ,

where Γ is Euler’s gamma function. Let us recall the main theorem of [3].
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Theorem 3.1 (Bin). Let Vλ be as in section 2.5 and let eλ denote its Schwartz kernel. The

following asymptotics hold, uniformly in x ∈M , as λ→ +∞:

eλ(x, x) = γ0λ
n
2 +O

(

λ
n−1
2

)

,(3.1)

∂xi
eλ(x, x) = O

(

λ
n
2

)

,(3.2)

∂xi,xk
eλ(x, x) =











−γ1λ
n
2 +1+O

(

λ
n+1
2

)

if i = k,

O
(

λ
n+1
2

)

if i 6= k,
(3.3)

∂xi
∂yj

eλ(x, x) =











γ1λ
n
2 +1+O

(

λ
n+1
2

)

if i = j,

O
(

λ
n+1
2

)

if i 6= j,
(3.4)

∂xi,xk
∂yj

eλ(x, x) = O
(

λ
n
2 +1
)

,(3.5)

∂xi,xk
∂yj ,yl

eλ(x, x) =























3γ2λ
n
2 +2+O

(

λ
n+3
2

)

if i = j = k = l,

γ2λ
n
2 +2+O

(

λ
n+3
2

)

if i = j 6= k = l or i = k 6= j = l,

O
(

λ
n+3
2

)

otherwise.

(3.6)

Since eλ is symmetric, this also gives the asymptotics for ∂yj
eλ, ∂yj ,yl

eλ and ∂xi
∂yj ,yl

eλ
along the diagonal. This theorem, together with Lemma 2.6, gives the estimates we need for
the kernel Eλ of (Vλ)

r.
We will need the following relations:

γ0
γ1

= n+ 2 and
γ1
γ2

= n+ 4.(3.7)

3.2 Hörmander–Tian peak sections

We now recall the construction of Hörmander–Tian peak sections in the framework of sec-
tion 2.6. Let X be a complex projective manifold. Let E be a rank r holomorphic Hermitian
vector bundle and L be an ample holomorphic Hermitian line bundle, both defined over X .
We assume that X , E and L are endowed with compatible real structures, and that the
Kähler metric gC on X is induced by the curvature ω of L.

The goal of this subsection is to build, for every d large enough, a family of real sections
of E ⊗Ld with prescribed 2-jets at some fixed point x ∈ RX . Moreover, we want this family
to be orthonormal, up to an error that goes to 0 as d goes to infinity. Using these sections,
we will compute (in section 3.3 below) the asymptotics we need for the Bergman kernel.

Let x ∈ RX and (x1, . . . , xn) be real holomorphic coordinates centered at x and such
that ( ∂

∂x1
, . . . , ∂

∂xn
) is orthonormal at x. The next lemma is established in [15, lemma 3.3],

up to a factor π coming from different normalizations of the metric.

Lemma 3.2. There exists a real holomorphic frame ζ0 for L, defined over some neighborhood

of x, whose potential − ln(hL(ζ0, ζ0)) vanishes at x, where it reaches a local minimum with

Hessian gC.

We choose such a frame ζ0. Let (ζ1, . . . , ζr) be a real holomorphic frame for E over a
neighborhood of x, which is orthonormal at x. Since X is compact, we can find ρ > 0, not
depending on x, such that local coordinates and frames as above are defined at least on the
geodesic ball of radius ρ centered at x. The following results are proved in [16, section 2.3].
See also [14, section 2.2] and the paper by Tian [32, lemmas 1.2 and 2.3], without the higher
rank bundle E but with more details.
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Proposition 3.3. Let p = (p1, . . . , pn) ∈ Nn, m > p1 + · · ·+ pn and q ∈ {1, . . . , r}.
There exists d0 ∈ N such that, for any d > d0, there exist Cd,p > 0 and s ∈ RH0(X , E ⊗Ld)
such that ‖s‖ = 1 and

s(x1, . . . , xn) = Cd,p

(

xp1

1 · · ·xpn
n +O

(

‖(x1, . . . , xn)‖2m
))

(

1 +O
(

d−2m
))

ζq ⊗ ζd0

in some neighborhood of x, where the estimate O(d−2m) is uniform in x ∈ RX .

Moreover, d0 depends on m but does not depend on x, p, q or our choices of local coor-

dinates and frames. Finally, Cd,p is given by:

(Cd,p)
−2

=

∫

{

‖(x1,...,xn)‖6 ln(d)√
d

}

|xp1

1 · · ·xpn
n |2 hdL

(

ζd0 , ζ
d
0

)

dVX .

The following definitions use Proposition 3.3 with m = 3 and the corresponding d0.

Definitions 3.4. For any d > d0 and q ∈ {1, . . . , r} we denote the sections of RH0(X , E⊗Ld)
given by Proposition 3.3 by:

• sd,q0 for p1 = · · · = pn = 0,

• sd,qi for pi = 1 and ∀ k 6= i, pk = 0,

• sd,qi,i for pi = 2 and ∀ k 6= i, pk = 0,

• sd,qi,j for pi = pj = 1 and ∀ k /∈ {i, j}, pk = 0, when i < j.

Computing the values of the corresponding Cd,p (see [14, lemma 2.5]), we get the following
asymptotics as d goes to infinity. Once again, O(d−1) is uniform in x.

Lemma 3.5. For every q ∈ {1, . . . , r}, we have:

sd,q0 =

√

dn

πn

(

1 +O
(

‖(x1, . . . , xn)‖6
))

(

1 +O
(

d−1
))

ζq ⊗ ζd0 ,(3.8)

∀i ∈ {1, . . . , n}, sd,qi =

√

dn+1

πn

(

xi +O
(

‖(x1, . . . , xn)‖6
))

(

1 +O
(

d−1
))

ζq ⊗ ζd0 ,(3.9)

∀i ∈ {1, . . . , n}, sd,qi,i =

√

dn+2

πn

(

x2i√
2
+O

(

‖(x1, . . . , xn)‖6
)

)

(

1 +O
(

d−1
))

ζq ⊗ ζd0 ,

(3.10)

and finally, ∀i, j ∈ {1, . . . , n} such that i < j,

sd,qi,j =

√

dn+2

πn

(

xixj +O
(

‖(x1, . . . , xn)‖6
))

(

1 +O
(

d−1
))

ζq ⊗ ζd0 .(3.11)

Remark 3.6. These values differ from the one given in [16, lemma 2.3.5] by a factor
(∫

X dVX
)

1
2

and some power of
√
π because we do not use the same normalization for the volume form.

For the same reason they also differ from [32, lemma 2.3] by a factor π
n
2 .

The sections defined in Definition 3.4 are linearly independent, at least for d large enough.
In fact, they are asymptotically orthonormal in the following sense. Let Hd

2,x ⊂ RH0(X , E ⊗
Ld) denote the subspace of sections that vanish up to order 2 at x.

Lemma 3.7. The sections (sd,qi )16q6r
06i6n

and (sd,qi,j ) 16q6r
16i6j6n

defined in Definition 3.4 have L2-

norm equal to 1 and their pairwise scalar product is dominated by a O(d−1) independent

of x. Moreover, their scalar product with any unit element of Hd
2,x is dominated by some

O(d−1) not depending on x.
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3.3 The Bergman kernel

In this section we compute some asymptotics for the Bergman kernel and its derivatives.
Let x ∈ RX and let (x1, . . . , xn) be real holomorphic coordinates around x such that
( ∂
∂x1

, . . . , ∂
∂xn

) is orthonormal at x. We denote by (y1, . . . , yn) the same coordinates as
(x1, . . . , xn) in a second copy of X . Let ζ0 be a real holomorphic frame for L given by
Lemma 3.2 and (ζ1, . . . , ζr) be a real holomorphic frame for E that is orthonormal at x. For
simplicity, we set ζdp = ζp(x)⊗ ζd0 (x) for every p ∈ {1, . . . , r} and d ∈ N, so that (ζd1 , . . . , ζ

d
r )

is an orthonormal basis of R(E ⊗ Ld)x.
Let ∇d be any real connection on E ⊗Ld such that, for every p ∈ {1, . . . , r}, ∇d(ζp ⊗ ζd0 )

vanishes in a neighborhood of x. In this neighborhood, we have for every function f :

∇d(fζp ⊗ ζd0 ) = df ⊗ ζp ⊗ ζd0 and ∇2,d(fζp ⊗ ζd0 ) = ∇2f ⊗ ζp ⊗ ζd0 ,(3.12)

where ∇2,d stands for the associated second covariant derivative, as in section 2.6. This
choice of connection may seem restrictive but the quantity we want to compute do not
depend on a choice of connection so that we can choose one that suits us.

As usual, ∇d induces a connection on (E ⊗ Ld)⊠ (E ⊗Ld). We denote by ∂dxi
and ∂dyi

the

partial covariant derivatives with respect to xi and yi respectively. We also denote by ∂dxi,xj

(resp. ∂dyi,yj
) the second derivative with respect to xi and xj (resp. yi and yj).

Proposition 3.8. The following asymptotics hold as d → +∞. They are independent of

x ∈ RX and of the choice of the holomorphic frame (ζ1, . . . , ζr).

〈

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

=







dn

πn
+O

(

dn−1
)

if p = p′,

O
(

dn−1
)

otherwise,

(3.13)

〈

∂dxi
Ed(x, x) , ζ

d
p ⊗ ζdp′

〉

= O
(

dn−
1
2

)

,(3.14)
〈

∂dxi,xk
Ed(x, x) , ζ

d
p ⊗ ζdp′

〉

= O(dn) ,(3.15)

〈

∂dxi
∂dyj

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

=







dn+1

πn
+O(dn) if p = p′ and i = j,

O(dn) otherwise,

(3.16)

〈

∂dxi,xk
∂dyj

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

= O
(

dn+
1
2

)

,(3.17)

(3.18)

〈

∂dxi,xk
∂dyj ,yl

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

=



































2
dn+2

πn
+O

(

dn+1
)

if p = p′ and i = j = k = l,

dn+2

πn
+O

(

dn+1
)

if p = p′ and i = j 6= k = l,

or if p = p′ and i = l 6= k = j,

O
(

dn+1
)

otherwise.

Remark 3.9. Since RH0(X , E ⊗Ld) is not a product space, the terms with p 6= p′ are usually
not zero. However they are zero when E is trivial, for example.

Corollary 3.10. For every d large enough, RH0(X , E ⊗ Ld) is 0-ample.

Proof of Corollary 3.10. Let x ∈ RX . By (3.13), the matrix of Ed(x, x) in any orthonormal
basis of R(E ⊗L)x is

(

d
π

)n
Ir
(

1 +O
(

d−1
))

, where Ir stands for the identity matrix of size r.
Then Ed(x, x) is positive-definite for d larger than some d0 independent of x. By Lemma 2.10,
RH0(X , E ⊗ Ld) is 0-ample for d > d0.
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Proof of Proposition 3.8. First we build an orthonormal basis of RH0(X , E⊗Ld) by applying
the Gram–Schmidt process to the family of peak sections. Then we use formula (2.20) and
the asymptotics of Lemma 3.5 to prove the proposition.

We order the sections of Definition 3.4 as follows:

(3.19)

sd,10 , . . . , sd,r0 , sd,11 , . . . , sd,r1 , . . . , sd,1n , . . . , sd,rn , sd,11,1, . . . , s
d,r
1,1, s

d,1
2,2, . . . , s

d,r
2,2, . . . , s

d,1
n,n, . . . , s

d,r
n,n,

sd,11,2, . . . , s
d,r
1,2, s

d,1
1,3, . . . , s

d,r
1,3, . . . , s

d,1
1,n, . . . , s

d,r
1,n, s

d,1
2,3, . . . , s

d,r
2,3, . . . , s

d,1
n−1,n, . . . , s

d,r
n−1,n.

This family is linearly independent for d large enough and spans a space whose direct sum
with Hd

2,x is RH0(X , E ⊗ Ld). We complete it into a basis B of RH0(X , E ⊗ Ld) by adding

an orthonormal basis of Hd
2,x at the end of the previous list.

We apply the Gram–Schmidt process to B, starting by the last elements and going
backwards. Let B̃ denote the resulting orthonormal basis, and s̃d,10 , . . . , s̃d,rn , s̃d,11,1, . . . , s̃

d,r
n−1,n

denote its first elements. This way, s̃d,rn−1,n is a linear combination of sd,rn−1,n and elements

of Hd
2,x, and s̃d,10 is a linear combination of (possibly) all elements of B. We denote by

(bi)16i6 r(n+1)(n+2)
2

the first elements of B listed above (3.19) and by (b̃i) the corresponding

elements of B̃.
Let i ∈

{

1, . . . , r(n+1)(n+2)
2

}

and assume that for any k 6 i and any j > i we have
〈

bk , b̃j

〉

= O
(

d−1
)

. Note that this is the case for i = r
2 (n+ 1)(n+ 2). Then,

(3.20) b̃i =

bi −
∑

j>i

〈

bi , b̃j

〉

b̃j − πi

∥

∥

∥

∥

∥

∥

bi −
∑

j>i

〈

bi , b̃j

〉

b̃j − πi

∥

∥

∥

∥

∥

∥

where πi stands for the projection of bi ontoH
d
2,x. By Lemma 3.7, ‖πi‖2 = 〈bi , πi〉 = O

(

d−1
)

.

Then by our hypothesis
∥

∥

∥bi −
∑

j>i

〈

bi , b̃j

〉

b̃j − πi

∥

∥

∥

2

= 1+O
(

d−1
)

. Using Lemma 3.7 and

the above hypothesis once again, we get:

〈

bk , b̃i

〉

=
(

1 +O
(

d−1
))



〈bk , bi〉 −
∑

j>i

〈

bk , b̃j

〉〈

bi , b̃j

〉

− 〈bk , πi〉



 = O
(

d−1
)

,

for any k < i. By induction, for any 1 6 i < j 6
r(n+1)(n+2)

2 ,
〈

bi , b̃j

〉

= O
(

d−1
)

. Then,

using (3.20), for any i ∈
{

1, . . . , r(n+1)(n+2)
2

}

,

b̃i =



bi +O
(

d−1
)

∑

j>i

b̃j − πi





(

1 +O
(

d−1
))

.

Another induction gives:

(3.21) b̃i =



bi +O(d−1)
∑

j>i

bj + π̃i





(

1 +O
(

d−1
))

,

for any i, where π̃i ∈ Hd
2,x is such that ‖π̃i‖2 = O

(

d−1
)

. Moreover, all the estimates are

independent of x and i ∈
{

1, . . . , r(n+1)(n+2)
2

}

.
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Among the elements of B̃, only s̃d,10 , . . . , s̃d,r0 do not vanish at x. Using formula (2.20),

we get Ed(x, x) =
∑

16q6r

s̃d,q0 (x) ⊗ s̃d,q0 (x). Then,

〈

Ed(x, x) , ζ
d
p ⊗ ζdp′

〉

=

r
∑

q=1

〈

s̃d,q0 (x) , ζdp

〉〈

s̃d,q0 (x) , ζdp′

〉

.

Recall that b̃0 = s̃d,10 , . . . , b̃r = s̃d,r0 . Because of (3.21), for all q ∈ {1, . . . , r},

(3.22)

〈

s̃d,q0 (x) , ζdp

〉

=
〈

sd,q0 (x) , ζdp

〉

+O
(

d−1
)





r
∑

q′=1

〈

sd,q
′

0 (x) , ζdp

〉





=











(

d

π

)
n
2
(

1 +O
(

d−1
))

if p = q,

O
(

d
n
2 −1
)

otherwise,

where the last equality comes from equation (3.8). This establishes (3.13).
Likewise,

〈

∂dxi
Ed(x, x) , ζ

d
p ⊗ ζdp′

〉

=

〈

∑

16q6r

∂dxi
s̃d,q0 (x)⊗ s̃d,q0 (x) , ζdp ⊗ ζdp′

〉

=
∑

16q6r

〈

∂dxi
s̃d,q0 (x) , ζdp

〉〈

s̃d,q0 (x) , ζdp′

〉

.

The description (3.21) shows that ∂dxi
s̃d,q0 (x) does not necessarily vanish, but it equals:

O
(

d−1
)

∑

16q′6r
16j6n

∂dxi
sd,q

′

j (x).

By (3.9), one gets that
〈

∂dxi
s̃d,q0 (x) , ζdp

〉

= O
(

d
n−1
2

)

, for all p and q. Besides by (3.22),
〈

s̃d,q0 (x) , ζdp

〉

= O
(

d
n
2

)

for all p and q. This proves (3.14).

The remaining estimates can be proved in the same way, using Lemma 3.5 and the fact
that the estimates for corresponding elements of B̃ and B are the same.

4 An integral formula for the Euler characteristic of a

submanifold

The goal of this section is to derive an integral formula for the Euler characteristic of a
submanifold defined as the zero set of some f : M → Rr, in terms of f and its derivatives.
This section is independent of the previous ones and the results it contains are only useful
for computing expected Euler characteristics (Theorems 1.2 and 1.4).

We start by recalling the formalism of double forms, which was already used in this
context by Taylor and Adler, see [31, section 7.2]. The Riemann curvature tensor and the
second fundamental form of a submanifold being naturally double forms, this provides a
useful way to formulate the Chern–Gauss–Bonnet theorem and the Gauss equation. This is
done in sections 4.2 and 4.3 respectively. Finally, we express the second fundamental form
of a submanifold in terms of the derivatives of a defining function and prove the desired
integral formula in section 4.4.
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4.1 The algebra of double forms

We follow the exposition of [31, pp. 157–158]. Let V be a real vector space of dimension n.
For p and q ∈ {0, . . . , n} we denote by

∧p,q
(V ∗) the space

∧p
(V ∗)⊗∧q

(V ∗) of (p+ q)-linear
forms on V that are skew-symmetric in the first p and in the last q variables. The space of

double forms on V is:

(4.1)
∧•

(V ∗)⊗∧•
(V ∗) =

⊕

06p,q6n

∧p,q
(V ∗).

Elements of
∧p,q(V ∗) are called (p, q)-double forms, or double forms of type (p, q). We set:

(4.2)
∧•,•

(V ∗) =
n
⊕

p=0

∧p,p
(V ∗).

Note that
∧1,1 V ∗ is the space of bilinear forms on V .

On
∧•

(V ∗)⊗∧•
(V ∗) we can define a double wedge product. It extends the usual wedge

product on
∧•

(V ∗) ≃⊕n
p=0

∧p,0
(V ∗), so we simply denote it by ∧. For pure tensors α⊗ β

and α′ ⊗ β′ ∈ ∧•
(V ∗)⊗∧•

(V ∗), we set:

(4.3) (α⊗ β) ∧ (α′ ⊗ β′) = (α ∧ α′)⊗ (β ∧ β′)

and we extend ∧ to all double forms by bilinearity. This makes
∧•

(V ∗) ⊗∧•
(V ∗) into an

algebra, of which
∧•,•

(V ∗) is a commutative subalgebra. We denote by γ∧k the double
wedge product of a double form γ ∈ ∧•,•

(V ∗) with itself k times.

Lemma 4.1. Let α be a symmetric (1, 1)-double form on V , then for every x, y, z and w ∈ V ,

α∧2((x, y), (z, w)) = 2 (α(x, z)α(y, w) − α(x,w)α(y, z)) .

Proof. Let (e1, . . . , en) be a basis of V and (e∗1, . . . , e
∗
n) its dual basis. We have:

α =
∑

16i,k6n

αike
∗
i ⊗ e∗k and then α∧2 =

∑

16i,j,k,l6n

αikαjl(e
∗
i ∧ e∗j )⊗ (e∗k ∧ e∗l ).

Note that we do not restrict ourselves to indices satisfying i < j and k < l as is usually
the case with skew-symmetric forms. By multilinearity, it is sufficient to check the result on
elements of the basis. Let i, j, k and l ∈ {1, . . . , n}, then

α∧2((ei, ej), (ek, el)) = αikαjl − αjkαil − αilαjk + αjlαik

= 2(αikαjl − αilαjk) (since α is symmetric)

= 2(α(ei, ek)α(ej , el)− α(ei, el)α(ej , ek)).

We can consider random vectors in spaces of double forms. The following technical result
will be useful in the proofs of Theorems 1.2 and 1.4. See [31, lemma 12.3.1] for a proof.

Lemma 4.2. Let V be a vector space of finite dimension n. Let α be a Gaussian vector in
∧1,1 V ∗. If α is centered, then for any p 6 n

2 ,

E
[

α∧2p
]

=
(2p)!

2pp!

(

E
[

α∧2
])∧p

.
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Assume now that V is endowed with an inner product. It induces a natural inner product
on
∧•

(V ∗) such that, if (e1, . . . , en) is an orthonormal basis of V ,

{

e∗i1 ∧ · · · ∧ e∗ip
∣

∣

∣ 1 6 p 6 n and 1 6 i1 < i2 < · · · < ip 6 n
}

is an orthonormal basis of
∧•

(V ∗). We define the trace operator Tr on
∧•,•

(V ∗) in the
following way. If α⊗ β ∈ ∧•,•

(V ∗) is a pure tensor, then:

(4.4) Tr(α ⊗ β) = 〈α , β〉

and we extend Tr to
∧•,•

(V ∗) by linearity.
Let M be a smooth manifold of dimension n. Applying the previous construction point-

wise to TxM , we define the vector bundle
∧•

(T ∗M) ⊗ ∧•
(T ∗M) on M . Sections of this

bundle are called differential double forms on M , and we can take the double wedge product
of two such sections. Finally, if M is equipped with a Riemannian metric, we have a trace
operator Tr which is defined pointwise by (4.4). This operator is C∞(M)-linear and takes
sections of the subbundle

∧•,•(T ∗M) =
⊕n

p=0

∧p,p(T ∗M) to smooth functions.

4.2 The Chern–Gauss–Bonnet theorem

Let (M, g) be a closed smooth Riemannian manifold of dimension n. We denote by ∇M the
Levi-Civita connection of M , and by κ its curvature operator. That is κ is the 2-form on M
with values in the bundle End(TM) = TM ⊗ T ∗M defined by:

κ(X,Y )Z = ∇M
X ∇M

Y Z −∇M
Y ∇M

X Z −∇M
[X,Y ]Z

for any vector fields X , Y and Z. Here [X,Y ] is the Lie bracket of X and Y .
We denote by R the Riemann curvature tensor of M , defined by:

R(X,Y, Z,W ) = g(κ(X,Y )W,Z),

for any vector fields X , Y , Z and W on M . This defines a four times covariant tensor on M
which is skew-symmetric in the first two and in the last two variables, hence R can naturally
be seen as a (2, 2)-double form. All this is standard material, except for the very last point,
see for example [21, section 3.3].

We now state the Chern–Gauss–Bonnet theorem in terms of double forms. Recall that
|dVM | denotes the Riemannian measure on M (see (2.1)).

Theorem 4.3 (Chern–Gauss–Bonnet). Let M be a closed Riemannian manifold of even

dimension n. Let R denote its Riemann curvature tensor and χ(M) denote its Euler char-

acteristic. We have:

χ (M) =
1

(2π)
n
2

(

n
2

)

!

∫

M

Tr
(

R∧n
2

)

|dVM | .

If M is orientable, this can be deduced from Atiyah-Singer’s index theorem. The general
case is treated in [27]. The above formula in terms of double forms can be found in [31,
thm. 12.6.18], up to a sign coming from different sign conventions in the definition of R.

Remark 4.4. If M is a closed manifold of odd dimension then χ(M) = 0, see [18, cor. 3.37].

4.3 The Gauss equation

Let (M, g) be a smooth Riemannian manifold of dimension n and M̃ be a smooth submanifold
ofM of codimension r ∈ {1, . . . , n−1}. We denote by∇M and ∇̃ the Levi-Civita connections
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on M and M̃ respectively. Likewise, we denote by R and R̃ their Riemann curvature tensor.
We wish to relate R and R̃. This is done by the Gauss equation, see Proposition 4.5 below.

We denote by II the second fundamental form of M̃ ⊂M which is defined as the section
of T⊥M̃ ⊗ T ∗M̃ ⊗ T ∗M̃ satisfying:

(4.5) II(X,Y ) = −
(

∇M
X Y − ∇̃XY

)

= −
(

∇M
X Y

)⊥

for any vector fields X and Y on M̃ . Here,
(

∇M
X Y

)⊥
stands for the orthogonal projection

of ∇M
X Y on T⊥M̃ . It is well-known that II is symmetric in X and Y , see [21, lemma 3.6.2].
The second fundamental form encodes the difference between R̃ and R in the following

sense, see [21, thm. 3.6.2].

Proposition 4.5 (Gauss equation). Let X, Y , Z and W be vector fields on M̃ , then:

R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + 〈II(X,Z) , II(Y,W )〉 − 〈II(X,W ) , II(Y, Z)〉 .

We want to write this Gauss equation in terms of double forms. Let x ∈ M̃ and X , Y ,
Z and W ∈ TxM̃ . Let U ∼ N (0, Id) in TxM , by Lemma A.8:

〈II(X,Z) , II(Y,W )〉 − 〈II(X,W ) , II(Y, Z)〉
= E[〈II(X,Z) , U〉 〈II(Y,W ) , U〉 − 〈II(X,W ) , U〉 〈II(Y, Z) , U〉] .

Then we apply Lemma 4.1 to the symmetric (1, 1)-double form 〈II , U〉 for fixed U . This
gives:

〈II(X,Z) , II(Y,W )〉 − 〈II(X,W ) , II(Y, Z)〉 = 1

2
E
[

〈II , U〉∧2
((X,Y ), (Z,W ))

]

.

We proved the following version of the Gauss equation.

Proposition 4.6 (Gauss equation). Let (M, g) be a Riemannian manifold and let M̃ be

a smooth submanifold of M , such that dim(M) > dim(M̃) > 1. Let R and R̃ denote the

Riemann curvature of M and M̃ respectively, and let II be the second fundamental form of

M̃ ⊂M . Then, in the sense of double forms:

∀x ∈ M̃, R̃(x) = R(x) +
1

2
E
[

〈II(x) , U〉∧2
]

,

where U ∼ N (0, Id) with values in TxM , and R(x) is implicitly restricted to TxM̃ .

4.4 An expression for the second fundamental form

Let us now express the second fundamental form II of a submanifold M̃ of M defined as the
zero set of a smooth map f :M → Rr. For this we need some further definitions.

Let V and V ′ be two Euclidean spaces of dimension n and r respectively. Let L : V → V ′

be a linear surjection, then the adjoint operator L∗ is injective and its image is ker(L)⊥, so
that LL∗ is invertible.

Definition 4.7. Let L : V → V ′ be a surjection, the pseudo-inverse (or Moore–Penrose

inverse) of L is defined as L† = L∗(LL∗)−1 from V ′ to V .

The map L† is the inverse of the restriction of L to ker(L)⊥. It is characterized by the fact
that LL† is the identity map of V ′ and L†L is the orthogonal projection onto ker(L)⊥.

Let f : M → Rr be a smooth submersion and assume that M̃ = f−1(0). Recall that
∇2f = ∇Mdf .
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Lemma 4.8. Let M be a Riemannian manifold and let M̃ ⊂ M be a submanifold of M
defined as the zero set of the smooth submersion f : M → Rr. Let II denote the second

fundamental form of M̃ ⊂M . Then,

∀x ∈ M̃, II(x) = (dxf)
† ◦ ∇2

xf,

where ∇2
xf is implicitly restricted to TxM̃ .

Proof. Let x ∈ M̃ , since II(x) and (dxf)
† take values in TxM̃

⊥ = ker(dxf)
⊥, we only need

to prove that dxf ◦ II(x) = ∇2
xf . Let X and Y be two vector fields on M̃ . The map df · Y

vanishes uniformly on M̃ , hence:

dx(df · Y ) ·X = (∇M
X df)x · Y + dxf · (∇M

X Y ) = 0.

Then, using equation (4.5) and ker(dxf) = TxM̃ ,

(dxf ◦ II(x))(X,Y ) = −dxf · (∇M
X Y )⊥ = −dxf · (∇M

X Y ) = (∇M
X df)x · Y = ∇2

xf(X,Y ).

Proposition 4.9. Let (M, g) be a closed Riemannian manifold of dimension n and R its

Riemann curvature. Let f :M → Rr be a smooth submersion and Zf = f−1(0). We denote

by |dVf | the Riemannian measure on Zf and by Rf its Riemann curvature.

If n− r is even, the Euler characteristic of Zf is:

(4.6) χ(Zf ) =
1

(2π)mm!

∫

x∈Zf

Tr (Rf (x)
∧m) |dVf | ,

where m = n−r
2 . Furthermore, for all x ∈ Zf ,

(4.7) Rf (x) = R(x) +
1

2
E
[

〈

∇2
xf , (dxf)

†∗(U)
〉∧2
]

,

where U is a standard Gaussian vector in TxM .

Proof. First, we apply the Chern–Gauss–Bonnet theorem 4.3 to Zf , which gives (4.6). Then
let x ∈ Zf and U ∼ N (0, Id) in TxM , by Proposition 4.6,

Rf (x) = R(x) +
1

2
E
[

〈IIf (x) , U〉∧2
]

,

where IIf is the second fundamental form of Zf ⊂M . We conclude by Lemma 4.8.

Proposition 4.9 is also true for zero sets of sections. Let s be a section of some rank r
vector bundle over M that vanishes transversally and Zs be its zero set. Let |dVs| denote
the Riemannian measure on Zs and Rs denote its Riemann tensor. As above, we can apply
Theorem 4.3, so that:

(4.8) χ(Zs) =
1

(2π)mm!

∫

x∈Zs

Tr (Rs(x)
∧m) |dVs| .

The result of Proposition 4.6 is still valid for Zs. Besides, the same proof as in Lemma 4.8
shows that, for any connection ∇d, the second fundamental form IIs of Zs satisfies:

∀x ∈ Zs, IIs(x) = (∇d
xs)

† ◦ ∇2,d
x s.

Remark 4.10. This is not surprising since the terms of this equality do not depend on a
choice of connection and the result in a trivialization is given by Lemma 4.8.

Finally, for every connection ∇d and every x ∈ Zs, we get:

(4.9) Rs(x) = R(x) +
1

2
E
[

〈

∇2,d
x s , (∇d

xs)
†∗(U)

〉∧2
]

,

where U is a standard Gaussian vector in TxM , as in (4.7).
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5 Proofs of the main theorems

We now set to prove the main theorems. The proofs will be detailed in the Riemannian case
but only sketched in the real algebraic one, since they are essentially the same.

5.1 The Kac–Rice formula

First, we state the celebrated Kac–Rice formula, which is one of the key ingredients in
our proofs. This formula is proved in [5, thm. 4.2], see also [1, chap. 6]. For the reader’s
convenience, we include a proof in Appendix C.

Definition 5.1. Let L : V → V ′ be a linear map between Euclidean vector spaces. We
denote by

∣

∣det⊥ (L)
∣

∣ the orthogonal determinant of L:

∣

∣det⊥ (L)
∣

∣ =
√

det(LL∗),

where L∗ : V ′ → V is the adjoint operator of L.

Remark 5.2. If L is not onto then
∣

∣det⊥ (L)
∣

∣ = 0. Else, let A be the matrix of the restriction of

L to ker(L)⊥ in any orthonormal basis of ker(L)⊥ and V ′, then we have
∣

∣det⊥ (L)
∣

∣ = |det(A)|.
As in section 2, we consider a closed Riemannian manifold M of dimension n and a

subspace V ⊂ C∞(M,Rr) of dimension N (recall that 1 6 r 6 n). We assume that V is
0-ample, in the sense of section 2.2, so that

Σ = {(f, x) ∈ V ×M | f(x) = 0}

is a submanifold of codimension r of V ×M . Let f be a standard Gaussian vector in V . Then
Zf is almost surely a smooth submanifold of codimension r of M (see section 2.2). Recall
that E denotes both the Schwartz kernel of V and the covariance function of (f(x))x∈M .

Theorem 5.3 (Kac–Rice formula). Let φ : Σ → R be a Borel measurable function, then

E

[

∫

x∈Zf

φ(f, x) |dVf |
]

=
1

(2π)
r
2

∫

x∈M

1
√

detE(x, x)
E
[

φ(f, x)
∣

∣det⊥ (dxf)
∣

∣

∣

∣

∣ f(x) = 0
]

|dVM | ,

whenever one of these integrals is well-defined.

The expectation on the right-hand side is to be understood as the conditional expectation
of φ(f, x)

∣

∣det⊥ (dxf)
∣

∣ given f(x) = 0. By det(E(x, x)), we mean the determinant of the
matrix of the bilinear form E(x, x) in any orthonormal basis of Rr.

5.2 Proof of Theorem 1.1

We start with the expectation of the volume, which is the toy-model for this kind of compu-
tations. In this case, the proof is closely related to [4, 5], in a slightly different setting. The
first step is to apply Kac–Rice formula above with φ : (f, x) 7→ 1. We get:

(5.1) E[Vol (Zf )] =
1

(2π)
r
2

∫

x∈M

1
√

det(E(x, x))
E
[

∣

∣det⊥ (dxf)
∣

∣

∣

∣

∣ f(x) = 0
]

|dVM | .

Let x ∈ M , then j1x(f) = (f(x), dxf) is a Gaussian vector in Rr ⊗ (R ⊕ T ∗
xM) whose

distribution only depends on the values of E and its derivatives at (x, x), see Lemma 2.4.
Thus E[Vol (Zf )] will only depend on the values of E and its derivatives along the diagonal
as was expected from [4, thm. 2.2].
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The next step is to compute pointwise asymptotics for the integrand on the right-hand
side of (5.1). We will use Lemma 2.4, which describes the distribution of j1x(f), and the
estimates of section 3. Both in the Riemannian and the algebraic settings, the pointwise
asymptotic turns out to be universal: it does not depend on x or even on the ambient
manifold. This is because the distribution of j1x(f) is determined by the asymptotics of
section 3 which are universal.

We now specify to the case of Riemannian random waves (see section 2.5), that is
V = (Vλ)

r for some non-negative λ. Recall that (Vλ)
r is 0-ample (Lemma 2.7) so that

equation (5.1) is valid in this case. Let x ∈M , by Lemma 2.6 and (3.1) we have:

(5.2) det (Eλ(x, x)) = (eλ(x, x))
r =

(

γ0λ
n
2

)r
(

1 +O
(

λ−
1
2

))

.

Then we want to estimate the conditional expectation in (5.1). Before going further, the
asymptotics of section 3.1 suggest to consider the scaled variables:

(5.3) (tλ, Lλ) =

(

1
√
γ0λ

n
4
f(x),

1
√
γ1λ

n+2
4

dxf

)

instead of j1x(f). This is a centered Gaussian vector whose variance is determined by (5.3).
Besides, by Definition 5.1, the orthogonal determinant is homogeneous of degree r for linear
maps taking values in Rr, so that:

(5.4) E
[

∣

∣det⊥ (dxf)
∣

∣

∣

∣

∣ f(x) = 0
]

= (γ1)
r
2 λ

r(n+2)
4 E

[

∣

∣det⊥ (Lλ)
∣

∣

∣

∣

∣ tλ = 0
]

.

Lemma 5.4. For every x ∈M , we have:

E
[

∣

∣det⊥ (Lλ)
∣

∣

∣

∣

∣ tλ = 0
]

= (2π)
r
2
Vol (Sn−r)

Vol (Sn)

(

1 +O
(

λ−
1
2

))

,

where the error term does not depend on the point x ∈M .

We postpone the proof of this lemma for now and conclude the proof of Theorem 1.1.
By (5.2), (5.4) and Lemma 5.4, for every x ∈M ,

1

(2π)
r
2

√

det(E(x, x))
E
[

∣

∣det⊥ (dxf)
∣

∣

∣

∣

∣ f(x) = 0
]

=

(

γ1
γ0
λ

)
r
2 Vol (Sn−r)

Vol (Sn)

(

1 +O
(

λ−
1
2

))

,

where the error term does not depend on the point x ∈M . By (3.7) this equals:

(

λ

n+ 2

)
r
2 Vol (Sn−r)

Vol (Sn)

(

1 +O
(

λ−
1
2

))

.

Plugging this into equation (5.1) gives Theorem 1.1.

Remark 5.5. The same proof shows that, for any continuous function φ :M → R, we have:

E

[

∫

Zf

φ |dVf |
]

=

(

λ

n+ 2

)
r
2
(∫

M

φ |dVM |
)

Vol (Sn−r)

Vol (Sn)
+O(λ

r−1
2 ).

Hence,
(

n+ 2

λ

)
r
2

E[|dVf |] −−−−−→
λ→+∞

Vol (Sn−r)

Vol (Sn)
|dVM |

in the sense of the weak convergence of measures.
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We still have to prove Lemma 5.4. For this, we need to compute the variance of Lλ given
tλ = 0. Let (x1, . . . , xn) be normal coordinates centered at x, and (ζ1, . . . , ζr) denote the
canonical basis of Rr. We equip Rr ⊗ (R⊕ T ∗

xM) with the orthonormal basis:

(5.5) (ζ1, . . . , ζr, ζ1 ⊗ dx1, . . . , ζ1 ⊗ dxn, ζ2 ⊗ dx1, . . . , ζ2 ⊗ dxn, . . . , ζr ⊗ dx1, . . . , ζr ⊗ dxn).

Let Λ(λ) denote the matrix of Var(tλ, Lλ) in this basis. This matrix splits as

(5.6) Λ(λ) =

(

Λ00(λ) Λ01(λ)
Λ10(λ) Λ11(λ)

)

,

where Λ00(λ) and Λ11(λ) are the matrices of Var(tλ) and Var(Lλ) and Λ01(λ) =
tΛ10(λ) is

the matrix of Cov(tλ, Lλ). We can decompose further Λ10 and Λ11 into blocks of size r × r:

Λ10(λ) =
(

Λi
10(λ)

)

16i6n
, Λ11(λ) =

(

Λi,j
11 (λ)

)

16i,j6n
.(5.7)

By the Definition (5.3) of (tλ, Lλ), these blocks are obtained by scaling the corresponding
blocks in the matrix of Var(j1x(f)). Lemmas 2.4 and 2.6 tell us that each one of these blocks
is a scalar matrix. Then, using the estimates of section 3.1:

Λ00(λ) =
eλ(x, x)

γ0λ
n
2

Ir = Ir +O
(

λ−
1
2

)

,(5.8)

∀i ∈ {1, . . . , n}, Λi
10(λ) =

∂xi
eλ(x, x)

√
γ0γ1λ

n+1
2

Ir = O
(

λ−
1
2

)

,(5.9)

and ∀i, j ∈ {1, . . . , n}, Λi,j
11 (λ) =

∂xi
∂yj

eλ(x, x)

γ1λ
n
2 +1

Ir =











Ir +O
(

λ−
1
2

)

if i = j,

O
(

λ−
1
2

)

otherwise,

(5.10)

where Ir stands for the identity matrix of size r. Thus Λ(λ) = Ir(n+1) + O
(

λ−
1
2

)

and, by

Corollary A.11, the distribution of Lλ conditioned on tλ = 0 is a centered Gaussian with

variance operator Λ̃(λ) = Id+O
(

λ−
1
2

)

. Note that these estimates do not depend on x or

our choices of coordinates.

Proof of Lemma 5.4. Let L̃λ ∼ N (0, Λ̃(λ)) in Rr ⊗ T ∗
xM . For λ large enough, Λ̃(λ) is non-

singular, and we have:

(5.11) E
[

∣

∣det⊥ (Lλ)
∣

∣

∣

∣

∣ tλ = 0
]

= E
[∣

∣

∣det⊥
(

L̃λ

)∣

∣

∣

]

=
1

(2π)
nr
2

√

det(Λ̃(λ))

∫

∣

∣det⊥ (L)
∣

∣ exp

(

−1

2

〈

Λ̃(λ)−1L ,L
〉

)

dL,

where dL stands for the Lebesgue measure on Rr ⊗ T ∗
xM . Beware that we see L as a linear

map in the term
∣

∣det⊥ (L)
∣

∣ but as a vector in Λ̃(λ)−1L. The latter is not a composition.

Then Λ̃(λ) = Id+O
(

λ−
1
2

)

, so that
∥

∥

∥
Λ̃(λ)−1 − Id

∥

∥

∥
is bounded by C√

λ
for some positive

C. Hence, for all L ∈ Rr ⊗ T ∗
xM ,

∣

∣

∣

〈(

Λ̃(λ)−1 − Id
)

L ,L
〉∣

∣

∣ 6
C√
λ
‖L‖2 ,
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and by the mean value theorem,

∣

∣

∣

∣

exp

(

−1

2

〈(

Λ̃(λ)−1 − Id
)

L ,L
〉

)

− 1

∣

∣

∣

∣

6
C

2
√
λ
‖L‖2 exp

(

C

2
√
λ
‖L‖2

)

.

Then,

(5.12)

∣

∣

∣

∣

∣

∫

∣

∣det⊥ (L)
∣

∣

(

exp

(

−1

2

〈

Λ̃(λ)−1L ,L
〉

)

− exp

(

−‖L‖2
2

))

dL

∣

∣

∣

∣

∣

6
C

2
√
λ

∫

∣

∣det⊥ (L)
∣

∣ ‖L‖2 exp
(

−‖L‖2
2

(

1− C√
λ

)

)

dL.

The integral on the right-hand side of (5.12) converges to some finite limit as λ → +∞ by
Lebesgue’s dominated convergence theorem, so that:

(5.13)

∫

∣

∣det⊥ (L)
∣

∣ exp

(

−1

2

〈

Λ̃(λ)−1L ,L
〉

)

dL =

∫

∣

∣det⊥ (L)
∣

∣ e−
1
2‖L‖2

dL+O
(

λ−
1
2

)

.

Since det
(

Λ̃(λ)
)

= 1 +O
(

λ−
1
2

)

, by (5.11), (5.13) we have:

E
[

∣

∣det⊥ (Lλ)
∣

∣

∣

∣

∣ tλ = 0
]

= E
[∣

∣det⊥ (L)
∣

∣

]

+O
(

λ−
1
2

)

,

where L is a standard Gaussian vector in Rr ⊗ T ∗
xM . The result of the lemma is given by

Lemma A.14.

5.3 Proof of Theorem 1.3

We now consider the real algebraic setting described in section 2.6. The proof goes along the
same lines as above. Recall that X is a complex projective manifold of dimension n, equipped
with a rank r holomorphic vector bundle E and an ample holomorphic line bundle L, and
that X , E and L are endowed with compatible real structures. We are interested in the
volume of the real zero set Zs of a standard Gaussian section s in RH0(X , E ⊗ Ld).

By Corollary 3.10, RH0(X , E ⊗ Ld) is 0-ample for d large enough, so that we can apply
Kac–Rice formula (Theorem 5.3) with φ : (s, x) 7→ 1, as in the Riemannian case. Note that
we have to use the incidence manifold Σd defined by (2.17) here. As in (5.1), we get:

(5.14) E[Vol (Zs)] =
1

(2π)
r
2

∫

x∈RX

1
√

det(Ed(x, x))
E
[

∣

∣det⊥
(

∇d
xs
)∣

∣

∣

∣

∣
s(x) = 0

]

|dVRX | ,

where ∇d is any real connection on E ⊗ Ld.
Let x ∈ RX and (x1, . . . , xn) be real holomorphic coordinates around x such that

( ∂
∂x1

, . . . , ∂
∂xn

) is orthonormal at x. Let (ζd1 , . . . , ζ
d
r ) be an orthonormal basis of R(E ⊗Ld)x.

This yields an orthonormal basis of J 2
x (E ⊗ Ld) similar to (5.5).

The value of E
[

∣

∣det⊥
(

∇d
xs
)∣

∣

∣

∣

∣ s(x) = 0
]

does not depend on the choice of ∇d, since ∇d
xs

does not depend on ∇d when s(x) = 0. We choose a connection that satisfies the conditions
of section 3.3, in order to compute the pointwise asymptotic of this quantity.

The estimates of Proposition 3.8 suggest to consider the scaled variables:

(5.15) (td, Ld) =

(

√

πn

dn
s(x),

√

πn

dn+1
∇d

xs

)

.
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Then, (td, Ld) is a centered Gaussian vector in R(E ⊗Ld)x, and the matrix of Var(td, Ld) in
the basis described above is Ir(n+1)+O(d

−1). This is proved by the same kind of computation
as in the Riemannian case, using the estimates of Proposition 3.8. The distribution of Ld

given td = 0 is then a centered Gaussian with variance operator Λ̃(d) = Id+O(d−1).
As in the previous section (cf. Lemma 5.4), for every x ∈ RX ,

(5.16)

E
[

∣

∣det⊥
(

∇d
xs
)∣

∣

∣

∣

∣ s(x) = 0
]

=

(

dn+1

πn

)
r
2

E
[

∣

∣det⊥ (Ld)
∣

∣

∣

∣

∣ td = 0
]

=

(

dn+1

πn

)
r
2

(2π)
r
2
Vol (Sn−r)

Vol (Sn)

(

1 +O
(

d−1
))

.

Besides, the estimate (3.13) shows that:

(5.17) det (Ed(x, x)) =

(

d

π

)rn
(

1 +O
(

d−1
))

,

Finally, by (5.14), (5.16) and (5.17), we have proved Theorem 1.3.
As for Riemannian random waves, the same proof shows that for any continuous function

φ : RX → R, we have:

E

[∫

Zs

φ |dVs|
]

= d
r
2

(∫

RX
φ |dVRX |

)

Vol (Sn−r)

Vol (Sn)
+O

(

d
r
2−1
)

.

Hence,
(

d−
r
2

)

E[|dVs|] −−−−−→
λ→+∞

Vol (Sn−r)

Vol (Sn)
|dVM |

in the sense of the weak convergence of measures.

5.4 Proof of Theorem 1.2

In this section we compute the expected Euler characteristic of our random submanifolds.
The proof is basically the same as in the volume case: apply Kac–Rice formula then compute
a pointwise asymptotic for the conditional expectation that appears in Theorem 5.3. Only,
this time, we apply Kac–Rice formula to a quantity φ(f, x) that really depends on the couple
(f, x) ∈ Σ. This makes the computations a bit more complex. Luckily, φ(f, x) only depends
on the 2-jet of f at x, so we can still make pointwise computations.

Consider first the general setting of sections 2.1 to 2.4: f is a standard Gaussian vector
in the finite-dimensional subspace V ⊂ C∞(M,Rr). We assume that V is 0-ample, so that
for almost every f ∈ V , Zf is a closed submanifold of dimension n− r.

If n− r is odd, then χ(Zf ) = 0 almost surely (see Remark 4.4). From now on, we assume
that n − r is even and set m = n−r

2 . If n = r, then Zf is almost surely a finite set, and
χ(Zf ) = Vol (Zf ) is just the cardinal of Zf . In this case Theorems 1.2 and 1.1 coincide, so
we need only consider the case r < n in the sequel.

We denote by R the Riemann curvature of the ambient manifold M and, for any f ∈ V ,
we denote by Rf the Riemann curvature of Zf . By Proposition 4.9 and Kac–Rice formula
(Theorem 5.3),

(5.18) E[χ(Zf )] = E

[

1

(2π)mm!

∫

Zf

Tr ((Rf )
∧m) |dVf |

]

=
1

m!(2π)
n
2

∫

x∈M

1
√

det(E(x, x))
E
[

∣

∣det⊥ (dxf)
∣

∣Tr(Rf (x)
∧m)

∣

∣

∣ f(x) = 0
]

|dVM | .
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Moreover, for all x ∈M , let U ∼ N (0, Id) in TxM be independent of f . Then, Proposition 4.9
gives:

(5.19) Rf (x) = R(x) +
1

2
EU

[

〈

∇2
xf , dxf

†∗(U)
〉∧2
]

,

where the notation EU [ · ] means that we only take the expectation with respect to the
variable U . Here and in everything that follows, R(x) and ∇2

xf are implicitly restricted to
ker(dxf) = TxZf .

As in the volume case, the next step is to compute the pointwise asymptotic for the
integrand in the last term of (5.18). By (5.19), it only depends on R(x) and the distribution of
j2x(f) which is characterized by Lemma 2.4. This shows that the expected Euler characteristic
only depends on R and the values of E and its derivatives (up to order 2 in each variable)
along the diagonal in M ×M . It turns out that, both in the Riemannian and the algebraic
cases, the pointwise asymptotic is universal and no longer depends on R.

Focusing on random waves, V = (Vλ)
r and we already know from Lemma 2.7 that (Vλ)

r

is 0-ample. Let x ∈ M , recall that det(Eλ(x, x)) =
(

γ0λ
n
2

)r
(

1 +O
(

λ−
1
2

))

(see (5.2)).

Then, the main task is to estimate the conditional expectation in (5.18).

We consider the scaled variables:

(5.20) (tλ, Lλ, Sλ) =

(

1√
γ0λ

n
4
f(x),

1
√
γ1λ

n+2
4

dxf,
1

√
γ2λ

n+4
4

∇2
xf

)

in Rr ⊗ (R⊕T ∗
xM ⊕Sym(T ∗

xM)). By Lemma 2.4, (tλ, Lλ, Sλ) is a centered Gaussian vector.
We denote by (L̃λ, S̃λ) a random variable in Rr⊗(T ∗

xM⊕Sym(T ∗
xM)) distributed as (Lλ, Sλ)

given tλ = 0. Again, (L̃λ, S̃λ) is a centered Gaussian, see Corollary A.11.

Let U ∼ N (0, Id) in TxM be independent of f (hence of j2x(f)) and (L̃λ, S̃λ). Then,
by (5.19), (5.20) and (3.7):

Rf (x) = R(x) +
1

2
EU

[

〈

∇2
xf , dxf

†∗(U)
〉∧2
]

= R(x) +
1

2
EU





〈

√
γ2λ

n+4
4 Sλ ,

L†∗
λ (U)

√
γ1λ

n+2
4

〉∧2




= R(x) +
λ

2(n+ 4)
EU

[

〈

Sλ , L
†∗
λ (U)

〉∧2
]

.

Besides,
∣

∣det⊥ (dxf)
∣

∣ = (γ1)
r
2 λ

r(n+2)
4

∣

∣det⊥ (Lλ)
∣

∣, so that,

(5.21) E
[

∣

∣det⊥ (dxf)
∣

∣Tr(Rf (x)
∧m)

∣

∣

∣
f(x) = 0

]

= (γ1)
r
2λ

r(n+2)
4 E

[

∣

∣det⊥ (Lλ)
∣

∣Tr

(

(

R(x) +
λ

2(n+ 4)
EU

[

〈

Sλ , L
†∗
λ (U)

〉∧2
])∧m

)∣

∣

∣

∣

∣

tλ = 0

]

= (γ1)
r
2λ

r(n+2)
4 E

[

∣

∣

∣det⊥
(

L̃λ

)∣

∣

∣Tr

(

(

R(x) +
λ

2(n+ 4)
EU

[

〈

S̃λ , L̃
†∗
λ (U)

〉∧2
])∧m

)]

.

To conclude the proof, we will use the following lemmas.

Lemma 5.6. The random vectors
(

L̃λ, S̃λ

)

converge in distribution to a Gaussian vector
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(L, S) as λ→ +∞. Let U ∼ N (0, Id) in TxM be independent of
(

L̃λ, S̃λ

)

and (L, S), then:

E

[

∣

∣

∣
det⊥

(

L̃λ

)∣

∣

∣
Tr

(

(

R(x) +
λ

2(n+ 4)
EU

[

〈

S̃λ , L̃
†∗
λ (U)

〉∧2
])∧m

)]

=

(

λ

n+ 4

)m
m!

(2m)!
E
[

∣

∣det⊥ (L)
∣

∣Tr
(

〈

S ,L†∗(U)
〉∧2m

)](

1 +O
(

λ−
1
2

))

,

where the error term is uniform in x ∈M .

Lemma 5.7. Let (L, S) be distributed as the limit of
(

L̃λ, S̃λ

)

and U ∼ N (0, Id) in TxM

be independent of (L, S). We have:

E
[

∣

∣det⊥ (L)
∣

∣Tr
(

〈

S ,L†∗(U)
〉∧2m

)]

=

(

−n+ 4

n+ 2

)m

(2π)
n
2 (2m)!

Vol
(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn) Vol (Sn−1)
.

Assuming these lemmas and recalling (5.2) and (5.21), the integrand in the last term
of (5.18) equals:

(−1)mm!(2π)
n
2

(

γ1
γ0
λ

)
r
2
(

λ

n+ 2

)m Vol
(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)

(

1 +O
(

λ−
1
2

))

,

where the error term is uniform in x ∈M . Since r+2m = n and γ0

γ1
= n+2, we finally get:

E[χ(Zf )] = (−1)m
(

λ

n+ 2

)
n
2 Vol

(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)

∫

x∈M

(

1 +O
(

λ−
1
2

))

|dVM | ,

and this is Theorem 1.2.
We now have to prove Lemmas 5.6 and 5.7. For this we will need the following technical

result which is a reformulation of [9, prop. 3.12]. The proof of Proposition 5.8 is mostly
tedious computations and we postpone it until Appendix B.

Proposition 5.8. Let V and V ′ be two Euclidean spaces of dimension n and r respectively,

with 1 6 r 6 n. Let L ∈ V ′ ⊗ V ∗ and U ∈ V be independent standard Gaussian vectors.

Then, L† is well-defined almost surely and
(∣

∣det⊥ (L)
∣

∣ , (L†)∗U
)

has the same distribution as

(

‖Xn‖ ‖Xn−1‖ · · · ‖Xn−r+1‖ ,
U ′

‖Xn−r+1‖

)

,

where U ′ ∈ V ′, Xp ∈ Rp for all p ∈ {n− r + 1, . . . , n} and U ′, Xn, . . . , Xn−r+1 are globally

independent standard Gaussian vectors.

We start by computing the variance of (tλ, Lλ, Sλ). As in section 5.2, we choose normal
coordinates (x1, . . . , xn) centered at x and denote by (ζ1, . . . , ζr) the canonical basis of Rr.
For any i and j such that 1 6 i < j 6 n, we set dxij = (dxi ⊗ dxj + dxj ⊗ dxi) and
dxii = dxi ⊗ dxi. We complete the basis of J 1

x (R
r) given in (5.5) into an orthonormal basis

of J 2
x (R

r) by adding the following elements (in this order) at the end of the list:

(5.22) ζ1 ⊗ dx11, . . . , ζr ⊗ dx11, ζ1 ⊗ dx22, . . . , ζr ⊗ dx22, . . . , ζ1 ⊗ dxnn, . . . , ζr ⊗ dxnn,

ζ1 ⊗ dx12, . . . , ζr ⊗ dx12, ζ1 ⊗ dx13, . . . , ζr ⊗ dx13, . . . , ζ1 ⊗ dx1n, . . . , ζr ⊗ dx1n,

. . . , ζ1 ⊗ dx(n−1)n, . . . , ζr ⊗ dx(n−1)n.
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The matrix of Var(tλ, Lλ, Sλ) with respect to this basis is:

Λ(λ) =





Λ00(λ) Λ01(λ) Λ02(λ)
Λ10(λ) Λ11(λ) Λ12(λ)
Λ20(λ) Λ21(λ) Λ22(λ)



 ,

where Λ00(λ), Λ10(λ) and Λ11(λ) are as in (5.6) and, similarly, Λ22(λ) is the matrix of
Var(Sλ), Λ02(λ) =

tΛ20(λ) is the matrix of Cov(tλ, Sλ) and Λ12(λ) =
tΛ21(λ) is the matrix

of Cov(Lλ, Sλ). As in (5.7), we can decompose further each of these matrices in blocks of
size r × r. That is, Λ10(λ) and Λ11(λ) satisfy (5.7) and,

(5.23)

Λ20(λ) =
(

Λik
20(λ)

)

16i6k6n
, Λ21(λ) =

(

Λik,j
21 (λ)

)

16i6k6n
16j6n

and Λ22(λ) =
(

Λik,jl
22 (λ)

)

16i6k6n
16j6l6n

.

By definition of (tλ, Lλ, Sλ), these blocks are obtained by scaling the corresponding blocks
in the matrix of Var(j2x(f)). By Lemmas 2.4 and 2.6 the matrices in (5.23) are scalar matrices.

Recalling (3.7), we set: γ = −
√

γ2
1

γ0γ2
= −

√

n+4
n+2 . Then, by (5.20) and Theorem 3.1 we have:

Λik
20(λ) =

∂xi,xk
eλ(x, x)

√
γ0γ2λ

n+2
2

Ir =











γIr+O
(

λ−
1
2

)

if i = k,

O
(

λ−
1
2

)

if i 6= k,
(5.24)

Λik,j
21 (λ) =

∂xi,xk
∂yj

eλ(x, x)
√
γ1γ2λ

n+3
2

Ir = O
(

λ−
1
2

)

,(5.25)

Λik,jl
22 (λ) =

∂xi,xk
∂yj ,yl

eλ(x, x)

γ2λ
n+4
2

Ir =



































3Ir+O
(

λ−
1
2

)

if i = j = k = l,

Ir+O
(

λ−
1
2

)

if i = j 6= k = l

or i = k 6= j = l,

O
(

λ−
1
2

)

otherwise,

(5.26)

where Ir denotes the identity matrix of size r. Similar estimates for Λ00(λ), Λ10(λ) and
Λ11(λ) are given by (5.8), (5.9) and (5.10) respectively. Then Λ(λ) writes by blocks:

Λ(λ) =



























Ir γIr γIr · · · γIr
Inr

γIr 3Ir Ir · · · Ir

γIr Ir 3Ir
. . .

...
...

...
. . .

. . . Ir
γIr Ir · · · Ir 3Ir

I rn(n−1)
2



























+O
(

λ−
1
2

)

,

where the empty blocks are zeros. The distribution of (L̃λ, S̃λ), that is the distribution of
(Lλ, Sλ) given tλ = 0, is a centered Gaussian whose variance matrix is:

(5.27) Λ̃(λ) =





















Inr
β0Ir βIr · · · βIr

βIr β0Ir
. . .

...
...

. . .
. . . βIr

βIr · · · βIr β0Ir
I rn(n−1)

2





















+O
(

λ−
1
2

)

,
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where β = 1− γ2 = − 2

n+ 2
and β0 = 3− γ2 =

2n+ 2

n+ 2
(see Corollary A.11).

Let Λ denote the leading term in (5.27). Equation (5.27) shows that the random vectors
(

L̃λ, S̃λ

)

converge in distribution to a random vector (L, S) ∼ N (0,Λ) (see Lemma A.12).

We have:

det (Λ) = (β0 + (n− 1)β)r (β0 − β)r(n−1) =

(

4(2n+ 4)n−1

(n+ 2)n

)r

,

so that Λ is non-singular, and Λ̃(λ) is non-singular for λ large enough.

Proof of Lemma 5.6. We have already seen that
(

L̃λ, S̃λ

)

converges in distribution, as λ

goes to infinity, to (L, S) ∼ N (0,Λ). We still have to prove the estimate in the lemma. We
have:
(

R(x) +
λ

2(n+ 4)
EU

[

〈

S̃λ , L̃
†∗
λ (U)

〉∧2
])∧m

=

m
∑

q=0

(

m

q

)(

λ

2(n+ 4)

)q

R(x)∧(m−q) ∧ EU

[

〈

S̃λ , L̃
†∗
λ (U)

〉∧2
]∧q

.

We can apply Lemma 4.2 to each term in this sum. This yields:

(5.28) E

[

∣

∣

∣det⊥
(

L̃λ

)∣

∣

∣Tr

(

(

R(x) +
λ

2(n+ 4)
EU

[

〈

S̃λ , L̃
†∗
λ (U)

〉∧2
])∧m

)]

=

m
∑

q=0

(

m

q

)

q!

(2q)!

(

λ

2(n+ 4)

)q

E

[

∣

∣

∣det⊥
(

L̃λ

)∣

∣

∣Tr

(

R(x)∧(m−q) ∧
〈

S̃λ , L̃
†∗
λ (U)

〉∧2q
)]

.

Then it is sufficient to show that, for all q ∈ {0, . . . ,m},

(5.29) E

[

∣

∣

∣det⊥
(

L̃λ

)∣

∣

∣Tr

(

R(x)∧(m−q) ∧
〈

S̃λ , L̃
†∗
λ (U)

〉∧2q
)]

= E
[

∣

∣det⊥ (L)
∣

∣Tr
(

R(x)∧(m−q) ∧
〈

S ,L†∗(U)
〉∧2q

)]

+O
(

λ−
1
2

)

,

and that these terms are finite. Then (5.28) and (5.29) yield the estimate in the lemma.
Let q ∈ {0, . . . ,m}, then we first show that the principal part on the right-hand side of

(5.29) is finite. Let ζ ∈ Rr, then

(5.30) ES

[

Tr
(

R(x)∧(m−q) ∧ 〈S , ζ〉∧2q
)]

is finite since it is the expectation of some polynomial in the coefficients of S. Thus, (5.30)
only depends on ζ, and it is an homogeneous polynomial in ζ of degree 2q.

We assumed U to be independent of (L, S), and the expression (5.27) of Λ shows that L
and S are independent. Let U ′ ∼ N (0, Id) in Rr and Xn−r+1, . . . , Xn be standard Gaussian
vectors, with Xp ∈ Rp, such that U ′, S,Xn−r+1, . . . , Xn are globally independent. Applying
Proposition 5.8, we have:

(5.31) E
[

∣

∣det⊥ (L)
∣

∣Tr
(

R(x)∧(m−q) ∧
〈

S ,L†∗(U)
〉∧2q

)]

= E

[

‖Xn‖ · · · ‖Xn−r+2‖
‖Xn−r+1‖2q−1 Tr

(

R(x)∧(m−q) ∧ 〈S ,U ′〉∧2q
)

]

= E

[

1

‖Xn−r+1‖2q−1

]

E
[

Tr
(

R(x)∧(m−q) ∧ 〈S ,U ′〉∧2q
)]

n
∏

p=n−r+2

E[‖Xp‖] .
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Since 2q − 1 6 2m − 1 6 n − r − 1 and Xn−r+1 is a standard Gaussian in Rn−r+1,

E
[

1
‖Xn−r+1‖2q−1

]

< +∞ (see Lemma A.13). The other factors on the right-hand side of (5.31)

are expectations of polynomials is some standard Gaussian variables, so they are finite.

Then, Λ̃(λ) = Λ + O
(

λ−
1
2

)

, and the same kind of computations as in the proof of

Lemma 5.4 gives (5.29), which concludes the proof of Lemma 5.6. Note that, since M is
compact, R(x) is bounded, independently of x. We need this fact to ensure that the error
term in (5.29) is independent of x.

Proof of Lemma 5.7. Let (L, S) ∼ N (0,Λ) in Rr ⊗ (T ∗
xM ⊕ Sym(T ∗

xM)) and U ∼ N (0, Id)
in TxM be independent of (L, S). By (5.31):
(5.32)

E
[

∣

∣det⊥ (L)
∣

∣Tr
(

〈

S ,L†∗(U)
〉∧2m

)]

= E

[

‖Xn−r+2‖ . . . ‖Xn‖
‖Xn−r+1‖2m−1

]

E
[

Tr
(

〈S ,U ′〉∧2m
)]

,

where U ′ ∼ N (0, Id) in Rr, Xp ∼ N (0, Id) in Rp for all p, and U ′, S,Xn−r+1, . . . , Xn are
globally independent.

Recall that we are only interested in the restriction of S to ker(L) ⊂ TxM . But L and S
are independent, as one can see on the expression of Λ (5.27), and the distribution of S is
invariant under orthogonal transformations of TxM . Thus, we can consider S restricted to
any 2m-dimensional subspace of TxM in our computations. For simplicity, we restrict S to

V , the span of
(

∂
∂x1

, . . . , ∂
∂x2m

)

.

We now compute the term E
[

Tr
(

〈

S/V , U
′〉∧2m

)]

. By Lemma 4.2,

ES

[

〈

S/V , U
′〉∧2m

]

=
(2m)!

2mm!
ES

[

〈

S/V , U
′〉∧2

]∧m

.

Assuming that S/V =
∑

16i,k62m

Sikdxi ⊗ dxk, with Sik ∈ Rr, we have:

〈

S/V , U
′〉 =

∑

16i,k62m

〈Sik , U
′〉 dxi ⊗ dxk.

By Lemma A.8,

ES

[

〈

S/V , U
′〉∧2

]

=
∑

16i,j,k,l62m

ES [〈Sik , U
′〉 〈Sjl , U

′〉] (dxi ∧ dxj)⊗ (dxk ∧ dxl)

=
∑

16i,j,k,l62m

〈

U ′ ,
(

Λik,jl
)

U ′〉 (dxi ∧ dxj)⊗ (dxk ∧ dxl),

where we denoted by Λik,jl the covariance operator of Sik and Sjl. Then,

ES

[

〈S ,U ′〉∧2m
]

=
(2m)!

2mm!

∑

16i1,...,im62m
16j1,...,jm62m
16k1,...,km62m
16l1,...,lm62m

(

m
∏

p=1

〈

U ′ ,
(

Λipkp,jplp
)

U ′〉
)

×

(dxi1 ∧ dxj1 ∧ · · · ∧ dxim ∧ dxjm )⊗ (dxk1 ∧ dxl1 ∧ · · · ∧ dxkm
∧ dxlm)

=
(2m)!

2mm!

∑

σ,σ′∈S2m

ε(σ)ε(σ′)
m
∏

p=1

〈

U ′ ,
(

Λσ(2p−1)σ′(2p−1),σ(2p)σ′(2p)
)

U ′
〉

(dx ⊗ dx),
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where S2m is the set of permutations of {1, . . . , 2m}, ε : S2m → {−1, 1} denotes the
signature morphism and dx = dx1∧· · ·∧dx2m. We get the last line by setting σ(2p−1) = ip,
σ(2p) = jp, σ

′(2p− 1) = kp and σ′(2p) = lp and reordering the wedge products.

Since our local coordinates are such that
(

∂
∂x1

, . . . , ∂
∂x2m

)

is orthonormal at x, we have

Tr(dx⊗ dx) = ‖dx‖2 = 1. Thus,
(5.33)

Tr
(

ES

[

〈S ,U ′〉∧2m
])

=
(2m)!

2mm!

∑

σ,σ′∈S2m

ε(σσ′)
m
∏

p=1

〈

U ′ ,
(

Λσ(2p−1)σ′(2p−1),σ(2p)σ′(2p)
)

U ′
〉

.

By equation (5.27), for any σ, σ′ ∈ S2m and for any p ∈ {1, . . . ,m},

Λσ(2p−1)σ′(2p−1),σ(2p)σ′(2p) = K(p, σ, σ′) Id,

where

(5.34) K(p, σ, σ′) =











β if σ(2p− 1) = σ′(2p− 1) and σ(2p) = σ′(2p),

1 if σ(2p− 1) = σ′(2p) and σ(2p) = σ′(2p− 1),

0 otherwise.

Note that K(p, σ, σ′) = K(p, id, σ−1 ◦ σ′), where id stands for the identity permutation.
Then, setting τ = σ−1 ◦ σ′,

(5.35)
∑

σ,σ′∈S2m

ε(σσ′)
m
∏

p=1

〈

U ′ ,
(

Λ̃σ(2p−1)σ′(2p−1),σ(2p)σ′(2p)
)

U ′
〉

=
∑

σ,σ′∈S2m

ε(σσ′) ‖U ′‖2m
m
∏

p=1

K(p, σ, σ′)

= (2m)! ‖U ′‖2m
∑

τ∈S2m

ε(τ)

m
∏

p=1

K(p, id, τ).

From the Definition (5.34) of K(p, id, τ), we get that
∏m

p=1K(p, id, τ) 6= 0 if and only if τ
is a product of transpositions of the type ((2p − 1) (2p)). Now, if I ⊂ {1, . . . ,m} and
τ =

∏

p∈I((2p− 1) (2p)), we have:

m
∏

p=1

K(p, id, τ) = βm−|I| and ε(τ) = (−1)|I|,

where |I| stands for the cardinal of I. Thus,

(5.36)

∑

τ∈S2m

ε(τ)

m
∏

p=1

K(p, id, τ) =
∑

I⊂{1,...,m}
(−1)|I|βm−|I| =

m
∑

p=1

(

m

p

)

(−1)pβm−p

= (β − 1)m = (−1)m
(

n+ 4

n+ 2

)m

.

Finally, by equations (5.33), (5.35) and (5.36),

(5.37) E
[

Tr
(

〈S ,U ′〉∧2m
)]

= (−1)m
(

n+ 4

n+ 2

)m
((2m)!)2

2mm!
E
[

‖U ′‖2m
]

.
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Then, by (5.32), (5.37) and Lemma A.13,

E
[

∣

∣det⊥ (L)
∣

∣Tr
(

〈

S ,L†∗(U)
〉∧2m

)]

= (−1)m
(

n+ 4

n+ 2

)m
((2m)!)2

2mm!
(2π)

r
2
Vol (Sn−r)

Vol (S1)

Vol
(

Sn−r+1
)

Vol (Sn)

Vol
(

Sr−1
)

Vol (Sn−1)
.

We conclude the proof of Lemma 5.7 by computing:

(2π)
r
2
(2m)!

2mm!

Vol (Sn−r)

2
= (2π)

r
2
2mΓ

(

m+ 1
2

)

√
π

πm+ 1
2

Γ
(

m+ 1
2

) = (2π)
n
2 .

5.5 Proof of Theorem 1.4

Let us now adapt the proof of the previous section to the case of real algebraic submanifolds.
Once again, we need only consider the case where r < n and n− r is even. The framework
is the same as in sections 2.6 and 5.3.

We already know that RH0(X , E ⊗ Ld) is 0-ample by Corollary 3.10. We also have the
estimate (5.17) for det(Ed) along the diagonal, where Ed is the Bergman kernel of E ⊗ Ld.
As in the Riemannian case, we use (4.8) and Kac–Rice formula:

(5.38) E[χ(Zs)] =
1

m!(2π)
n
2

∫

x∈RX

E
[

∣

∣det⊥
(

∇d
xs
)∣

∣Tr (Rs(x)
∧m)

∣

∣

∣ s(x) = 0
]

√

det(Ed(x, x))
|dVRX | ,

where ∇d is any real connection on (E ⊗ Ld) and Rs denotes the Riemann tensor of Zs.
We need to compute the conditional expectation in (5.38) for some fixed x ∈ RX . Since

it does not depend on our choice of connection, we will use one that is adapted to x as in
sections 3.3 and 5.3. Let x ∈ RX , then we consider the scaled variables:

(5.39) (td, Ld, Sd) =

(

√

πn

dn
s(x),

√

πn

dn+1
∇d

xs,

√

πn

dn+2
∇2,d

x s

)

,

and (L̃d, S̃d) ∈ R(E ⊗ Ld)x ⊗ (T ∗
xRX ⊕ Sym(T ∗

xRX )) distributed as (Ld, Sd) given td = 0.
As in section 5.3, let (x1, . . . , xn) be real holomorphic coordinates centered at x and

such that ( ∂
∂x1

, . . . , ∂
∂xn

) is orthonormal at x. Let (ζd1 , . . . , ζ
d
r ) be an orthonormal basis of

R(E ⊗ Ld)x. We get an orthonormal basis of J 2
x (E ⊗Ld) similar to the one defined by (5.5)

and (5.22).
We compute the matrix Λ(d) of Var(td, Ld, Sd) in this basis. For this we use the estimates

for the blocks of Λ(d) given by Proposition 3.8 and (5.39). Namely, for all i, j, k and
l ∈ {1, . . . , n}, with i 6 k and j 6 l,

Λik
20(d) = O

(

d−1
)

, Λik,j
21 (d) = O

(

d−1
)

,(5.40)

Λik,jl
22 (d) =











2Ir+O
(

d−1
)

if i = j = k = l,

Ir+O
(

d−1
)

if i = j 6= k = l,

O
(

d−1
)

otherwise.

(5.41)

Recall from section 5.3 that the matrix of Var(td, Ld) in this basis is Ir(n+1) + O
(

d−1
)

. By
Corollary A.11, the distribution of (Ld, Sd) given td = 0 is then a centered Gaussian whose
variance matrix is, by blocks,

(5.42) Λ̃(d) =





Inr
2Inr

I rn(n−1)
2



+O
(

d−1
)

,
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where the empty blocks are zeros. Let Λ denote the leading term in equation (5.42) and
let (L, S) ∼ N (0,Λ) in R(E ⊗ Ld)x ⊗ (T ∗

xRX ⊕ Sym(T ∗
xRX )). By Lemma A.12, (L̃d, S̃d)

converges in distribution to (L, S).
Let U ∼ N (0, Id) in TxRX be independent of all the other variables. By (4.9),

(5.43) Rs(x) = R(x) +
1

2
E
[

〈

∇2,d
x s , (∇d

xs)
†∗(U)

〉∧2
]

.

As in the case of Riemannian random waves (5.21), we have:

(5.44) E
[

∣

∣det⊥
(

∇d
xs
)∣

∣Tr(Rs(x)
∧m)

∣

∣

∣ s(x) = 0
]

=

(

dn+1

πn

)
r
2

E

[

∣

∣

∣det⊥
(

L̃d

)∣

∣

∣Tr

(

(

R(x) + d EU

[

〈

S̃d , L̃
†∗
d (U)

〉∧2
])∧m

)]

.

The proof of Lemma 5.6 adapts immediately to this setting, so that:

(5.45) E

[

∣

∣

∣det⊥
(

L̃d

)∣

∣

∣Tr

(

(

R(x) + d EU

[

〈

S̃d , L̃
†∗
d (U)

〉∧2
])∧m

)]

= dm
m!

(2m)!
E
[

∣

∣det⊥ (L)
∣

∣Tr
(

〈

S ,L†∗(U)
〉∧2m

)]

(

1 +O
(

d−1
))

,

where the error term is uniform in x ∈M .

Lemma 5.9. Let (L, S) ∼ N (0,Λ) in R(E⊗Ld)x⊗(T ∗
xRX⊕Sym(T ∗

xRX )) and U ∼ N (0, Id)
in TxM be independent of (L, S). We have:

E
[

∣

∣det⊥ (L)
∣

∣Tr
(

〈

S ,L†∗(U)
〉∧2m

)]

= (−1)m(2π)
n
2 (2m)!

Vol
(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)
.

Once this lemma is proved, we get Theorem 1.4 immediately by (5.17), (5.38), (5.44),
(5.45) and Lemma 5.9. We sketch the proof of Lemma 5.9 which is, unsurprisingly, adapted
from the proof of Lemma 5.7.

Proof. The only difference between Lemmas 5.7 and 5.9 comes from the definition of Λ which
is not the same in the algebraic case. The proof is exactly the same as the proof of Lemma 5.7
until the definition of K (5.34). The Λik,jl are now given by (5.42), hence we have to change
the definition of K. In this setting,

K(p, σ, σ′) =

{

1 if σ(2p− 1) = σ′(2p) and σ(2p) = σ′(2p− 1),

0 otherwise,

so that

m
∏

p=1

K(p, id, τ) is 0, unless τ = τ0 =

m
∏

p=1

((2p− 1)(2p)). Then (5.36) becomes:

∑

τ∈S2m

ε(τ)

m
∏

p=1

K(p, id, τ) = ε(τ0)

m
∏

p=1

K(p, id, τ0) = (−1)m.

This explains why the factor
(

−n+4
n+2

)m

becomes (−1)m in the algebraic case. What remains

of the proof is as in Lemma 5.7.
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6 Two special cases

In some special cases, the covariance kernel is known explicitly. It is then possible to prove
more precise results. In this section, we sketch what happens on the flat torus and in the
real projective space. In these cases, we get the expectation of the volume and the Euler
characteristic of our random submanifolds for fixed λ (resp. fixed d).

6.1 The flat torus

Let Tn = Rn�(2πZ)n denote the torus of dimension n that we equip with the quotient of
the Euclidean metric on Rn. We have Vol (Tn) = (2π)n. We identify functions on Tn and

(2πZ)n-periodic functions on Rn. Then, the Laplacian is ∆ = −∑n
i=1

∂2

∂x2
i

, and it is known

that its eigenvalues are the integers of the form ‖p‖2 =
∑

(pi)
2, with p = (p1, . . . , pn) ∈ Nn.

The eigenspace associated to 0 is spanned by the constant function x 7→ (2π)−
n
2 . For λ > 0,

the eigenspace associated to λ is spanned by the normalized functions of the form:

x 7→
√
2

(2π)
n
2
sin(〈p , x〉) and x 7→

√
2

(2π)
n
2
cos(〈p , x〉),

where p ∈ Zn is such that ‖p‖2 = λ, and 〈· , ·〉 is the canonical scalar product on Rn.

We set Bλ = {p ∈ Zn | ‖p‖2 6 λ}. After some computations, we get eλ, the spectral
function of the Laplacian on Tn:

(6.1) ∀λ > 0, ∀x, y ∈ Tn, eλ(x, y) =
1

(2π)n

∑

p∈Bλ

cos(〈p , x− y〉).

Let λ > 0 and r ∈ {1, . . . , n}, let Vλ be spanned by the eigenfunctions of ∆ associated to
eigenvalues smaller than λ, and let f ∼ N (0, Id) in (Vλ)

r. For all x ∈ Tn, j2x(f) is a centered
Gaussian variable whose variance is determined by Lemma 2.4 , Lemma 2.6 and the above
formula (6.1). Note that eλ and its derivatives are constant along the diagonal.

We can compute explicitly the variance of j2x(f) (which is independent of x) and follow
the same steps as in sections 5.2 and 5.4. Only, this time, we can make exact computations
with λ fixed, instead of deriving asymptotics. These computations are not difficult, and
similar to what we already did, so we simply state the final results. Note that the scaling of
the variables has to be adapted.

Proposition 6.1. On the flat torus Tn, let λ > 0 and let f1, . . . , fr be independent standard

Gaussian functions in Vλ, with 1 6 r 6 n. We have:

E[Vol (Zf )] =





1

|Bλ|
∑

(p1,...,pn)∈Bλ

(p1)
2





r
2

(2π)n
Vol (Sn−r)

Vol (Sn)
,

where Bλ = {p ∈ Zn | ‖p‖2 6 λ} and |Bλ| denotes the cardinal of Bλ.

This result was already known, see [29], where Rudnick and Wigman compute the variance
of Vol (Zf) when r = 1, and the references therein.

Proposition 6.2. On the flat torus Tn, let λ > 0 and let f1, . . . , fr be independent standard

Gaussian functions in Vλ, with 1 6 r 6 n. If n− r is even, we have:

E[χ(Zf )] = (−1)
n−r
2





1

|Bλ|
∑

(p1,...,pn)∈Bλ

(p1)
2





n
2

(2π)n
Vol

(

Sn−r+1
)

Vol
(

Sr−1
)

πVol (Sn)Vol (Sn−1)
,

where Bλ = {p ∈ Zn | ‖p‖2 6 λ} and |Bλ| denotes the cardinal of Bλ.
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Remark 6.3. For this last result, one of the points that make the computations tractable is
that the Riemann tensor of the ambient manifold is zero.

6.2 The projective space

We consider the algebraic case with X = CPn, E = Cr × CPn with the standard Hermitian
metric on each fiber, and L = O(1) the hyperplane bundle with its usual metric. Then, ω is
the standard Fubini-Study form. We consider the real structures induced by the standard
conjugation in C.

Let ed denote the Bergman kernel of Ld and Ed denote the Bergman kernel of E ⊗ Ld.
Since E is trivial we have a product situation, as in section 2.5, and Ed and ed are related
as in Lemma 2.6. Let (ζ1, . . . , ζr) be any orthonormal basis of Cr, for all x, y ∈ CPn,

(6.2) Ed(x, y) =

(

r
∑

q=1

ζq ⊗ ζq

)

⊗ ed(x, y).

In this case, RX = RPn and the elements of RH0(X , E ⊗Ld) are r-tuples of real homoge-
neous polynomials of degree d in n+1 variables. We denote by Rhom

d [X0, . . . , Xn] the space
of real homogeneous polynomials of degree d in X0, . . . , Xn. Let α = (α0, . . . , αn) ∈ Nn+1,
then we set Xα = Xα0

0 · · ·Xαn
n , |α| = α0+ · · ·+αn and, if |α| = d, we also set

(

d
α

)

= d!
α0!···αn!

.

It is well-known that an orthonormal basis of Rhom
d [X0, . . . , Xn] for the inner prod-

uct (2.16) is given by the sections:

(6.3) sα =

√

(n+ d)!

πnd!

(

d

α

)

Xα, with |α| = d,

see [4, 7, 9, 23]. Then, formally,

(6.4) ed =
(n+ d)!

πnd!

∑

|α|=d

(

d

α

)

XαY α =
(n+ d)!

πnd!
〈X ,Y 〉d .

More precisely, we consider the local coordinates (x1, . . . , xn) 7→ [1 : x1 : · · · : xn], defined
on a neighborhood of [1 : 0 : · · · : 0], and the real holomorphic frame s(d,0,...,0) for O(d) on
this neighborhood. In these coordinates,

(6.5) ed(x, y) = (1 + 〈x , y〉)d
(

s(d,0,...,0)(x) ⊗ s(d,0,...,0)(y)
)

,

with x = (x1, . . . , xn) and y = (y1, . . . , yn). Since everything is invariant under orthogonal
transformations of RPn, this totally describes ed. In particular, the covariances that appear
in the proofs of Theorems 1.3 and 1.4 are given, in this case, by the values of the function

(x, y) 7→ (n+ d)!

πnd!
(1 + 〈x , y〉)d

and its derivatives at the point (0, 0) in Rn × Rn.
Let d ∈ N, r ∈ {1, . . . , n} and s ∼ N (0, Id) in (Rhom

d [X0, . . . , Xn])
r. For every x ∈ RPn,

j2,dx (s) is a centered Gaussian variable whose variance is determined by Lemma 2.13, (6.2)
and (6.5). Once again, we can compute the variance of j2,dx (s) explicitly, and it does not
depend on x ∈ RPn. Then, we can follow the steps of the proof of Theorem 1.3, and make
exact computations for fixed degree d. This yields Kostlan’s result [23]. Note that we have
to adapt the scaling of the variables.
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Theorem 6.4 (Kostlan). In the real projective space RPn, let d ∈ N and let P1, . . . , Pr be

independent standard Gaussian polynomials in Rhom
d [X0, . . . , Xn], with 1 6 r 6 n. Let Zs

denote the common zero set of P1, . . . , Pr. We have:

E[Vol (Zs)] = d
r
2 Vol

(

RPn−r
)

.

Assuming that n− r is even and equals 2m, we can also adapt the proof of Theorem 1.4
to get the expected Euler characteristic for fixed d. This computation is a bit more complex
than on the torus since the Riemann curvature of RPn is not zero.

By Kac–Rice formula and equations (6.2) and (4.9),

(6.6) E[χ(Zs)] =
1

m!(2π)
n
2

∫

x∈RPn

1

(ed(x, x))
n
2
× · · ·

E

[

∣

∣det⊥
(

∇d
xs
)∣

∣Tr

(

(

R(x) +
1

2
E
[

〈

∇2,d
x s , (∇d

xs)
†∗(U)

〉∧2
]

)∧m
)]

|dVRPn | ,

where R is the Riemann curvature of RPn and U ∼ N (0, Id) in TxRP
n. We used the fact that

s(x), ∇d
xs and ∇2,d

x s are independent in this particular case. This is why the expectation is
not conditioned on s(x) = 0.

Since everything is invariant under orthogonal transformations of RPn, we only need to
compute the expectation in the integrand at the point x = [1 : 0 : · · · : 0]. We do this in the
same chart as for (6.5) above. We get:

R(x) =
1

2

∑

16i,j6n

dxi ∧ dxj ⊗ dxi ∧ dxj .

Following the computations of section 5.4, we get (after a suitable rescaling) that the
expectation in the integrand of (6.6) equals:

(6.7) d
r
2

m
∑

q=0

(d− 1)q

2q

(

m

q

)

E

[

‖Xn−r+2‖ . . . ‖Xn‖
‖Xn−r+1‖2q−1

]

E
[

Tr
(

R(x)∧(m−q) ∧ 〈S ,U ′〉∧2q
)]

,

where U ′ ∈ Rr, S ∈ (RO(d)x)
r ⊗ Sym(T ∗

xRP
n) and Xp ∈ Rp (for n − r + 1 6 p 6 n) are

globally independent standard Gaussian vectors. By the same kind of computations as in
the proof of Lemma 5.7, we get:

(6.8) ES

[

〈S ,U ′〉∧2
]

= −‖U ′‖2
∑

16i,j6n

dxi ∧ dxj ⊗ dxi ∧ dxj .

Restricting R and S to the span of
(

∂
∂x1

, . . . , ∂
∂x2m

)

, we have:

∀q ∈ {0, . . . ,m}, Tr

(

R(x)∧m−q ∧ ES

[

〈S ,U ′〉∧2
]∧q
)

= (−1)q
1

2m−q
(2m)! ‖U ′‖2q .

As in the proof of Lemma 5.7, we compute the expectation of this term with respect to
the variable U ′ by Lemma A.13. The same lemma allows us to compute the value of (6.7).
Finally, we recover Bürgisser’s result [9].

Theorem 6.5 (Bürgisser). In the real projective space RPn, let d ∈ N and let P1, . . . , Pr be

independent standard Gaussian polynomials in Rhom
d [X0, . . . , Xn], with 1 6 r 6 n. Let Zs

denote the common zero set of P1, . . . , Pr. If n− r is even, we have:

E[χ(Zs)] = d
r
2

n−r
2
∑

p=0

(1− d)p
Γ
(

p+ r
2

)

p! Γ
(

r
2

) .
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A Concerning Gaussian vectors

In this appendix we survey the few facts we need concerning random vectors, especially
Gaussian ones. It is essentially borrowed from [26, Appendix A]. We include it here for the
reader’s convenience.

A.1 Variance and covariance as tensors

Let V be a real vector space of finite dimension and X a random vector with values in V . For
any ξ ∈ V ∗, ξ(X) is a real random variable. From now on, we assume that these variables
are square integrable.

Definition A.1. The expectation (or mean) of X is the linear form on V ∗ defined by:

(A.1) mX : ξ 7→ E[ξ(X)] .

If mX = 0, we say that X (resp. its distribution dPX) is centered.

Under the canonical isomorphism V ∗∗ ≃ V , we have mX =

∫

V

x dPX .

Definition A.2. The variance of X is the non-negative symmetric bilinear form on V ∗

defined by:

(A.2) Var(X) : (ξ, η) 7→ E[ξ(X −mX)η(X −mX)] .

Remark A.3. Traditionally, the term “variance” is only used when V has dimension 1 and one
speaks of “covariance” when dim(V ) > 2. We chose to use the term “covariance” for couples
of distinct random vectors (see below) and “variance” otherwise. This is the convention of
[1], for example.

As a bilinear form on V ∗ × V ∗, Var(X) is naturally an element of V ⊗ V and we have
the following lemma.

Lemma A.4. Let X be a random vector in V , then we have:

(A.3) Var(X) = E[(X −mX)⊗ (X −mX)] .

Proof. For any ξ and η ∈ V ∗, we have:

Var(X)(ξ, η) = E[ξ(X −mX)η(X −mX)] = E[(ξ ⊗ η)((X −mX)⊗ (X −mX))]

= (ξ ⊗ η)E[(X −mX)⊗ (X −mX)] .

Definition A.5. The variance operator of X is the linear map ΛX : V ∗ → V such that, for
any ξ and η ∈ V ∗,

(A.4) ξ (ΛXη) = Var(X)(ξ, η).

By Lemma A.4 we have:

(A.5) ΛX : η 7→ E[(X −mX)⊗ η(X −mX)] .

If V = V1⊕V2 and X = (X1, X2), with Xi a random vector in Vi, then mX = mX1 +mX2

and the variance form Var(X) splits accordingly into four parts:

Var(X1) : V
∗
1 × V ∗

1 → R, Cov(X1, X2) : V
∗
1 × V ∗

2 → R,

Var(X2) : V
∗
2 × V ∗

2 → R and Cov(X2, X1) : V
∗
2 × V ∗

1 → R.
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These bilinear forms are associated, as above, to the following operators:

Λ11 : V ∗
1 → V1, Λ12 : V ∗

2 → V1,

Λ22 : V ∗
2 → V2 and Λ21 : V ∗

1 → V2.

Since Var(X) is symmetric, Cov(X1, X2)(ξ, η) = Cov(X2, X1)(η, ξ) for any ξ and η.

Definition A.6. We say that Cov(X1, X2) is the covariance of X1 and X2, and that Λ12 is
their covariance operator.

As above, Cov(X1, X2) is naturally an element of V1 ⊗ V2.

Lemma A.7. Let X1 and X2 be random vectors in V1 and V2 respectively, then we have:

Cov(X1, X2) = E[(X1 −mX1)⊗ (X2 −mX2)] .

Moreover, for any η ∈ V ∗
2 , Λ12(η) = E[(X1 −mX1)⊗ η(X2 −mX2)].

Let L : V → V ′ be a linear map between finite-dimensional vector spaces and X be a
random vector in V . Then L(X) is a random vector in V ′ with dPL(X) = L∗( dPX). An
immediate consequence of (A.1), (A.2) and (A.4) is that:

mL(X) = mX ◦ L∗,(A.6)

Var(L(X)) = Var(X)(L∗·, L∗·),(A.7)

and

ΛL(X) = LΛXL
∗,(A.8)

where L∗ : (V ′)∗ → V ∗ is defined by L∗ : ξ 7→ (ξ ◦ L).
If X is a random vector in a Euclidean space (V, 〈· , ·〉), we can see Var(X) as a bilinear

symmetric form on V , and ΛX as a self-adjoint operator on V . Then, by (A.3) and (A.5) :

Var(X) = E[(X −mX)∗ ⊗ (X −mX)∗] ,

ΛX = E[(X −mX)⊗ (X −mX)∗] ,

where for any v ∈ V , we set v∗ = 〈v , ·〉 ∈ V ∗.
If V = V1 ⊕ V2, we can see Λ12 as a linear operator from V2 to V1 and by Lemma A.7:

Cov(X1, X2) = E[(X1 −mX1)
∗ ⊗ (X2 −mX2)

∗] ,

Λ12 = E[(X1 −mX1)⊗ (X2 −mX2)
∗] ,

Lemma A.8. Let X be a random vector in a Euclidean space V , then we have:

(A.9) ∀v ∈ V, ∀w ∈ V, E[〈v ,X −mX〉 〈w ,X −mX〉] = 〈v ,ΛXw〉 .

Proof. Let v and w ∈ V , then we have:

E[〈v ,X −mX〉 〈w ,X −mX〉] = Var(X)(v, w) as a bilinear form on V,

= 〈v ,ΛXw〉 where ΛX : V → V.
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A.2 Gaussian vectors

The following material can be found either in [1, section 1.2] or [31, section 1.2]. We present
it in a coordinate-free fashion, in the spirit of [26].

Let m ∈ R and σ > 0, then the Gaussian (or normal) distribution on R with expectation
m and variance σ2 is the distribution whose characteristic function is ξ 7→ exp

(

imξ − 1
2σ

2ξ2
)

.
If σ = 0, this is the Dirac measure centered at m, otherwise it has a density with respect to

the Lebesgue measure, given by x 7→ 1
σ
√
2π

exp
(

− (x−m)2

2σ2

)

.

Let V be a real vector space of dimension n, then a random vector X in V is said to
be Gaussian, or normally distributed, if for any ξ ∈ V ∗, ξ(X) is a Gaussian variable in R.
Recall that a Gaussian vector has finite moments of all orders and that its distribution is
totally determined by its expectation and variance. We denote by N (m,Λ) the Gaussian
distribution with expectation m and variance operator Λ and by X ∼ N (m,Λ) the fact that
X is distributed according to N (m,Λ). From (A.6) and (A.8) we deduce the following.

Lemma A.9. Let L : V → V ′ be a linear map between finite-dimensional vector spaces and

X ∼ N (m,Λ) in V . Then L(X) ∼ N (Lm,LΛL∗) in V ′.

If V = V1 ⊕ V2 and X = (X1, X2) ∼ N (m,Λ) then, with the notations of section A.1,
Lemma A.9 shows that X1 ∼ N (mX1 ,Λ11) and X2 ∼ N (mX2 ,Λ22). Besides, X1 and X2 are
independent if and only if Cov(X1, X2) = 0, or equivalently Λ12 = 0.

Proposition A.10 (Regression formula). Let X = (X1, X2) be a Gaussian vector in V1⊕V2.
If Var(X1) is non-degenerate then X2 has the same distribution as

mX2 + Λ21(Λ11)
−1 (X1 −mX1) + Y

where Y is a centered Gaussian vector in V2 with variance operator Λ22 − Λ21(Λ11)
−1Λ12,

independent of X1.

This is shown in [1, prop. 1.2]. From this, we deduce that the distribution of X2 given
X1 = x1 is Gaussian in V2 with expectation mX2 + Λ21(Λ11)

−1(x1 − mX1) and variance
operator Λ22 − Λ21(Λ11)

−1Λ12. We use this in the case where X is centered and x1 = 0.

Corollary A.11. Let X = (X1, X2) be a centered Gaussian vector in V1 ⊕ V2 and assume

that Var(X1) is non-degenerate. Then the distribution of X2 given X1 = 0 is a centered

Gaussian in V2 with variance operator Λ22 − Λ21(Λ11)
−1Λ12.

In what follows, we assume that V is a Euclidean space. Recall that in this case, we can
see the variance operator of a random vector as an endomorphism of V . We will say that
N (0, Id) is the standard normal distribution on V , where Id denotes the identity map on V .

If Var(X) is non-degenerate, then dPX has the following density with respect to the
Lebesgue measure on V :

x 7→ 1

(2π)
n
2

√

det(ΛX)
exp

(

−1

2

〈

(ΛX)−1(x−m) , x−m
〉

)

.

If Var(X) is singular, dPX is supported on ker(ΛX)⊥.

Lemma A.12. Let (Xk)k∈N be a sequence of random vectors in V such that Xk ∼ N (mk,Λk)
for all k ∈ N. We assume that mk −−−−−→

k→+∞
m and Λk −−−−−→

k→+∞
Λ. Then Xk converges in

distribution to N (m,Λ).

Proof. Under the hypothesis of the lemma, the characteristic function of Xk converges point-
wise to the characteristic function of a Gaussian vector X ∼ N (m,Λ). Then, Lévy’s conti-
nuity theorem gives the result.
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We conclude this appendix by computing two Gaussian expectations.

Lemma A.13. Let X ∼ N (0, Id) with values in a Euclidean space of dimension n and let

k ∈ Z such that k > −n. Then,

E
[

‖X‖k
]

= (2π)
k
2

Vol
(

Sn−1
)

Vol (Sn+k−1)
.

Proof.

E
[

‖X‖k
]

=
1

(2π)
n
2

∫

V

‖x‖k e− 1
2‖x‖

2

dx =
Vol

(

Sn−1
)

(2π)
n
2

∫ +∞

0

rk+n−1e−
1
2 r

2

dr

=
Vol

(

Sn−1
)

(2π)
n
2

∫ +∞

0

(2t)
k+n
2 −1e−t dt =

(2π)
k
2 Vol

(

Sn−1
)

2π
k+n

2

Γ

(

k + n

2

)

.

Assuming we proved Proposition 5.8 (more precisely its Corollary B.3), we have the following.

Lemma A.14. Let V and V ′ be two Euclidean spaces of dimension n and r respectively,

with 1 6 r 6 n. Let L ∼ N (0, Id) in V ′ ⊗ V ∗. Then:

E
[∣

∣det⊥ (L)
∣

∣

]

= (2π)
r
2
Vol (Sn−r)

Vol (Sn)
.

Proof. By Corollary B.3,
∣

∣det⊥ (L)
∣

∣ is distributed as ‖Xn−r+1‖ · · · ‖Xn‖, with Xp a standard
Gaussian in Rp for all p and Xn−r+1, . . . , Xn independent. Then, using Lemma A.13,

E
[∣

∣det⊥ (L)
∣

∣

]

= E[‖Xn−r+1‖ · · · ‖Xn‖] =
n
∏

p=n−r+1

E[‖Xp‖] = (2π)
r
2
Vol (Sn−r)

Vol (Sn)
.

B Proof of Proposition 5.8

This appendix is devoted to the proof of Proposition 5.8 which is a reformulation of [9,
prop. 3.12]. Let V and V ′ be two Euclidean spaces of dimension n and r respectively, with
1 6 r 6 n. The space V ′ ⊗ V ∗ of linear maps from V to V ′ comes with a natural scalar
product induced by those on V and V ′. The set of linear maps of rank less than r is an
algebraic submanifold of V ′ ⊗ V ∗ of codimension at least 1, hence it has measure 0 for any
non-singular Gaussian measure. Let L be a standard Gaussian vector in V ′ ⊗ V ∗, then the
rank of L is r almost surely. Hence L† is well-defined almost surely (recall Definition 4.7).

We introduce some further notations. Let B ⊂ V ′ ⊗V ∗ denote the set of maps of rank r.
We set F = {(L,U) ∈ B × V | U ∈ ker(L)⊥} and S = {(L,U) ∈ B × V | U ∈ S(ker(L)⊥)}.
Here and in the sequel, S(·) stands for the unit sphere of the concerned space. Given L ∈ B
and U ∈ V , we denote by Ũ the orthogonal projection of U onto ker(L)⊥. Then we set:

ρ = ‖Ũ‖, θ =
Ũ

‖Ũ‖
and θ′ =

(L†)∗θ

‖(L†)∗θ‖ .(B.1)

Note that L∗θ′ =
(L†L)∗θ

‖(L†)∗θ‖ =
θ

‖(L†)∗θ‖ , hence ‖L∗θ′‖ =
1

‖(L†)∗θ‖ and finally:

θ =
L∗θ′

‖L∗θ′‖ and L†∗U = L†∗Ũ = ρL†∗θ =
ρ

‖L∗θ′‖θ
′.(B.2)
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We choose orthonormal bases (e1, . . . , en) and (e′1, . . . , e
′
r), of V and V ′ respectively, such

that er = θ, e′r = θ′ and (e1, . . . , er) is a basis of ker(L)⊥. Then,

∀i ∈ {1, . . . , n}, 〈Lei , θ′〉 = 〈ei , L∗θ′〉 = ‖L∗θ′‖ 〈ei , θ〉 .
Thus the matrix of L in these bases has the form:

(B.3)





A
∗
...
∗

0

0 ··· 0 ‖L∗θ′‖ 0 ··· 0



 ,

and
∣

∣det⊥ (L)
∣

∣ = |det(A)| ‖L∗θ′‖.
Let πθ and πθ′ denote the orthogonal projections along R · θ in V and along R · θ′ in V ′

respectively. We define L′ : V → (R · θ′)⊥ by L′ = πθ′ ◦ L ◦ πθ. Then |det(A)| =
∣

∣det⊥ (L′)
∣

∣,
and L′ does not depend on our choice of bases. Finally, we have:

(B.4)
(∣

∣det⊥ (L)
∣

∣ , L†∗U
)

=

(

∣

∣det⊥ (L′)
∣

∣ ‖L∗θ′‖ , ρθ′

‖L∗θ′‖

)

.

To prove Proposition 5.8, we will show that
∣

∣det⊥ (L′)
∣

∣, ‖L∗θ′‖, ρ and θ′ are independent
and identify their distributions.

If L and U are independent standard Gaussians, then almost surely L ∈ B and we can
consider (L,U) as a random element of B × V . Then (L, Ũ) is a random element of F and
its distribution is characterized by:

E
[

φ(L, Ũ)
]

=

∫

L∈B

(∫

U∈V

φ(L, Ũ) dνn(U)

)

dνnr(L)

=

∫

L∈B

(

∫

Ũ∈ker(L)⊥
φ(L, Ũ) dνr(Ũ)

)

dνnr(L),

for any bounded continuous function φ : F → R. Recall that dνN stands for the standard
Gaussian measure in dimension N . We get the distribution of (L, θ, ρ) ∈ S ×R+ by a polar
change of variables in the innermost integral: for any bounded continuous φ : S × R+ → R,

E[φ(L, θ, ρ)] =

∫

L∈B

∫

θ∈S(ker(L)⊥)

∫ +∞

ρ=0

φ(L, θ, ρ)ρr−1e−
ρ2

2
dρ

(2π)
r
2
dθ dνnr(L),

where dρ is the Lebesgue measure on R and dθ is the Euclidean measure on the sphere
S(ker(L)⊥).

This distribution is a product measure on S × R+, thus (L, θ) and ρ are independent
variables. Since

(∣

∣det⊥ (L′)
∣

∣ , θ′, ‖L∗θ′‖
)

only depends on (L, θ), this triple is independent
of ρ. Besides, ρ is distributed as the norm of a standard Gaussian vector in Rr since its

density with respect to the Lebesgue measure is ρ 7→ Vol
(

Sr−1
)

(2π)−
r
2 ρr−1e−

ρ2

2 on R+ and
vanishes elsewhere. Finally, the distribution of (L, θ) satisfies:

(B.5) E[φ(L, θ)] =

∫

L∈B

∫

θ∈S(ker(L)⊥)

φ(L, θ)
dθ

Vol (Sr−1)
dνnr(L),

for any bounded and continuous φ : S → R.
We will now compute the distribution of (L, θ′) in B × S(V ′).

Lemma B.1. For any bounded and continuous φ : B × S(V ′) → R,

(B.6) E[φ(L, θ′)] =

∫

θ′∈S(V ′)

∫

L∈B
φ(L, θ′)

∣

∣det⊥ (L′)
∣

∣

‖L∗θ′‖r−1 e
− ‖L‖2

2
dθ′

Vol (Sr−1)

dL

(2π)
nr
2
,

where dθ′ is the Euclidean measure on S(V ′), dL is the Lebesgue measure on V ′ ⊗ V ∗ and

L′ is defined as in (B.4).
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Proof. Fixing some φ, we see from (B.5) and (B.1) that:

E[φ(L, θ′)] =

∫

L∈B

∫

θ∈S(ker(L)⊥)

φ

(

L,
(L†)∗θ

‖(L†)∗θ‖

)

e−
‖L‖2

2
dθ

Vol (Sr−1)

dL

(2π)
nr
2
.

Then we make the change of variables θ′ = ψ(θ) =
(L†)∗θ

‖(L†)∗θ‖ in the innermost integral, with

L fixed. Recalling (B.2), we have ψ−1 : θ′ 7→ L∗θ′

‖L∗θ′‖ from S(V ′) to S(ker(L)⊥). Now, the

differential of ψ−1 at θ′ ∈ S(V ′) satisfies:

∀v ∈ (R · θ′)⊥, dθ′(ψ−1) · v =
1

‖L∗θ′‖

(

L∗v −
〈

L∗v ,
L∗θ′

‖L∗θ′‖

〉

L∗θ′

‖L∗θ′‖

)

=
πθ(L

∗v)

‖L∗θ′‖ .

As above, we choose an orthonormal basis
(

e′1, . . . , e
′
r−1

)

of (R · θ′)⊥ and an orthonormal

basis (e1, . . . , er−1) of (R · θ ⊕ ker(L))
⊥
. In these coordinates we have:

∣

∣det(dθ′(ψ−1))
∣

∣ =

∣

∣

∣det
(

πθ ◦ L∗
/(θ′)⊥

)∣

∣

∣

‖L∗θ′‖r−1 =
|det(A∗)|
‖L∗θ′‖r−1 =

|det(A)|
‖L∗θ′‖r−1 =

∣

∣det⊥ (L′)
∣

∣

‖L∗θ′‖r−1 ,

where A is as in (B.3) and L′ as in (B.4). This proves (B.6).

We can now compute the joint distribution of
(∣

∣det⊥ (L′)
∣

∣ , θ′, ‖L∗θ′‖
)

from the one of
(L, θ′). We fix θ′ ∈ S(V ′) and an orthonormal basis (e′1, . . . e

′
r) of V

′ such that e′r = θ′. The
choice of L ∈ V ′ ⊗ V ∗ is equivalent to the choice of the r independent standard Gaussian
vectors L∗e′1, . . . , L

∗e′r in V . For simplicity, we set Li = L∗e′i. Note that if we choose a basis
for V as well, these are the rows of the matrix of L. We can rewrite (B.6) as:

E[φ(L, θ′)] =

∫

θ′∈S(V ′)

∫

L1,...,Lr−1∈V

∫

Lr∈V

φ(L, θ′)

∣

∣det⊥ (L′)
∣

∣

‖Lr‖r−1

e−
1
2

∑‖Li‖2

dθ′

Vol (Sr−1)

dL1 · · · dLr

(2π)
nr
2

,

where dLi denotes the Lebesgue measure in the i-th copy of V . We set αr = Lr

‖Lr‖ and

ρr = ‖Lr‖. Here, L′ = πθ′ ◦ L ◦ παr
depends on αr and θ′ but not on ρr. Making a polar

change of variables, the above integral equals:

∫

θ′∈S(V ′)
αr∈S(V )

L1,...,Lr−1∈V

∫ +∞

ρr=0

φ(L, θ′)
(ρr)

n−r
e−

ρ2r
2 dρr

(2π)
n−r+1

2

e−
1
2

∑r−1
i=1 ‖Li‖2 ∣

∣det⊥ (L′)
∣

∣

Vol (Sr−1)

dθ′ dαr dL1 · · ·dLr−1

(2π)
(n+1)(r−1)

2

.

Then, ρr = ‖L∗θ′‖ is independent of (θ′, αr, L1, . . . , Lr−1), hence of
(

θ′,
∣

∣det⊥ (L′)
∣

∣

)

.
Moreover ρr is distributed as the norm of a standard Gaussian in Rn−r+1, since it has the
same density. Finally, (θ′, αr, L1, . . . , Lr−1) has the density:

(θ′, αr, L1, . . . , Lr−1) 7→
e−

1
2

∑r−1
i=1 ‖Li‖2

(2π)
(n+1)(r−1)

2

∣

∣det⊥ (L′)
∣

∣

Vol (Sr−1)Vol (Sn−r)

with respect to dθ′ ⊗ dαr ⊗ dL1 ⊗ · · · ⊗ dLr−1.
For i ∈ {1, . . . , r−1} we denote by L⊥

i the orthogonal projection of Li onto the orthogonal
of the subspace spanned by (αr, L1, . . . , Li−1).

Lemma B.2. For any L ∈ B,
∣

∣det⊥ (L′)
∣

∣ =
∥

∥L⊥
1

∥

∥ · · ·
∥

∥L⊥
r−1

∥

∥.
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Proof. If one of the L⊥
i is zero, then the vectors αr, L1, . . . , Lr−1 are linearly dependent and

L is singular. Since we assumed L ∈ B this is not the case and

(

L⊥
1

‖L⊥
1 ‖ , . . . ,

L⊥
r−1

‖L⊥
r−1‖

)

is

an orthonormal basis of ker(L′)⊥. Writing the matrix of the restriction of L′ to ker(L′)⊥

in this basis and
(

e′1, . . . , e
′
r−1

)

, we see that it is lower triangular with diagonal coefficients
∥

∥L⊥
1

∥

∥,. . . ,
∥

∥L⊥
r−1

∥

∥. This proves the lemma.

Let φ be a continuous bounded function from S(V ′)× R+ to R. We have:

E
[

φ
(

θ′,
∣

∣det⊥ (L′)
∣

∣

)]

=

∫

φ
(

θ′,
∣

∣det⊥ (L′)
∣

∣

) e−
1
2

∑r−1
i=1 ‖Li‖2 ∣

∣det⊥ (L′)
∣

∣

(2π)
(n+1)(r−1)

2

dθ′ dαr dL1 . . . dLr−1

Vol (Sr−1)Vol (Sn−r)

=

∫

αr ,θ′

∫

L⊥
1

. . .

∫

L⊥
r−1

φ

(

θ′,
r−1
∏

i=1

∥

∥L⊥
i

∥

∥

)

e−
1
2

∑r−1
i=1 ‖L⊥

i ‖2
∏r−1

i=1

∥

∥L⊥
i

∥

∥

(2π)
(2n+2−r)(r−1)

4

dL⊥
r−1 . . .dL

⊥
1 dθ′ dαr

Vol (Sr−1)Vol (Sn−r)
.

Then we make polar changes of variables: for each i we set ρi =
∥

∥L⊥
i

∥

∥ and αi =
L⊥
i

∥

∥L⊥
i

∥

∥

.

Note that, when L1, . . . , Li−1 are fixed, L⊥
i is a vector in a space of dimension n − i. We

have:

E
[

φ
(

θ′,
∣

∣det⊥ (L′)
∣

∣

)]

=

∫

φ

(

θ′,
r−1
∏

i=1

ρi

)

e−
1
2

∑r−1
i=1 ρ2

i

∏r−1
i=1 (ρi)

n−i

(2π)
(2n+2−r)(r−1)

4

dρ1 . . . dρr−1 dα1 . . .dαr dθ
′

Vol (Sr−1)Vol (Sn−r)

=

∫

ρ1,...,ρr−1,θ′
φ

(

θ′,
r−1
∏

i=1

ρi

)

r−1
∏

i=1



Vol
(

Sn−i
) e−

ρ2i
2 (ρi)

n−i

(2π)
n+1−i

2



 dρ1 . . .dρr−1
dθ′

Vol (Sr−1)
.

This shows that θ′, ρ1, . . . , ρr−1 are independent variables, that θ′ is uniformly distributed
in S(V ′) and that, for all i ∈ {1, . . . , r − 1}, ρi is distributed as the norm of a standard

Gaussian vector in Rn+1−i. Finally, this shows that
∣

∣det⊥ (L′)
∣

∣ is distributed as

r−1
∏

i=1

ρi.

Putting all we have done so far together, we see that
(∣

∣det⊥ (L)
∣

∣ , L†∗U
)

is distributed

as

(

‖Xn‖ · · · ‖Xn−r+1‖ ,
ρθ′

‖Xn−r+1‖

)

, where Xp is a standard Gaussian vector in Rp for all

p. Moreover, θ′ is uniformly distributed in S(V ′), ρ is distributed as the norm of a standard
Gaussian vector in Rr, and all these variables are globally independent. Finally U ′ = ρθ′ is a
standard Gaussian in V ′, independent of Xn, . . . , Xn−r+1 so we have proved Proposition 5.8.
An immediate corollary of this is the following.

Corollary B.3. Let V and V ′ be two Euclidean spaces of dimension n and r respec-

tively, with 1 6 r 6 n. Let L ∼ N (0, Id) in V ′ ⊗ V ∗. Then
∣

∣det⊥ (L)
∣

∣ is distributed as

‖Xn−r+1‖ · · · ‖Xn‖, where for all p ∈ {n − r + 1, . . . , n}, Xp ∼ N (0, Id) in Rp and these

vectors are globally independent.

C Proof of the Kac–Rice formula

In this appendix, we give a proof of the Kac–Rice formula using Federer’s coarea formula.
This was already done by Bleher, Shiffman and Zelditch in [5, thm. 4.2]. See also [1, chap. 6].
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C.1 The coarea formula

We start by stating the coarea formula in the case of a smooth map between smooth Rie-
mannian manifolds. A proof in this special case can be found in [19, Appendix] (see [11,
thm. 3.2.12] for the general case).

Let π : M̃ → M be a smooth map between smooth Riemannian manifolds of respective
dimensions m and n. We assume that m > n. Let |dVM̃ | (resp. |dVM |) denote the Rieman-

nian measure on M̃ (resp. M) induced by its metric. By Sard’s theorem, for almost every
y ∈M , π−1(y) is a smooth submanifold of dimension (m−n) of M̃ . For such y ∈M , we de-
note by |dVy| the Riemannian measure on π−1(y) induced by the metric of M̃ . When m = n,

the dimension π−1(y) is 0 and |dVy | is just
∑

x∈π−1(y)

δx, where δx is the Dirac measure at x.

Theorem C.1 (Coarea formula, Federer). Let π : M̃ →M be a smooth map between smooth

Riemannian manifolds of dimension m and n respectively, with m > n. Let φ : M̃ → R be

a Borel measurable function. Then:

∫

x∈M̃

φ(x)
∣

∣det⊥ (dxπ)
∣

∣ |dVM̃ | =
∫

y∈M

(

∫

x∈π−1(y)

φ(x) |dVy|
)

|dVM | ,

whenever one of these integrals is well-defined.

Note that the innermost integral on the right-hand side is only defined almost everywhere.

C.2 The double-fibration trick

We now describe the double-fibration trick, which consists in applying the coarea formula
twice, for different fibrations. Let M1 and M2 be two smooth Riemannian manifolds of
dimension n1 and n2 respectively. Let F :M1 ×M2 → Rr be a smooth submersion, and let
Σ = F−1(0). We equip Σ with the restriction of the product metric onM1×M2 and denote by
|dVM1 |, |dVM2 | and |dVΣ| the Riemannian measures on the corresponding manifolds. Finally,
let π1 : Σ → M1 and π2 : Σ → M2 be the projections from Σ to each factor. Assuming
that r 6 min(n1, n2), we have dim(Σ) = n1 + n2 − r > max(n1, n2). Thus we can apply the
coarea formula both to π1 and π2.

Let φ : Σ → R be a Borel measurable function, then:

(C.1)

∫

y1∈M1

(

∫

x∈π−1
1 (y1)

φ(x) |dVy1 |
)

|dVM1 | =
∫

x∈Σ

φ(x)
∣

∣det⊥ (dxπ1)
∣

∣ |dVΣ|

=

∫

y2∈M2

(

∫

x∈π−1
2 (y2)

φ(x)

∣

∣det⊥ (dxπ1)
∣

∣

|det⊥ (dxπ2)|
|dVy2 |

)

|dVM2 | ,

whenever one of these integrals is well-defined. Note that if
∣

∣det⊥ (dxπ2)
∣

∣ vanishes then π2(x)
is a critical value of π2, and the set of such critical values has measure 0 in M2.

We would like the integrand on the right-hand side to depend on F rather than on π1
and π2. Let ∂1F and ∂2F denote the partial differentials of F with respect to the first and
second variable respectively. For any x = (x1, x2) ∈ Σ,

TxΣ = {(v1, v2) ∈ Tx1M1 × Tx2M2 | ∂1F (x) · v1 + ∂2F (x) · v2 = 0} .

Lemma C.2. Let x ∈ Σ, then
∣

∣det⊥ (dxπ2)
∣

∣ = 0 if and only if
∣

∣det⊥ (∂1F (x))
∣

∣ = 0. More-

over,

(C.2)
∣

∣det⊥ (dxπ1)
∣

∣

∣

∣det⊥ (∂1F (x))
∣

∣ =
∣

∣det⊥ (dxπ2)
∣

∣

∣

∣det⊥ (∂2F (x))
∣

∣ .
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Proof. First note that dxF = ∂1F (x) ◦ dxπ1 + ∂2F (x) ◦ dxπ2 = 0 on TxΣ. This shows that:

ker(dxπ1) = {0} × ker(∂2F (x)) and ker(dxπ2) = ker(∂1F (x)) × {0}.(C.3)

The space TxΣ splits as the following orthogonal direct sum:

(C.4) TxΣ = ker(dxπ1)⊕ ker(dxπ2)⊕G,

where G is the orthogonal complement of ker(dxπ1)⊕ ker(dxπ2) in TxΣ.
Then,

∣

∣det⊥ (dxπ2)
∣

∣ = 0 if and only if dxπ2 is not onto. Recalling that dim(M2) = n2

and dim(Σ) = n1 + n2 − r, this is equivalent to dim(ker(dxπ2)) > n1 − r. In the same
way,

∣

∣det⊥ (∂1F (x))
∣

∣ = 0 if and only if dim(ker(∂1F (x))) > n1 − r. But the kernels of

dxπ2 and ∂1F (x) have the same dimension by (C.3), so that
∣

∣det⊥ (dxπ2)
∣

∣ = 0 if and only

if
∣

∣det⊥ (∂1F (x))
∣

∣ = 0. A similar argument shows that
∣

∣det⊥ (dxπ1)
∣

∣ = 0 if and only if
∣

∣det⊥ (∂2F (x))
∣

∣ = 0. Thus the lemma is true if any of the four maps in (C.2) is singular.
From now on, we assume that these maps are all surjective. In this case, we have:

dim(ker(∂2F (x))) = dim(ker(dxπ1)) = n2 − r,

dim(ker(∂1F (x))) = dim(ker(dxπ2)) = n1 − r,

and

dim(G) = r.

We choose an orthonormal basis of TxM1 adapted to ker(∂1F (x)) ⊕ ker(∂1F (x))
⊥ and an

orthonormal basis of TxM2 adapted to ker(∂2F (x))⊕ ker(∂2F (x))
⊥. From these, we deduce

orthonormal bases of

ker(dxπ1) = {0} × ker(∂2F (x)) and ker(dxπ2) = ker(∂1F (x))× {0}.

Finally we complete the resulting basis of ker(dxπ1) ⊕ ker(dxπ2) in an orthonormal basis
of TxΣ adapted to the splitting (C.4). In these bases the matrix of dxπ1 has the form
(

0 In1−r A1

0 0 B1

)

where In1−r stands for the identity matrix of size n1 − r. Similarly, the

matrix of dxπ2 has the form

(

In2−r 0 A2

0 0 B2

)

, and the matrices of ∂1F (x) and ∂2F (x) have

the form
(

0 C1

)

and
(

0 C2

)

respectively. Thus B1, B2, C1 and C2 are square matrices
satisfying the following relations:

∣

∣det⊥ (dxπ1)
∣

∣ = |det(B1)| ,
∣

∣det⊥ (∂1F (x))
∣

∣ = |det(C1)| ,
∣

∣det⊥ (dxπ2)
∣

∣ = |det(B2)| ,
∣

∣det⊥ (∂2F (x))
∣

∣ = |det(C2)| .

Besides the relation ∂1F (x) ◦ dxπ1 + ∂2F (x) ◦ dxπ2 = 0 means that C1B1 = −C2B2, hence
|det(C1)| |det(B1)| = |det(C2)| |det(B2)|. This proves (C.2).

An immediate consequence of (C.1) and (C.2) is the following.

Proposition C.3. Let M1 and M2 be two smooth Riemannian manifolds of dimension n1

and n2 respectively. Let F : M1 ×M2 → Rr be a smooth submersion, and let Σ = F−1(0).
Let φ : Σ → R be a Borel measurable function. Then:

∫

y1∈M1

(

∫

π−1
1 (y1)

φ(x) |dVy1 |
)

|dVM1 | =
∫

y2∈M2

(

∫

π−1
2 (y2)

φ(x)

∣

∣det⊥ (∂2F (x))
∣

∣

|det⊥ (∂1F (x))|
|dVy2 |

)

|dVM2 | ,

whenever one of these integrals is well-defined.
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C.3 Proof of Theorem 5.3

Finally, we prove Theorem 5.3. Let M be a closed Riemannian manifold of dimension n and
V be a subspace of C∞(M,Rr) of dimension N (recall that 1 6 r 6 n). We assume that V
is 0-ample, so that F : (f, x) 7→ f(x) is a smooth submersion from V ×M to Rr and

Σ = F−1(0) = {(f, x) ∈ V ×M | f(x) = 0}

is a submanifold of codimension r of V ×M . Let df denote the Lebesgue measure on V or
on a subspace of V . Let φ : Σ → R be a Borel measurable function, by Proposition C.3,

E

[

∫

x∈Zf

φ(f, x) |dVf |
]

=
1

(2π)
N
2

∫

f∈V

(

∫

x∈Zf

φ(f, x)e−
‖f‖2

2 |dVf |
)

df

=
1

(2π)
N
2

∫

x∈M

(

∫

f∈ker(j0x)

φ(f, x)e−
‖f‖2

2

∣

∣det⊥ (∂2F (x))
∣

∣

|det⊥ (∂1F (x))|
df

)

|dVM | .

Recall that for all x ∈M , j0x : f 7→ f(x) is onto, since V is 0-ample. In particular, ker(j0x)
has codimension r and V splits as ker(j0x) ⊕ ker(j0x)

⊥. We recognize the innermost integral
to be a conditional expectation given f(x) = 0 (see Corollary A.11). Thus,

(C.5) E

[

∫

x∈Zf

φ(f, x) |dVf |
]

=
1

(2π)
r
2

∫

x∈M

E

[

φ(f, x)

∣

∣det⊥ (∂2F (x))
∣

∣

|det⊥ (∂1F (x))|

∣

∣

∣

∣

∣

f(x) = 0

]

|dVM | .

By equation (2.4),
∣

∣det⊥ (∂2F (x))
∣

∣ =
∣

∣det⊥ (dxf)
∣

∣ and

(C.6)
∣

∣det⊥ (∂1F (x))
∣

∣ =
∣

∣det⊥
(

j0x
)∣

∣ =
√

det (j0x(j
0
x)

∗).

Since f ∼ N (0, Id), equation (A.8) shows that j0xj
0∗
x is the variance operator of f(x) = j0x(f).

Then, by (2.9), det
(

j0x(j
0
x)

∗) = det(Var(f(x))) = det(E(x, x)). In particular, this quantity
does not depend on f ∈ V . Equations (C.5), (C.6) and this last equality prove Theorem 5.3.
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