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Abstract

Developing new rare-earth ions-doped optical fibres for power amplifiers and lasers requires continuous improvements
in fibres spectroscopic properties. To overcome some limitations inherent to silica glass, it is proposed to embed rare-
earth ions in dielectric nanoparticles. In this article we focus on the modifications of theEr3+ ions spectroscopy in
Mg-silicate nanoparticles doped into optical fiber preforms. Through EXAFS and fluorescence measurements, we
demonstrate that different local environments are experienced byEr3+ ions, attributed to the depolymerization of the
phosphate network. These results gain insight into the tayloring of luminescence properties.
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1. Introduction

Developing new rare-earth ions (RE)-doped optical
fibres for power amplifiers and lasers requires contin-
uous improvements in the fibres spectroscopic proper-
ties besides reduction in device size and economical ef-
ficiency. However, some potential applications of RE-
doped fibres suffer from limitations in terms of spectro-
scopic properties resulting from RE clustering or inap-
propriate local environment when they are inserted into
silica. An interesting solution consists in using silica
as a mechanical host and support of the fibre optical
waveguide, and in embedding RE-ions within nanopar-
ticles (NP) of appropriate composition and structure
[1, 2, 3].
The original route proposed by LPMC to obtain NP
in fibres is based on the industrial MCVD (Modified
Chemical Vapor Deposition) process. As silicate sys-
tems have a strong stable immiscibility when they con-
tain divalent metal oxides, we take advantage of thermal
treatments inherent to this process to obtain NP through
the phase separation mechanism. Through this route,
NP are grown in-situ within the material when alkaline-
earth ions (Mg, Ca and Sr) are incorporated into the fi-
bre core [4, 5, 6]. In particular cases the effect of the

∗Corresponding author. Tel.:+33-492-076-799; Fax.:+33-492-
076-754

Email address: wilfried.blanc@unice.fr (W. Blanc)

divalent metal is also to prevent the clustering ofEr3+

in phosphate phases as shown for similar samples in [7].
In these samples, the spectroscopic behaviour ofEr3+

ions depends on the concentration of the alkaline-earth
ions [8]. To explain these modifications, we study, in
this article, the local order aroundEr3+ by Extended X-
ray Absorption Spectroscopy (EXAFS) which permits
to cast a link between local geometry and optical re-
sponse. EXAFS at theEr − LIII edge has already re-
vealed to be effective in the description of the site of
Er3+ [7] and Yb3+ [2] in optical fibre preforms with
nanoparticles obtained by phase separation. It revealed
a marked affinity between the RE and phosphate phases.

2. Experimental

2.1. Sample preparation

Preforms were fabricated by the conventional MVCD
technique [9]. The so-called ’solution doping tech-
nique’ [10] was applied to incorporate magnesium and
erbium ions: the core porous layer, doped withGeO2

and P2O5, is soaked with an alcoholic solution of
ErCl3 : 6H2O and MgCl2 : 6H2O of desired concen-
trations. After drying of the solvent, the core layer is
sintered down to a dense glass layer. Then the tube is
collapsed into a solid rod, referred to as preform, at an
elevated temperature higher than 1800◦C. Preforms are
stretched into 125-µm fibres using a drawing tower at
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Figure 1: SEM pictures of Mg-0.1 (left) and Mg-1.5 (right) preforms.

temperatures higher than 2000◦C under otherwise nor-
mal conditions. Here we report on samples labeled as
Mg-X doped with solutions containing X=0, 0.1, 0.3,
0.5, 0.7, 1 and 1.5 mol/l of MgCl2 salts. To inves-
tigate the role of phosphorus, two samples were pre-
pared without this element and are labeled Mg-XnoP.
Preform compositions were estimated from Energy Dis-
persive X-Ray measurements (160× 130µm2 scanned
area in the core) and Electron Probe Microanalyses. It
was found thatGeO2 andP2O5 mean concentrations are
0.8 mol% and 0.4 mol%, respectively.MgO concentra-
tion increases from 0.1 (Mg-0.1) to 5.5 mol% (Mg-1.5).
Doping with Mg leads to the formation of nanoparticles
in the core. SEM pictures for the Mg-0.1 and Mg-1.5
samples are presented in Fig.1. As previously observed,
the mean size of the nanoparticles increases with Mg
concentration [8]. It is about 50 nm in Mg-0.1 up to
hundreds of nm in Mg-1.5. Optical losses induced by
the NP have been discussed in a previous paper [8]. The
erbium concentration of 0.01 mol/l was kept constant in
the doping solution and the erbium ion concentration in
samples was previously estimated to be 200 ppm [8].

2.2. Photoluminescence

Emission spectra of Mg-doped core of the preforms
were recorded at room temperature. The beam from a
continuous 980 nm, 250-mW fiber-coupled laser diode
was coupled into the tested preform through a single-
mode fiber-coupler. The 1550 nm fluorescence was
collected from the second coupler arm and it was di-
rected, through an isolator, to an optical spectrum an-
alyzer (Anritsu MS9701C). The resolution of the OSA
was 1 nm. Emission spectra reported in Fig.2 are aver-
aged on twenty sweeps and the signal is smoothed on
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Figure 2: Emission spectra of Mg-doped preforms (continuous lines)
and fibres (dashed lines) recorded at room temperature. Excitation
wavelength is 980 nm. Each spectrum is shifted vertically by0.2.
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Figure 3: FWHM (triangles) and wavelength of the maximum of flu-
orescence intensity (squares)vs Mg concentration. Open symbols are
related to the samples without P.
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eleven points. FWHM and wavelength of the maximum
of fluorescence intensity are reported in Fig.3.

2.3. X-ray Absorption Spectroscopy
XAS measurements have been carried out at the

GILDA-CRG beamline BM08 at the European Syn-
chrotron Radiation Facility [11]. The monochromator
was equipped with a pair of Si(311) crystals and was
run in dynamical (horizontal) focusing mode [12]. The
harmonic rejection as well as the vertical focusing was
achieved by using a pair of Pd-coated mirrors with a cut-
off energyEcuto f f = 18keV. This optical arrangement
permitted to obtain a focal spot of about 200×200µm on
the sample location, small enough to probe the core of
the preform. The absorption coefficient was measured
in fluorescence mode by using an energy resolving de-
tector (12-elements array High Purity Ge). The spectra
are shown in Fig.4 whereas the related Fourier Trans-
forms are shown in Fig.5.
The structural model used for the quantitative data anal-
ysis is the same used in previous literature for this class
of systems [13, 14, 15]: a RE ion linked to aS iO4

tetradedron with a well defined Er-O distance and Er-
O-Si bond angle. Here we note that, due to the similar
backscattering amplitude and phase of Si, P and Mg it
is not possible to distinguish these three atoms in the
second coordination shell. The data analysis was car-
ried out with the ATHENA and ARTEMIS [16] codes
and the theoretical XAS paths were generated with the
Feff8.10 code [17] starting from theEr2S i2O7 crystal
structure [18]. The EXAFS signal was modelized by us-
ing the main scattering signals originating from the Er-
O-Si triangular configuration as thoroughly discussed in
[14]. The Debye Waller factor of the second shell was
fixed to 0.002 Å2 whereas the number of oxygen first
neighbors was linked to the Er-O bond length by using
the data from the Bond Valence Method (BVM, [19]).
BVM has been suggested in literature as an effective
method in XAS data analysis to reduce the correlation
between fit parameters [20]. By using the parameters
published in [21] the relationship between the number
of O atomsNO and the Er-O bond lengthREr−O can be
approximated as :

NO ≈ 63.343− 67.499× REr−O + 18.695× R2
Er−O

The results of the quantitative analysis are shown in
Table1.

3. Results and Discussion

From Fig.2 and Fig.3,Er3+ fluorescence properties
can be separated into three Mg-concentration domains.

Sample NO REr−O (Å) σ
2
O (Å2) REr−S i (Å)

Mg-0 4 2.30(2) 0.01(5) -
4 2.37(2) 0.01(5) -

Mg-0.1 7(1) 2.31(6) 0.013(6) 3.7(2)
Mg-0.3 6.9(7) 2.30(4) 0.013(4) 3.7(1)
Mg-0.5 6.9(7) 2.29(4) 0.011(4) 3.7(1)

Mg-0.5noP 6(1) 2.24(3) 0.006(1) 3.6(1)
Mg-0.7noP 7(1) 2.28(6) 0.014(6) 3.6(2)

Mg-1 6.3(7) 2.26(4) 0.012(4) 3.6(1)
Mg-1.5 6.2(7) 2.26(4) 0.012(4) 3.6(1)

Table 1: Results of the quantitative analysis of the EXAFS data. Sam-
ple Mg-0 is fitted with a crystallineErPO4 model.
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Figure 4: EXAFS spectra of the various Mg-doped samples (0.1-1.5)
compared with a sample without divalent codopant (Mg-0). For Mg-
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Figure 5: Fourier Transforms of the spectra shown in Fig.4. For Mg-
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At low concentration (Mg-0 and Mg-0.1), FWHM is
about 20-25 nm and the main peak position is at 1536
nm. These values correspond to those measured in a P-
doped silica fiber [22]. For intermediate Mg concentra-
tion (Mg-0.3 and Mg-0.5), FWHM increases up to 45-
50 nm, the peak position shifts to shorter wavelengths
and the spectrum appears poorly structured. As par-
ticle sizes increase compare to previous samples, one
may expect that the fluorescence spectrum could be in-
fluenced by reabsorption effect. However, this effect
would shift peak position to longer wavelengths. For the
highest Mg concentration (Mg-1 and Mg-1.5), FWHM
and peak position values are 35-40 nm and 1533 nm, re-
spectively, whereas structures appear in the long wave-
length side of the line. These two values are close
to those reported for samples without P (open sym-
bols in Fig.3). They can also be compared with values
reported for alumino-germano-silicate fibre (type II in
[22]): FWHM and peak position are 40 nm and 1533
nm, respectively.
The EXAFS spectra (Fig.4) show less differences re-
spect to optical fluorescence with the exception of Mg-
0 sample which contains more oscillating components
than the others as also confirmed by the Fourier Trans-
form (FT) (Fig.5). As previously reported for this sam-
ple [7], the additional signals above the first coordina-
tion shells are due to the formation of nuclei with the
ErPO4 structure. This P-cage effect has been already
reported [23]. However, the fluorescence spectrum of
Mg-0 does not present any features of crystalline phase
[24] suggesting that this phase is not spatially extended
and consist of only a few coordination shells (around
4-5 Å ). The Mg-doped samples exhibit a dominant os-
cillation due to a Er-O coordination shell (Fig. 4). The
FT confirms this idea as it shows only a dominant main
peak at about 1.8 Å (Fig. 5). This situation is typical of
rare-earth ions embedded in a glassy matrix. By increas-
ing Mg concentration,REr−O smoothly decreases from
2.31 down to 2.26 Å and the resultingN0 decreases from
7 to 6 (Table 1).
Both fluorescence and EXAFS measurements demon-
strate thatEr3+ ions experience different environements
with Mg concentration. In the Mg-0 sample, a well or-
ganised solvation shell is formed by P around Er as al-
ready observed with this RE [23, 24] and Yb [2]. In the
Mg-doped samples, the composition of the environment
can not be determined exactly from EXAFS measure-
ments as Mg, Si and P can not be distinguished with
EXAFS analyses. However, we have reported that, in
Mg-doped samples, Er ions are located in the nanopar-
ticles which contain also P and Mg ions [25]. Concen-
trations of these three elements in the NP are expected to

be higher than the mean concentrations reported in 2.1.
Then, Mg-0.3 and Mg-0.5 results could be explained
by assuming a P-rich and/or well polymerized environ-
ment. Indeed, the degree of glass polymerization has
been found to be correlated to the RE-O bond length in
phosphate glasses [26]. In the case of ultraphosphate
glasses,N0=7.3 andREr−O=2.29 Å have been reported
by [26], in accordance with Mg-intermediate concen-
tration results. Moreover, FWHM ofEr3+ emission
bands in phosphate glasses is usually larger compare
to those reported in silicate [27]. When Mg concen-
tration increases, phosphate network tends to depoly-
merize [28, 29]. In the less polymerized metaphosphate
glass,N0=6.3 andREr−O=2.23 Å [26], as observed for
the highest Mg concentration. FWHM tends also to
decrease when Mg is added to a phosphate glass [30].
However, for the highest Mg concentrations, the pres-
ence of P in the local environment of Er can not be as-
serted from these measurements as same characteristics
are obtained in P-doped samples (Mg-1 and Mg-1.5)
and P-free samples (Mg-0.5noP and Mg-0.7noP).

4. Conclusion

In this article we report on the modification of the er-
bium ions environment by changing Mg concentration.
Different environments are identified by comparing flu-
orescence and EXAFS measurements. These changes
are attributed to the depolymerization of the phosphate
network. These results gain insight into the tayloring of
luminescence properties of RE-doped optical fibres.
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