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Abstract. Flows around complex stationary/moving solids take an irigm place in life-
science context or in many engineering applications. Ugu#tese problems are solved by
body-fitted approaches on unstructured meshes with boyrmarditions directly imposed on
the domain boundary. Another way is using immersed boundBjyechniques: the physical
domain is immersed in a fixed fictitious one of simpler gegyr@trCartesian grids. It allows
to use efficient, fast and accurate numerical methods awgithe tedious task of re-meshing
in case of time varying geometry. In contrast, one needsifgpatethods to take into account
the IB conditions (IBC). Here, we propose a second order peed direct forcing method for
unsteady incompressible flows with Dirichlet’s IBC. It cstsin adding a penalized forcing
term to the initial problem, applied only on Cartesian nodesr the IB, in order to bring back
the variable to the imposed one. Regarding Navier-StokleIsousing a projection scheme,
the forcing term is distributed both in the velocity pre@atand in the correction equations. It
leads to a natural way to prescribe the pressure boundargitmms around obstacles. Numer-
ical experiments, performed for laminar flows around sfatioving solids, assess the validity
and illustrate the ability of our method, showing in parf@ua quadratic convergence rate.



C. Introini, M. Belliard,and C. Fournier

1 INTRODUCTION

Fluid flows with heat and mass transfers around/inside cexglationary or moving ge-
ometries appear in a large number of situations of pracintatest including biological fluid
mechanic application®(g.blood flow in heart) or engineering applicatiomsd. heat exchang-
ers, aerospace vehicles or nuclear safety). The numergzhtent of these kinds of problem
appears to be a challenging task because of time varying gfeies) often combined with com-
plex flow regimes. To tackle numerically these complex peotd, the well-known body-fitted
approach is usually followed. Such an approach consistssoreatizing the governing equa-
tions on a non-structured mesh for which the boundarieseo€timputational domain coincide
with those of the physical domain. Thereby, boundary comatare directly imposed on the
physical domain boundary. However, the main drawbacksebtidy-fitted like techniques lie
in their lack of ability to handle complex industrial probis involving moving bodies which
require the development of complex numerical schemes tbvdéathe difficult issue of re-
gridding.

Another approach consists in using non-boundary confagrteshniques in which the physi-
cal domain is immersed in a fixed fictitious one of simpler getsgnon Cartesian grids. Such
techniques allow to use efficient, fast and accurate nusmiariethods avoiding the tedious task
of re-meshing caused by time-varying geometries. In cehtes the physical boundaries are
described by a set of Lagrangian points that do not genetcallycide with those of the Eule-
rian grid or by a level-set function, numerical methods aeded to account for the Immersed
Boundary conditions (IBC). Roughly, the non-boundary confing techniques proposed in lit-
erature may be classified in two categories.

The first category, including for instance Cartesian mesi{ed. [1,[2]), the Immersed Interface
Method (IIM) [3] or the Jump Embedded Boundary Condition inoet (JEBC)[[4], mimicks the
presence of embedded geometries by modifying the numegbaime in the immediate vicin-
ity of the immersed interface. Such an approach leads tora siresentation of the immersed
interface.

In the second category, rather than changing locally theemizad scheme, a forcing term is
added in the governing equations. Since the Peskin’s piomgeeork of the Immersed Bound-
ary Method (IBM) [5], several IB like methods with differefdrcing terms (or forcing strate-
gies) have been proposed in literatueeg.the Goldstein’s Feedback Forcing methiod [6] or the
Direct Forcing (DF) method proposed by Mohd-Yugaf [7] aneitladapted by Fadluaal. [8].
The DF technique consists in directly applying the desiredngary conditions on the Carte-
sian nodes closest to the interface leading to a sharpersepation of the interface than in the
Peskin’s method. In that sense, by using the terminologyl@yed in [9], the DF method may
be referred to as a hybrid Cartesian/Immersed BoundaryBH&bproach. Since its develop-
ment by Mohd-Yusofi[7], the DF method have gained in poptyand have been successfully
applied to various fluid-structure interaction probleragy( [9, [10,[11,/12] 13, 14]). More
recently, Belliard & Fournier |15, 16] have proposed a vatriaf HCIB techniques, called Pe-
nalized Direct Forcing (PDF) method, that combines bothohsic features of the DF method
and those of B-penalty methodse(g. [17]). Links can be found with the works of Sarthou
& al. [18] and those of Bergmann & lolld [19].

In the present paper, after introducing the discretizatibthe governing equations in the
Section®, our PDF algorithm including the velocity reconstion near the immersed bound-
aries is detailed in the Secti@h 3. We have developed amatigbbust interpolation scheme,
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second-order accurate in space, that relies mainly on aage® reconstruction of the velocity
gradient near the IB and on an approximate projection opeaaito the IB. Finally, in Section
4, some2D numerical experiments are performed for laminar flows adéibetween solids to
assess the validity and the ability of the proposed methdid foo IBC. Without loss of gener-
ality, we restrict our presentation to Dirichlet’s IBCs. \&feow in particular that the numerical
rate of convergence is quasi-quadratic for all studiedsase

2 Governing equations and numerical scheme
In this section, we focus on the governing equations and wsent the resolution method,
based on a fractional step method, and the space and tinmetdiations.

2.1 Governing equations

The governing equations used to described unsteady inessipte flows around complex
obstacles) are the incompressible Navier-Stokes equations:

%—?+V-(u®u)+VP—l/V2u = f inQ (1a)
V-u = 0 inQ (1b)
u = upondandu(ty) givenin® (1c)

whereu denotes the solenoidal velocity andhe kinematic viscosity. Here abovg, is the

total pressure defined v P = Vp— pg wherep is the hydrodynamic pressupethe constant
density andg the gravity force. For clarity reason, we have assumed fulcBlet boundary
conditions and we will considdr= 0 in the rest of this paper.

2.2 Space and time discretization

The time advancement of the velocity is performed by meana dégenerate fourth -
order explicit Runge-Kutta scheme [20]. Givefi = u(t;) and2* = f (u), the new ve-
locity u"™' = u(ty + (n + 1)At) is obtained by:¥n € N, u"™' = u" + ¥3_ fiqx and
ar = Atf (0" + 35 1 Bnlm) + arar—1 With oy equals to), —5 and —2 and 5, equals
tol,1 and% for £ = 1,2 or 3 respectively. At each stageof the Runge-Kutta scheme, we
getf (u" + ...) by solving the coupléu, P) by a fractional step method, c.f. Sectlon2.2.1, for
which the temporal discretization is based on a semi-int@aheme: explicit discretization of
the convection term and implicit discretization of the dgion.

The space discretisation is based on a finite volume appesiomwith a staggered grid ar-
rangement of the primitive variabléa, P) (velocity components at the middle of the cell edges
and pressure at the cell center). In this frame, the govgrequations Eqg[l) are integrated
over each control volumes ensuring the conservation of raadsmomentum balance. The
convection and diffusion terms are respectively approaddhethe QUICK and the centered
schemes. We denote by a discrete space operatarAt each stagé = 0, .., 3 of the Runge-
Kutta scheme, the discrete form of the governing equatiorendy Eqs () reads

u* — uk—l

f ) = Vi in Q (2a)

ut — uk*l
N L (W 'eu) +V,PY = vVutinQ (2b)
Vip-u* = 0 inQ (2¢)
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with suitable boundary o, u* = u"+3f _, 8,,q,,, u* ! = u for k = 1 and(u™*!, P"*1) =
(u*, P*) fork = 3.

2.2.1 A projection algorithm

The fractional step method or projection method was intceduoy Chorin and Temam in
1968 for incompressible flowd [21, 22]. On the basis of their warlgny variants have been
proposed, as for example, the incremental projection noetboincompressible flows [23],
the projection schemes for dilatable or barotropic fluidé, [25] or, more recently, the novel
fractional time stepping technique massively parallelficompresible Navier-Stokes equations
developed by Guermond & Minel/|[26], to cite among other. Werréhe reader to [27] for a
recent review of these methods.

In our case, the first step of the algorithm consists in sghdarpredicted velocitya without
pressure gradient term as folldlvs

u—u”

At

+Vy-("®u")-vVia = 0 inQ (3a)
u = u"™! =uponoN (3b)

The second step of the algorithm corresponds to a correstige which consists in computing
a new pressur@"*! and recovering a new solenoidal velocity*'. By assuming that/Zu ~
VZumtl, this step reads

n+l _ 75

4 - Y _ _v,P*linQ (4a)
v, -u™ = 0inQ (4b)
n-u = n-u""'=n-upond (4c)

Finally, the correction EqsH) allows to compute the new velocity'™ as follows
u"t =1u - AtV, P in Q (5)

3 Penalized Direct Forcing

As previously mentioned, the immersed boundary techniqusists in immersing the phys-
ical domain in a fixed fictitious one. Here above, we will denby (2, the physical domain
(fluid) and by the fictitious domain discretized on a Cartesian mesh. Wetddrby(2, the
external domain (solid) defined 8y, = Q\Q;. The domaing2; and(), are separated by an
immersed boundar¥. discretized by a set of Lagrangian points. In the numerigpeaments
presented in the present paper, the interface trackingfierpged by means of a Front-Tracking
technique, c.f. for instance [28,129]. We will use subschifor discrete quantities.

To begin, we introduce in a first part the concept of the peedlidirect forcing method and
we present a fractional step method consistent with thelgedadirect forcing [15]. Then,
in a second part, we focus on the interpolation schemes ier aodreconstruct accurately the
velocity field (second order in space) near the immersed deryn A detailed presentation can
be found in [16].

1But it should be with the pressure at the previous time stegmaxtrapolation of the pressure as well.
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3.1 Penalized Direct Forcing

In the frame of immersed boundary-like methad< 15,17, 8],gbeerning equations used to
described unsteady incompressible flows around complexgties are given by:

a—uJrV-(u®u)+VP—1/V2u = F inQ, (6a)

ot
V-u = 0 inQ. (6b)
Egs. (@) are the incompressible Navier-Stokes E$.with a penalized forcing terrl' here
defined by[[15]:

F— 2
0

(u; —u) witha >0, 0 <n < Landy, — [0, 1] (7)

where x, is the characteristic function of the obstaclea penalty coefficient (in this work
n = 107'?) andu, the imposed fluid velocity around/inside the obstdeledepending on the
obstacle velocityu, but also on the fluid velocity following the requested accuracy. E[fl)
can be view as an implicit limit version of direct forcing egpsion|[7[_16]. The forcing term
F is only applied on Cartesian nodes near or inside the imrddysandary i(e. x,(x) > 0),
leading tou,;(x) = u(x). Outside, the classical incompressible Navier-Stokesitopus are
recovered in the fluid domai; (i.e. x(x) = 0).

3.2 Resolution of the Navier-Stokes equations: a consisteinactional step method

In this section, we propose a fractional step method to siblgeNavier-Stokes equations
Egs. (@) in the framework of the Penalized Direct Forcing. The newueaof our algorithm
is that the forcing term is distributed both in the prediotind the correction stages of the
projection. This leads to a natural consistent scheme ise¢hse that the immersed boundary
conditions are well satisfied not only by the predicted vi&yoin the prediction stage but also
by the new velocity at the end of the projection stage [30].

As usual, the first step of our scheme consists in solving digtedl velocitya, see Eqs@),

1

with the forcing term given by Edl) anda = %;:

u—u"

N + V- (u"®@u") - vVia =

X @t _q) inQ (8)

In this equation, the imposed fluid velocity’*! depends on the obstacle velocity and on
the fluid velocity around the obstacle. This dependency re fieated in an explicit time-
discretization way, solving first a free-obstacle expldtiS. equationsi(*). Then the imposed
velocity u ™! is expressed in terms of**! andu*. The solution of Eq(8) respects the Dirich-
let boundary conditions ob;, up to a given order depending on the space interpolatiomsehe
see Sectiof313.

The second step consists in a correction stage that readsials see Systerl), except for the

Eq. @3):

un+1 -1
At
that can be simplified as

A %(ﬁ w1 inQ 9)

un+1 _ ﬁ

ﬁT = —Vth+1 in Q. (10)
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This equation is similar td4d) with a modified densityy = (1 + /7). Therefore the rest of
the projection algorithm is similar to the standard one gisms modified density. In fact,
we get a consistent fractional step scheme in the sensehth@litichlet immersed boundary
condition is well satisfy by the new velocity"*! (not only byu) and that the homogeneous
Neumann immersed boundary condition is satisfy by the pressn the obstacles.

3.3 Reconstruction of velocity field: interpolation schems

The immersed boundaries are described by a set of Lagrapgiats which do not gener-
ally coincide with the nodes of the Eulerian mesh. Underdlm@sumstances, the velocity field
must be reconstructed near the immersed boundary in ordekeédanto account the immersed
boundary conditions. An simple approach consists in piteisgy directly the velocity of the
obstacleu, on the Cartesian nodes closest to the immersed boungawithout any interpo-
lation schemel]8] (referred here as the base model, firgr@dcurate in space). This model
leads to a stepwise description of the immersed interiace

Among the numerical algorithms proposed in literature wonstruct the velocity field in
the interfacial region, the most widely employed to imprale accuracy of the solution in
the neighborhood of’;, is based on an interpolation or an extrapolation procedrige (10,
8,130,119/ 12]) involving solid and fluid velocities to callate the velocity at the forcing
nodes. Unlike the classical approaches, consisting ina liokerpolation or extrapolation along
a specific direction (often the grid-line directions or thehogonal direction ontd:;), our
proposed linear interpolation method, second-order ateun space, involves an averaged
reconstruction of the velocity gradient near the immersaehidary [16]. The fluid contribution
is built following similar ideas used in_]30] and the solidntobution is determined by means
of a minimization problem. It consists in estimating the ompd fluid velocityu; at the forcing
or penalized node& according to

d(x) <~ u(xP — u, (s (xP 9
W) = wlis(0) + EV)Z =) o (i)

for x € Q such thaty,(x) > 0 andd(x) > 0 (11)

wherex? is thep-th fluid node in the immediate vicinity of the penalized nodeHence, we
take into account the local influence of the fluid flow aroundIy(x) denotes the projection
of x onto the immediate neighborhood Bf, and is defined throughout an algorithm based on
the following minimization problem:

Find z (= [Ix(x)) € 2 suchthat/(z) = inf J(y) (12)

yeQ

where J(-) is defined by € Q, J(y) = |ly — x||>. To tackle this minimization problem,
we patrtially reconstruct the immersed boundary in the imatedvicinity of x, collecting all
the Lagrangian facets: that belong to the cells intersected By aroundx and determining
for each of them his plan equati(ii;l:1 cmiy; = [m. Hered is the spatial dimension of the
problem,y; the coordinates of one vertex belonging to theh facet and:,,; the coordinates
of the unit normal vector at the centroid of this facet. Thendl the facets associated with the
Cartesian nodeg, we haveC -y ~ f.

To solve this minimization problem, we use an Uzawa algarithhich can be summarized as
follows:
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1. Initialisation ¢ = 0): we assume\’ = 0

2. k-th iteration: by assuming”* known, we are able to compute

« y**1 by solvingy*+! = x — %C - AF
x A py solving A"t = max [A* + o (C - y**' — £) , 0]

with o0 = (||C||1||C|l) " and\* the vectorial Lagrange multiplier &tth iteration associated
with the constrainC - y**! = f. There may be cases in which several Cartesian cells contain
a significant number of Lagrangian facets, for instance whemmesh is generated by CAD,
leading to a prohibitive CPU-time cost. To overcome thidiclifty, we only selects the most
representative facets and detects also those that aneeaolin order to remove the duplicate.
This algorithm is very robust and= Il (x) € ) converges toward € >, whenh is decreas-

ing.
4 Numerical experiments

This section is devoted to the numerical validation of theppised Penalized Direct Forcing
method. On the one hand, Poiseuille flow in an inclined chiargéndrical Couette flow and
steady flow around static/rotating cylinder are considéretsess the validity and the ability of
our method both for Dirichlet’s IBC. Grid convergence stsihave been done in order to obtain
the numerical rate of convergence of the method in thé)l.) norme, and the I°(2;) norm

£s0 Qiven bye, = \/ZZ 0 u —uref /\/ZZ 0 ief ande,, = maxp<i<n; (|uZ —uief|)
where the upperscriptdenotes thé-th face of the Eulerian griduf«ef a referenced velocity
calculated on the-th face andV; the total number of faces in the fluid regiéry. All these
academical numerical tests have been performed with bethridar interpolation scheme and
the base model. On the other hand, interestingly for prigiimgoses2D calculations involving
unsteady laminar flow and the interpolation scheme are prede

All the calculations have been performed by using the CFDecbupb.U developed at the
French “Commissariat aEEnergle Atomique et auEnergles AlternativesT]31].

4.1 Poiseuille flow in an inclined channel

Here, the problem under consideration is the well-knowhdase of a Poiseuille flow in an
inclined channelf = 7/4). The computational domainis define by2,UQ and the immersed
boundary by: = Q,NQ;. Null pressure boundary conditions are imposed@rexcept on the

entry where we prescribed the following parabolic velogity = (U, — Y?, 0)T with Y =
%, (X,Y) the system of coordinates in the frame associated with ttlenéd channel and
U, = 0.605 m.s~! the maximum velocity. For this numerical test, no-slip bdary condition
are imposed on the immersed boundari.e. u, = 0).

For a convergence study, four computational grid sizes baemn considered over the range
25.107% < h < 2.10~'. Fig[d represents the evolution of th&(2;) norme, and the ()
norme,, of the error. As expected, the proposed linear interpatatimdel leads to a quasi-
guadratic numerical rate of convergence while the numiesiceer of the method using the base
model is about one. We may remark that, as the whole, thesemathe case of the linear
interpolation model are at least one order of magnitudestetbsin the ones obtained with the
base model. Indeed, the approximation obtained in the dabe coarsest grid with the linear
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slope 3.2466 |

10°

Figure 1: Poiseuille flow in an inclined channef (2 ) norm (left) and L°°(£25) norm (right) of the errovs. the
computational grid sizé. Comparison of the linear interpolation model with the basalel.

interpolation model is very close to the one computed withliase model on the finest grid.
Therefore, for this test, the results clearly show that th@ppsed method coupled with the
linear interpolation model allows to obtain an accuratesoh at lower computational cost.

4.2 Taylor-Couette problem

Here, we focus on a steady flow between two rotating coneenyfinders, also called
Taylor-Couette flow. This problem has already been conedlén the frame of immersed
[10, [32]). The computational domain is defined by a square
Q=0Q,UQs =[0,L] x [0,L] in which are immersed the boundariEs and>, mimicking
the inner ; = 0.1m) and outer {; = 0.2m) cylinders, respectively. The lengthis about
2 (ry +r3). The inner cylinder rotates clockwise,(= 1s~!) while the outer cylinder rotates
in the counterclockwises, = —1s7!). In overall calculations, we assume that 1kg.m3,
pu = r1/R Pa.s and that the Reynolds number, defined®y= |w;|r?/v, is set to bel. Such
an assumption allows us to wrien < Ta. whereTa = 3/2 is the Taylor number defined by
Ta = 0.5R%(ry + r9)(re — r1)3/rf andTa, = 1.712 is the theoretical critical oné[83]. This
relation implies that the following simulations remainicy planes. Regarding the boundary
conditions, we prescribed symmetry conditions on the batied of the computational domain

boundary-like methodse(g.

base
slope 1 —=—~
slope 0.7982 -——---—- i
linear —+—
slope 2
slope 1.8759 e

T
10t b _ base 4
slope 1 —=—-
slope 1.9361 fffffff 102 |
102 | linear —+— |
& slope 2 ------- oF
slope 1.8785 -
3L
10° | . 10
1
102 10 10° 102

hiry

10t
hiry

10°

Figure 2: Taylor-Couette problem:?[Q;) norm (left) and 1°(Q¢) norm (right) of the errows. the ratio of the
computational grid sizé over the smallest radius. Comparison of the linear intexfimh model with the base

model.
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0f) and the following analytical velocities on the immersed tdaries>:; and>,: Vi = 1,2

u, = w;r;e, onY; wheree, is the radial unit vector. The flow is initially at rest and gerges
toward a steady state.

Here again, a grid convergence study have been done in ordstiinate the numerical order of
the proposed method. Five meshes have been consideretievange5.1072 < h/r; < 1071
whereh denotes the step size. Fig. 2 presents th&€l:) norme, and the 1°(£2;) norme,, of
the error. As in the case of the Poiseuille flow, a quasi-limesmerical rate of convergence is
obtained with the base model and a quasi-quadratic ratethattinear interpolation scheme.
Finally, as previously observed, the graphs presentedgil show that the calculations per-
formed on the coarsest grid with the linear interpolatidmesoe give better results (in terms of
the error magnitude) than those of the finest grid with the lmasdel.

4.3 Laminar flows around a cylinder

In this part, we are concerned with laminar flows around autarccylinder. This problem
has been the object of many experimental and numericalestudin the latter case, problems
involving steady and unsteady fluid flows past a static cgin@ceive a particular attention.
In contrast, to our knowledge, the case of fluid flows aroundtiray cylinder have been rarely
investigated.

In this paper, we consider laminar fluid flows around statid eotating cylinders. Let§ =
1m.s~! be the oncoming velocityp) = 1m the cylinder diameter and = 1/ m?.s™! the
kinematic viscosity of the fluid. Our simulations are pemi@d both in the steady laminar
regime (.e. R = 2 < 47 [33]) with ® = 20 and in the unsteady laminar regime with= 100

(p = lkg.m~3 andy = 1/R Pa.s). We also introduce the dimensionless numBén order to
characterize the rotation of solid. It is defined as the ratithe rotational velocitys over the
oncoming velocity and reads= g’—;j. Here, the rotational velocity is equal ta2s~! (5 = 1).
The computational domaifl corresponds to a square of lendthwith an immersed cylinder
centered at the coordinate origin. The boundaries of thepatational domaird$2 must be
located sufficiently far enough to reduce the impact of bampdonditions on vortex develop-
ment behind the cylindel [34]. In this work, the ratio of tead¢th . over the diameter of the
cylinder D is set to60. This allows us to obtain, with a reasonable computatioost,aesults
in good agreement with those given in literature. Symmetryddtions are prescribed af
except at th e in-flow boundary (uniform normal velocity = U and null tangential velocity)
and at the out-flow one (null pressure). Regarding the imeaesrichlet boundary conditions
on Y, we have:u, = %er wheree, is the radial unit vector. In the case of a non-rotating
cylinder (.e. w = 0), it boils down to a no-slip boundary condition.

4.3.1 Steady laminar case® = 20

Qualitatively, the linear interpolation model and the base provide similar results con-
cerning the flow pattern. F[g.3{a) shows the streamlinesotwa obtained with a static cylin-
der. In this case, the flow pattern is characterized by a gdwo steady symmetric vortices
attached to the surface of the cylinder in agreement withig¢belts proposed in literature.g.
[35,[13,[21 36/ 37,38]). The rotation of the cylinder diswthe flow pattern as illustrated in
Fig[3(b). The flow becomes asymmetric with especially, agete disappearing of the two
vortices located behind the cylinder in the static case. ighese results are in very good
agreement with[]2] and also concur with those published #].[3t this stage, we refer the
reader to the work of Stojkovi& al. [34] in order to understand the effect of rotation on the
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(a) Static cylinder (b) Rotating cylinder

Figure 3: Streamlines around rotating cylinder obtaineith Wie linear interpolation schem@&: = 20

D/h References
10 20 40 | [ | [@3] | [35] | [B6] | [B7] | [38]
base | 2.066 | 2.094 | 2.059
Cy inear | 2.035 1 2.071 1 2.054 2.03 | 2.02 | 2.06 | 2.06 | 2.00 | 2.09
L, | base| 0.82 | 0.98 | 0.925

7 [Minear| 0.92 | 0.01 0.9 09209 [1094{093 091 | -

Table 1: Hydrodynamic coefficients associated with the lemolof steady flow around static cylinder

flow around the cylinder. Quantitatively, the linear intelggtion model and the base one are
compared in terms of drag coefficief; = F,/0.5U2D (static and rotating cases), lift coef-
ficientC, = F,/0.5U2D (rotating case), recirculation lengfh, (static case) and direction of
the total forced = tan~*(C;/C;) (rotating case). Heref, andF, correspond respectively to
the tangential and normal components of the total f&fceThis comparison is done by using
three levels of refinement ranging frody/h = 10 to D/h = 40 with h the size of Cartesian
cells. The physical coefficients obtained with a staticraydir are summarized in Thb.1 and
confronted with the set of data proposed.in [35,[13, 1, 3638}, Whatever the number of cells
D/his, the linear interpolation model is in good agreement Widature concerning the eval-
uation of the couples of coefficient€’y, L.,/ D), whereas the finest grid resolution is required
by the base model. Tab.2 summarizes the obtained valu€g, @f; andé in the rotating case

D/h References
10 20 40 2] [34] [39] [40]
base | 1.8968 | 1.8703 | 1.8608
Cy | linear | 1.9104 | 1.8746 | 1.8679 1888 |~ 1.85 ) 1.925 | 2.000
base | 3.0284 | 3.1097 | 2.9419
Cl Minear| 2.6248 | 2.7740 [ 2.7745 | 2629 | ~ 275 | 2617 | 2.740
base | 57.93° | 58.97° | 57.68°

Y Minear[ 53.957 | 55.05° [ 56.05° | ~+317 | ~ 567 | 53.667 | 53.87

Table 2: Hydrodynamic coefficients associated with the |emolof steady flow around rotating cylinder
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and are compared with those givenlinl[34] 2,39, 40]. The todrsrved is similar to the one
previously noted in the static case and, as expected, tharlinterpolation model yields better
results than the base model.

Restricting ourselves to the behavior of the penalizedctii@cing method, a smaller com-

10t
102 F
= =
510 p 5
2 S 10°
(5] [}
o~ o~
- -
slope 1.19 ------- base ——
base —— slope 1.38 -------
108 F linear —»— | 104 | linear —«— |
slope 1.93 ------- slope 2.31 -------
10 10" 10° 10
h/D h/iD

Figure 4: Static case: A({2f) norm error of the streamwise (left) and spanwise (right) velocity components
vs. the ratio of the computational grid sizeover the smallest radius. Errors calculated on the whold @omain.
Comparison of the linear interpolation model with the baselah.

107 10t |
S S
5 5
s @
8 8
=107 | ~ 107 |
slope 0.81 ------- slope 0.84 -------
base —— base ——
linear —— linear —»—
3 slope 1.27 ------- 3 slope 1.35 -------
107 £ E 10° Lk i
10 10" 10° 10
h/D h/D

Figure 5: Static case:E(€2;) norm error of the streamwise (left) and spanwise (right) velocity components
vs.the ratio of the computational grid sizeover the smallest radius. Errors calculated on the whold omain.
Comparison of the linear interpolation model with the baseleh.

putational domain is chosen, namély= [-10D, 10D] x [-10D, 10D], to perform a grid
convergence study, allowing to consider fine grids with aeeable computational cost. Finest
grid solution is chosen as the reference solution to comimeerror norms, ande,.. Five
levels of refinement are used ranging frémD = 10~ to h/D = 6.25 x 1073, Figl4 and
Fig[d presents, respectively, the evolution of error noemand ., measured on the whole
fluid domain. As expected, the numerical rate of convergémde norm of the method em-
ployed with the linear interpolation scheme is consisteittt the second order in space and the
one calculated with the base model is slightly higher that. oHowever, the convergence in
L norm is lower with a numerical rate of convergence close ® fon the both approaches.
But, as previously point out, the linear interpolation soleeon the coarsest grid is again more
accurate than the base model on the finest grid. In fact, ifamepaite thes,, norm on90% of
the fluid domain (far from the immersed boundary), the nuoa¢rate of convergence tends to
the second order for the linear interpolation scheme (1087 find 1.84 for). This indicates

11
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that the maximum of the error is located in the immediatenitgiof the immersed interface, as
already pointed out in the frame of Cartesian methods by ¢had Botellal|32]. Concerning
the case of the rotating cylinder, Hiy.6 and Hig.7 presemetolution of thes; ande,, norms
measured on the whole fluid domain. These results confirmrémel tobserved with a static
cylinder. The error norm, is about 1.87 fow: et 1.84 forv.

10
,,,,, 107
= =
T 102+ <
e o
@ @
o ~ 10°%F
- -
slope 1.31 -=----- base ——
base —— slope 1.24 -------
108 F linear —— | linear ——
slope 1.91 ------- slope 1.88 -------
-2 -1 10 -2 -1
10 10 10 10
h/D h/D

Figure 6: Rotating case:2(Q ;) norm error of the streamwise(left) and spanwise (right) velocity components
vs.the ratio of the computational grid sizeover the smallest radius. Errors calculated on the whold @omain.
Comparison of the linear interpolation model with the baselah.

L” error (u)

102k
slope 1.01 ------- slope 1.06 -------
base —+— base —+—
linear —— linear —»—
slope 1.51 ------- slope 1.80 -------
10°%E E 0%k E
102 10 1072 10
h/D h/D

Figure 7: Rotating case:°E(£2¢) norm error of the streamwise(left) and spanwise (right) velocity components
vs.the ratio of the computational grid sizeover the smallest radius. Errors calculated on the whold omain.
Comparison of the linear interpolation model with the baseleh.

4.3.2 Unsteady laminar case® = 100

Here we face the simulation of the unsteady regime wite= 100, using only the linear
interpolation model. The geometrical features are idahtiw those considered previously in
the steady case and all the calculations have been donerxy aision-uniform grid with fifty
Cartesian cells in the diameter of the cylinder.

Fig[8 presents an instantaneous view of vorticity contodnse flow pattern is characterized
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4.0
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Z.Dé
l.ﬂé
) 0.!3%
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(a) Static cylinder (solid lines: negative contours ; dbffie) Rotating cylinder (solid lines: negative contours ;
lines: positive contours) dotted lines: positive contours)

Figure 8: Vorticity contours around static and rotatingregiers: ) = 100

by the well-known Karman vortex street.§. [34,[36,[2,18[ 12, 32, 714] in the static case
and [34, 2] 41] in the rotating case) which are well capturgdir immersed boundary tech-
nique. TaliB (static case) and Tab.4 (rotating case) préisem averaged drag coefficiet;,
time averaged lift coefficient’, the amplitude of their fluctuations, andC; and the Strouhal
numberSt = fD/U which is the dimensionless number used to characterizehtbdding
frequencyf estimated from the periodic variation of the lift coefficigry. The values of hy-
drodynamic coefficients obtained with the proposed peedldirect forcing method are in good
agreement with those published in literature.

Present References

results [34] [36] 2] [13] [12] [32] [14]
C, | 1.347 1.3371 1.34 1.392 1.34 1.35 1.317 1.3757
C(’i +0.009 | +0.0091 | 0.009 — +0.011 | £0.012 | £0.009 | +0.0096
Cl’ 0.326 0.3259 0.333 — 0.315 0.303 0.349 0.3393
St | 0.165 0.165 0.166 | 0.172 | 0.164 0.167 0.170 0.1692

Table 3: Hydrodynamic coefficients associated with the lemolof unsteady flow around static cylinder

Present References

results| [34] 2] [41]
c,;l 1.12 1.1080 1.189 1.0979
C, | £0.11 | £0.0986 | £0.1195 | £0.0988
C; | 251 2.504 2.405 2.4833
C, | +£0.37 | £0.3616 | 0.4427 | +0.3603
St | 0.165 | 0.1658 | 0.1732 | 0.1650

Table 4: Hydrodynamic coefficients associated with the lenotof unsteady flow around rotating cylinder

5 CONCLUSIONS

In this paper, we have presented the Penalized Direct Fprogthod, using here a finite
volume space approximation with a staggered grid arrangepfevariables. Such a method
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allows to solve on a Cartesian grid the Navier-Stokes eqgnatwith a penalized forcing term
taking into account immersed boundary conditions (hereblet BC, but it is possible to deal
with Neumann BC). We have developed an original robust tine&rpolation scheme in or-
der to reconstruct the velocity field near the immersed bannaot depending on a preferred
direction, as often done in literature, but based on a miration problem relying on a local
reconstruction of the immersed boundary. Furthermorerebelution of governing equations
is done by using a fractional step scheme that is modified am suway that the immersed
boundary condition for velocity is verified not only in theepliction equation but also in the
correction one.

Several numerical experiments have been carried out. Altélults demonstrate the effective-
ness and the potentiality of application of our method. tFitee validity and the accuracy in
space have been assessed throughout two academical psoltfemumerical rate of conver-
gence is quasi-quadratic - and L>°-norms. Second, the problem of laminar flows around
static and rotating cylinders has been studied both in thadgtand unsteady regimes. Our
results are in good agreement with those published in tilezaand a steady-case grid con-
vergence study confirms the numerical rate of convergentbeomethod. The extension to
problems involving3D geometries is trivial and requires no coding efforts. Adiy in the
nuclear safety contex3D purely hydraulic numerical simulations are in progressttaly the
vitrification processes for the storage of radioactive esstandling problems with moving ge-
ometries. In this case, an important issue concerns therteed of the so-called “freshly fluid
or solid cells”.
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