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ABSTRACT

This paper describes the first step of the introduction offictitious domain methods(FDM) in the simu-
lation of nuclear component fields. We consider the resolution of a diffusion problem✁ div

✂
ã ✄✆☎ ũ✝✟✞ f̃ ,

in a physical domaiñ
✠

, with different kinds of boundary conditions (B.C.). The shape of this domain
is of the Steam Generator’s type. The aim of this work is to present several ways to impose B.C. on an
immersed interface, without modifying locally the numerical scheme and without using Lagrange multi-
pliers. The numerical resolution is implemented using either a finite element or a finite volume method.
Error estimates are performed in order to evaluate the capability of this method. A comparison with
unstructured mesh methods is also presented.

KEYWORDS
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1 INTRODUCTION

Within the framework of the federal program NEPTUNE launched by the CEA and EDF concerning the
industrial simulation of two-phase flows in the nuclear power plant components as steam generators
(SG) or cores, we propose investigations of new numerical methods based onstructured meshes.
The advantages of numerical methods for partial differential equations (PDE) involving structured
meshes are well known : easy implementation for fast solvers(based for instance on finite volume
methods with structured grids) and for multi-scale methods(Angot et al. , 1993), good convergence
properties, easy simulation of moving boundaries (for example moving obstacles in a flow, fluid/structure
interaction...) ... However their main drawback is the difficulty to take into account boundaries or
obstacles in complex industrial situations. As a fact, numerical methods involving unstructured meshes
are classical in the industrial software world.

1.1 Fictitious domain method

Since a few years,fictitious domain methods(FDM)(Saul’ev, 1963. (in Russian), Marchuk, 1982 (1rst
ed. 1975)) have been arising for Computational Fluid Dynamic (Khadraet al. , 2000). In this approach,
the initial computation domaiñ

✠
(called physical domain) is immersed in a geometrical bigger and

simpler other one
✠

, calledfictitious domain(see Figure 1).

The spatial discretization is now performed in the fictitious domain
✠

, independently of the shape
of the physical domaiñ

✠
. The physical domain and the computational one are uncoupled. Numerical

methods involvingstructured meshescan be computed. Consequently, in
✠

, the resolution of the new

1Corresponding author



2/17 The 11th International Topical Meeting on Nuclear Thermal-Hydraulics (NURETH-11)
Popes’ Palace Conference Center, Avignon, France, October 2-6, 2005

Ω

Ω

Fictitious domain

Physical domainΩ
~

eExternal domain

Figure 1: Example of a physical domaiñ
�

immersed in a fi ctitious domain
�

equation will be fast and simple.

The main difficulty lies in the choice of the PDE solved in the fictitious domain
✠

and in the
numerical scheme used for the resolution. These two choiceshave to be coupled in order to take into
account the conditions on the initial boundary✁ ˜✠

. Therefore the restriction of the solution on the
physical domain is expected to be the initial problem’s one.

Numerically, there are mainly three approaches to deal withthe boundary conditions located on the
immersed boundary:

✂ “Thin” interface approaches : the physical boundary is approximated without being enlarged in
the normal direction. The physical boundary and the approximated one lie in the same✄ n space.
For example, in this group, we can find truncated domains methods (McCorquodaleet al. , 2001,
Ye et al. , 1999), immersed interface methods (I.I.M.) (Leveque & Li,1994), as well as an adapted
Galerkin method proposed by Latché (submitted (october 2003)).

✂ “Spread” interface approaches : the support of the approximated interface is larger than the physi-
cal one. The approximated interface has one dimension more than the physical one. For example,
the boundary can be estimated as the set of the elements of discretization crossed by itself. In
particular, this kind of approach is used in the interface boundary methods (I.B.M.) (Cortez &
Minion, 2000).

✂ Lagrange multipliers : in FDM using Lagrange multipliers (Glowinski & Kuznetsov, 1998), the
initial B.C. are imposed weakly as side constraints. This approach doesn’t use a continuous ap-
proximated boundary but only needs discretization points lying on the initial boundary.

Moreover, penalization methods (Angot, 1999, Khadraet al. , 2000) have proved their efficiency to
impose values on an immersed interface or to solve suitable equations in different domains.

In this paper, one is interested in a spread interface approach computed with a usual F.E. Scheme as
well as a thin interface approach computed using a F.V. Scheme with flux and solution jumps (Angot,
2003) are exposed.

A lot of papers are dedicated to embedded Dirichlet or Neumann B.C., e.g. (Saul’ev, 1963. (in
Russian), Marchuk, 1982 (1rst ed. 1975), Glowinski & Kuznetsov, 1998, Glowinskiet al. , 1996,
Leveque & Li, 1994) and the reference herein... Only a few studies are devoted to other embedded
Fourier B.C. (Kop̌cenov, 1974. (in Russian), Marchuk, 1982 (1rst ed. 1975), Angot, 1999). The
fictitious domain approaches presented here deal withDirichlet, Robin or Neumann B.C. on an
immersed interface without requiringneither the modification of the numerical scheme near the
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immersed interface nor the use of Lagrange multipliers. Since the fictitious problem
✂✁� ✝ isn’t

a saddle-point problem, the inf-sup condition must not be verified (Glowinski & Kuznetsov, 1998).
Moreover, only one discretization grid is used (the structured regular mesh over the fictitious domain).

1.2 Presentation of the test problem

For sake of simplicity we choose to focus on 2D problems, but the formulations can be extended to 3D
problems without more difficulty. We study the resolution ofa diffusion problem in the unit disk ˜✠ .
For symmetry reasons, we can solve this problem only on a quarter of this disk.

Let us consider the following model problem:
˜✠✄✂ ✄ 2 open-bounded domain
For ã ☎ ✂

L ✆ ✂ ˜✠ ✝ ✝ 2 ✝ 2 and f̃ ☎ L2 ✂ ˜✠ ✝ , find ũ defined on
˜✠ such that ✞✟✡✠ ✁ div

✂
ã ✄✆☎ ũ✝ ✞ f̃ in ˜✠✂

ã ✄✆☎ ũ✝ ✄ n ✞ 0 on ˜☛
B.C. on ☞ (1)

where B.C. represents :

✂ a Dirichlet condition :ũ ✞ uD,
uD ☎ H1✌ 2 ✂ ☞ ✝

z

x

1

1

Ω

Γ

~

~

Σ

✂ a Robin (or Fourier) condition :✁ ✂
ã ✄✆☎ ũ✝ ✄ n ✞✎✍ R

✂
ũ ✁ uR ✝✑✏ gR ,✍ R ☎ L ✆ ✂ ☞ ✝✓✒✔✍ R ✕ 0 ✖ uR and gR ☎ L2 ✂ ☞ ✝

(with n the outward normal unit vector on the circle)
Remark:a Neumann condition,✁ ✂

ã ✄✆☎ ũ✝ ✄ n ✞ g, is considerate as a particular Robin condition
where ✍ R ✗ 0 andgR ✗ g.

Moreover, the symmetric tensor of diffusionã ✗ ✂
ãij ✝ 1 ✘ i � j ✘ 2 verifies the classical ellipticity assumption:✙

ã0 ✚ 0 ✖✜✛✣✢✤☎ ✄ 2 ✖ ã ✂
x ✝ ✄✡✢ ✄✡✢ ✕ ã0 ✥ ✢ ✥ 2 a ✄ e✄ in ˜✠ ✂

A1✝
where ✥ ✄ ✥ is the Euclidean norm in✄ 2.
In that case, classical variational techniques (Dautray & Lions, 1988) prove the existence and the
uniqueness of the solution ˜u ☎ H1 ✂ ˜✠ ✝ of this problem.
For sake of simplicity, we suppose here thatuD and uR are constant. The non constant cases can be
treated without more difficulty (e.g. with cell-centered approximation of these variables).

In a fictitious domain approach, the quarter disk isimmersed in the unit square
✠ ✞✧✦ 0 ✖ 1 ★✪✩✫✦ 0 ✖ 1 ★ .
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x

1

1
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Γ

∼

∼
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Figure 2: Immersion of the unit quarter disk in the unit square
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In the next section, we present in detail the numerical methods implemented on the fictitious domain✠
. For each method, the equation solved on the fictitious domain is introduced. We expose several ways

to impose the different B.C. on an immersed interface for a diffusion problem. Then, in Section 3, the
accuracy of this fictitious domain approach will be illustrated with numerical results. To conclude, future
works and perspectives are pointed out.

2 NUMERICAL METHODS

2.1 Finite Element (F.E.) Method

2.1.1 Numerical scheme

The F.E. numerical resolution is implemented using a� 1 F.E. Scheme, where� k stands for the space
of polynomials of degree of each variable less than or equal to k. For example,� 1 ✞ span✁ 1 ✖ x ✖ y ✖ xy✂
in ✄ 2. The � 1 discretization nodes are located on the vertex of the discrete elements.

A “spread” interface approach has been chosen. The set of
the discretization elements K crossed by the immersed interface☞ forms the approximated interface✄ h � ☎ .

Discretization of the fictitious
domain

✠
: ˜✠ h, ✄ h � ☎ and

✠
e� h

In comparison with the initial formulation, the equation solved in
✠

h contains additional terms that
impose the initial B.C.. Given a rectangular mesh✆ h of

✠
, the problem solved on the discrete fictitious

domain
✠

h has the following generic form :
Finduh ☎ Vh ✞✝✁ vh ☎ C0 ✂ ✠ ✝✓✖ vh ✥ K ☎✞� 1 ✛ K ☎✟✆ h ✂ ✂ H1 ✂ ✠ ✝ such that✞✟ ✠ ✁ div

✂
a ✄✆☎ uh ✝✑✏ b

✂
uh ✁ uE ✝ ✞ f ✏ ✠ in

✠
h✂

a ✄✆☎ uh ✝ ✄ n ✞ 0 on ˜☛
suitable B.C. foruh on

☛
e

(2)

wherea ☎ ✂
L ✆ ✂ ✠

h ✝ ✝ 2 ✝ 2 (symmetric tensor),f ✖✡✠ ✖ uE ☎ L2 ✂ ✠
h ✝ , andb ☎ ✂

L ✆ ✂ ✠
h ✝ ✝ such that:

a ✥ ˜☛ h
✞ ã ✥ ˜☛ h

✖ f ✥ ˜☛ h
✞ f̃ ✥ ˜☛ h

a satisfies the assumption (A1) in
✠

h andb the following one:✙
b0 ✕ 0 ✖ b

✂
x✝ ✕ b0 a ✄ e✄ in ✠

h (A2)
Here too, if the B.C. on the exterior fictitious boundary

☛
e are not uniquely Neumann conditions,

variational techniques (Dautray & Lions, 1988) allow to conclude that the approximated solutionuh of
the problem (2) exists and is unique.

The additional termsb ✖ uE and ✠ enable to take into consideration the immersed boundary (Khadra
et al. , 2000, Angotet al. , 1999). We expect thus thatuh ✥ ˜☛ h

✞ ũ ✥ ˜☛ h
. For each kind of boundary

conditions lying on the immersed boundary☞ , different possibilities to impose these conditionswithout
modifying the numerical scheme and without using local unknownsare presented in Section 2.1.2.

2.1.2 Treatment of the initial B.C.

✂ Dirichlet case:
The Dirichlet B.C. are treated bypenalization (Angot et al. , 1999). Settingb ✞ 1☞ (where
0 ✌✎✍✏✌✑✌ 1 is calledpenalty coefficient) anduE ✞ uD enables to imposeuh ✞ uD. It’s the
L2-penalty. When the coefficienta is also equal to1☞ (a ✞ 1☞ Id ), we obtain theH1-penalty. The
other coefficients of the equation (2) are arbitrary extensions in

✠
h of the initial coefficients lying
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on ˜✠ (Ramièreet al. , in preparation).
In Section 3, we will compare thepenalization of the spread interfaceto thepenalization of the
exterior domain.
Concerning the B.C. on

☛
e, for a penalization of the spread interface, the Dirichlet B.C. uh ✞ uD

must only be imposed on the nodes lying on✄ h � ☎✁� ☛ e. The B.C. on the rest of
☛

e have no influence
on the solution obtained in the physical domain. To penalizethe exterior domain, the B.C. on the
whole exterior boundary

☛
e must be Dirichlet B.C.uh ✥ ✂ e ✞ uD.

✂ Robin case:
We consider the continuoustransmission problem between˜✠ and

✠
e. The addition of the two

weak formulations of the two diffusion subproblems defined on respectively˜✠ and
✠

e leads to the
following problem :
Find u ☎ H1 ✂ ✠ ✝ such that✛ v ☎ H1 ✂ ✠ ✝✄

☛ a ✄✆☎ u ✄✆☎ v dV ✞
✄
☛ f v dV ✁✏✌ ★ ★ ✂ a ✄✆☎ u✝ ✄ n ✦ ✦ ☎✆☎ ☎ ✖ v ✚ (3)

where ✝ ★ ★ ✂ a ✄✆☎ u✝ ✄ n ✦ ✦ ☎ ✞ ✂
a ✄✆☎ u✝ ✄ n ✥✟✞☎ ✁ ✂

a ✄✆☎ u✝ ✄ n ✥✡✠☎☎ ☎ is a measure carried by the hypersurface☞ ✖ ☎ ☎☞☛ v ✌ ✌ ☎ ☎ ✖ v ✚ ✞✎✍ ☎ v ✥ ☎ dS

In the distribution sense, we obtain the following equation:

✁ div
✂
a ✄✆☎ u✝ ✞ f ✁ ★ ★ ✂ a ✄✆☎ u✝ ✄ n ✦ ✦ ☎ ☎ ☎ (4)

The jump of flux across ☞ can be interpreted as a source term carried by☞ .

In our case, we want

✁ ✂
a ✄✆☎ u✝ ✄ n ✥✡✠☎ ✞✄✍ R

✂
u ✁ uR ✝✑✏ gR and ✁ ✂

a ✄✆☎ u✝ ✄ n ✥✟✞☎ ✞ 0

so that ★ ★ ✂ a ✄✆☎ u✝ ✄ n ✦ ✦ ☎ ✞✄✍ R
✂
u ✁ uR ✝✑✏ gR

On
✠

, then we have:
✁ div

✂
a ✄✆☎ u✝ ✞ f ✁ ★✡✍ R

✂
u ✁ uR ✝✑✏ gR✦ ☎ ☎ (5)

However, with a structured mesh on
✠

, the support of☞ is not exactly defined. We introduce a
characteristic parameter ✏ in order to approximate the measure☎ ☎ supported by☞ by mollifiers
(Brezis, 2000) on the spread interface✄ h � ☎ .
The principle is the following:✄

☎ ✁ ✍ R
✂
u ✁ uR ✝ ✏ gR ✂ vdS ✞

✄✒✑
h ✓ ✔ ✍ R

✂
u ✁ uR✝ ✏ gR✏ vdV ✛ v ☎ Vh (6)

The equation solved on
✠

h is:

✁ div
✂
a ✄✆☎ uh ✝ ✞ f ✁ ★ ✍ R✏ ✂

uh ✁ uR ✝ ✏ gR✏ ✦ ☎ ✑ h ✓ ✔ (7)

where☎ ✑ h ✓ ✔ is a measure carried by the spread interface✄ h � ☎ .
With the equation (7), the parameter of the generic formulation (2) can be easily set.
Only the B.C. of the nodes lying on✄ h � ☎✕� ☛ e has an effect on the solution obtained in the physical
domain. These B.C. must be homogeneous Neumann B.C. in orderto have an external flux equal
to zero. However the B.C. on the whole boundary

☛
e can’t be homogeneous Neumann B.C. since

the problem solved on
✠

becomes in this case bad-posed. The solution obtained on thefictitious
domain won’t be unique. So the B.C. on

☛
e are separated into two B.C.:✝ ✂

a ✄✆☎ uh ✝ ✄ n ✞ 0 on ✄ h � ☎ � ☛ e

uh ✞ uext otherwise
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whereuext is unspecified.

The parameter✏ can be estimated by several ways (Ramièreet al. , in preparation). We present
some of them in Section 3. Ifh is the discretization step, Angot (1989) showed that✏ is in � ✂

h✝ .

2.1.3 Local adaptive mesh refinement (A.M.R.)

Using a spread interface approach, A.M.R. techniques are necessary to improve the accuracy of the
solution near the immersed interface and by the way on the whole physical domain. Most of these
techniques are derived from multi-grid methods (Hackbusch, 1985).

A Local Defect Correction (L.D.C.) method (Hackbusch, 1984) is performed. This method is a
multi-grid method with a defect restriction in the ascent step. The local refinement zone is composed by
all the elements of the spread interface✄ h � ☎ and their neighbors. This choice enables to correct the values
of all the nodes located on the spread interface. As a consequence, the immersed B.C. are imposed more
precisely. As the solution of an elliptic problem strictly depends on the B.C., we expect an improvement
of the solution on the physical domain.

2.2 Finite Volume (F.V.) Method

2.2.1 Numerical scheme

The F.V. numerical resolution is performed using amodel of fracture with flux and solution jumps
(Angot, 2003).

Given an “admissible” finite volume mesh✆ h of
✠

(Angot, 2003), with cell-centered discretization
nodes, letS be the family of edges or sides✁ of the “control volumes”K

✂ ✆ h. Let n ✂ be the unit
normal vector on✁ oriented fromK to the exterior. For a function✄ in L2 ✂ ✠ ✝ , let ✄ ✞ and ✄ ✠ be the
traces of✄ on each side of✁ . We define the arithmetic mean of traces of✄ as ✄ ✥ ✂ ✞ ✂ ✄ ✞ ✏☎✄ ✠ ✝✝✆ 2
and the jump of traces of✄ on ✁ , oriented byn ✂ , as ★ ★ ✄ ✦ ✦ ✂ ✞ ✂ ✄ ✞ ✁✞✄ ✠ ✝ . Then, the following fracture
conditions lie on each side✁ ✂

S :

★ ★ ✂ a ✄✆☎ uh ✝ ✄ n ✂ ✦ ✦ ✂ ✞ ✍ ✂ ✂
uh ✥ ✂ ✁ U ✂ ✝ ✁ h✂ (8)✂

a ✄✆☎ uh ✝ ✄ n ✂ ✥ ✂ ✞ ✟ ✂ ★ ★ uh ✦ ✦ ✂ ✁ g✂ (9)

where the transfer coefficients✍ ✂ ✖✝✟ ✂ satisfy the following ellipticity assumptions:

✍✠✂ ✖✝✟✡✂ ☎ L ✆ ✂ ✁ ✝✓✒ ✙ ✟ 0 ✕ 0 ✍☛✂ ✂
x✝✓✖✝✟✡✂ ✂

x✝ ✕ ✟ 0 on ✁

andg✂ ✖ h✂ andU ✂ are given inL2 ✂ ✁ ✝ .
The finite volume scheme built on✆ h doesn’t introduce unknowns located on the side of the volumecon-
trol. Indeed, the equations (8) and (9) enable to express these unknowns according to the cell-centered
ones.

This F.V. scheme is based on a“thin” interface approach .

In this F.V. approximation, we suppose that the thin approximated interface☞ h lies on sides of con-
trol volumes crossing the physical interface☞ . n ☎ h denotes the outward unit normal vector of☞ h
(n ☎ h ✄ n ☎ ✚ 0). Equations (8) and (9) enable to impose the immersed B.C. on ☞ h.
The problem solved on

✠
as the same generic form as in (2) with the above conditions ofjump moreover.
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(a) Exterior thin
interface

(b) Interior thin
interface

(c) “Cut” thin in-
terface

Figure 3: Examples of thin approximated interface

2.2.2 Treatment of the initial B.C.

We are interesting in the B.C. lying on the immersed approximated interface☞ h. On the sides✁ ✆☎ ☞ h,
✁ ☎ S

✁ ✂ ˜☛✄✂ ☛ e ✝ , we set:

✍ ✂ ✞ h✂ ✞ g✂ ✞ 0 and ✟ ✂ ✌✆☎
✂✞✝ ✂ ✞ 1

✟ ✂ ✞ 0 ✖ fracture resistance✝ (10)

Remark:Locally, on the physical domaiñ
✠

h and on the exterior domain
✠

e� h, we get a F.V. scheme
without jump of flux and without jump of the solution as in (Eymardet al. , 2000).

We focus on thetransfer coefficients lying on ✁ ☎ ☞ h
✁ ✂ ˜☛✄✂ ☛ e ✝ .

✂ Dirichlet case:
We present two manners to deal with a Dirichlet condition.
The first one consists inpenalizing the exterior domain atuD. To imposeuD on the in-
terior side of the approximated interface☞ h (side located in the physical domain), we set
✟ ✂ ✞ 1☞ ✛ ✁ ☎ ☞ h

✁ ✂ ˜☛✟✂ ☛ e ✝ . The other transfer coefficients are equal to zero.
In the second approach,uD is imposed directly bysurface penalizationon the approximated in-
terface☞ h using the jump equations (8) and (9). We set✟ ✂ ✞ 1☞ in order to haveu✞ ✞ u ✠ on ✁ and

thenu ✥ ✂ ✞ u✞ ✞ u ✠ ✞ u ✥ ✂ . In this case, penalizing also✍ ✂ ✞ 1☞ while settingU ✂ ✞ uD induces

u✂ ✞ uD ✛ ✁ ☎ ☞ h
✁ ✂ ˜☛✠✂ ☛ e✝ . The exterior domain has no influence on the solution obtained in

the physical domain.
In these two approaches, the B.C. on☞ h � ☛ e are the only one of interest :uh ✥ ☎ h ✡ ✂ e ✞ uD.

✂ Robin case:
We want that✁ ✂

a ✄✆☎ uh ✝ ✄ n ☎ h ✥ ✠☎ h
✞✄✍ R

✂
u ✥ ☎ h ✁ uR ✝✑✏ gR, whereu ✥ ☎ h ✞ u ✠ ✥ ☎ h.

There are many ways to deal with the transfer coefficients in order to impose a Robin B.C. on☞ h
(there is five coefficients for 2 equations). One of particular interest is the onewithout control on
the exterior domain. In this case, we eliminate✁ ✂

a ✄✆☎ uh ✝ ✄ n ☎ h ✥ ✞☎ h
andu✞ ✥ ☎ h in the equations (8)

and (9):✛ ✁ ☎ ☞ h
✁ ✂ ˜☛✟✂ ☛ e✝

✍ ✂ ✞ 2✍ R ✖ ✟ ✂ ✞ ✍ R

2
✖ u✂ ✞ uR ✖ h✂

2
✁ sg

✂
n ☎ h ✄ n ✂ ✝ g✂ ✞ gR

✂
e✄ g ✄ h✂ ✞ ✁ 2gR and g✂ ✞ 0✝

As in the spread interface approach, acharacteristic parameter ✏ is required to respect the equal-
ity between the flux carried by the approximated interface and the flux carried by the physical
immersed interface.
The B.C. on

☛
e
✁ ☞ h are free (without effect on the solution on the physical domain). On ☞ h � ☛ e,

we set the Robin B.C. of the initial problem.

Remark:We can also use a spread interface approach by the same way as exposed Section 2.1.2. In this
case,✛ ✁ ☎ S, the transfer coefficients are set as in (10).
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3 NUMERICAL RESULTS

To solve the following test problems, the different approaches have been computed on six meshes:
4x4, 8x8, 16x16, 32x32, 64x64 and 128x128 cells. The discretization steps are respectively
h ✞ 1

4 ✖ 1
8 ✖ 1

16 ✖ 1
32 ✖ 1

64 ✖ 1
128. All these simulations have been computed on a 3.2 GHz Intel Xeon

bi-processor.

The linear system can be solved using a direct solver or an iterative one. As the matrix system
is symmetric positive definite, aniterative solver of conjugate gradient’s typeseems to be suitable.
Moreover, the penalization coefficients render the matrix ill-conditioned. Thus, a diagonal precondi-
tioner is necessary in order to speed up the resolution of thesystem.

The F.E. simulations have been computed thanks to the finite element industrial code PYGENE
(Grandotto & Obry, 1996, Grandottoet al. , April 1989) of the Neptune project. This project, co-
developed by the CEA and EDF, is dedicated to the simulation of two-phase flows in Nuclear Power
Plants.
A F.V. code using a structured approach had been implementedfor the scheme (Angot, 2003) presented
here.

3.1 Dirichlet case

The problem solved on the physical domain˜✠
is :

✞✟ ✠ ✁✁� ũ ✞ 4 in ˜✠
✂

˜u✂
n ✞ 0 on ˜☛
ũ ✞ 0 on ☞

With the generic formulation (1), we set:

ã ✗ 1
✂
ã ✗ Id ✝✓✖ f̃ ✗ 4 andũ ✞ uD ✞ 0 on ☞ (Dirichlet B.C.)

The analytic solution of this problem is :

ũ ✞ 1 ✁ r2 in ˜✠

We compute this problem on the fictitious square domain
✠

using the two approaches described
Section 2.1.2 for the F.E. method. For the F.V. method, we test the two approaches exposed Section
2.2.2 for an exterior thin interface, and we also implement the second approach (surface penalization)
with a “cut” interface approach.

As in the F.E. method, the discretization nodes are located on the vertex of the discrete elements
the H1-penalty leads to the same results as theL2-penalty as long as the penalization parameter✍ is
small enough. However investigating the behavior of the error according to the penalization parameter
(modelization error), we observe that the error obtained for theH1-penalty converges faster toward the
discretization error as theL2 one. We set✍ ✞ 10✠ 12 to get a negligible modelization error.
In the F.V. method, the discretization nodes are cell-centered. A H1-penalty is necessary to impose the
Dirichlet value on the approximated interface (located on sides of control volume).

For each approach, Figure 4 represents the relative discrete L2 error norms versus the discretization
step of the fictitious domain.

As excepted, the order of the method is approximatively equal to one for all the approaches since the
approximation of the interface is in� ✂

h✝ (for the spread as for the thin one). The interface discretization
error leads to a “global” discretization error in� ✂

h✝ even if the numerical scheme error is in� ✂
h2 ✝ .
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(a) F.E. method
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−1

h (discretization step)
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−1

10
0

||u−uh||/||u||

Relative error norms (discrete L2 norm)
Dirichlet B.C. − F.V. Scheme

Ext. interface − H1−penalty on the exterior domain => order=0.9
Ext. interface − Surf. Penalization => order=0.9
Cut interface − Surf. Penalization=> order=0.8

(b) F.V. method

Figure 4: Estimation of the discretization error for a Dirichlet B.C.

In the F.E. approach, the penalization of the exterior domain is more accurate than the penalization of
the spread interface. These results strictly depend on the geometry of the physical domain. Since the
discretization nodes are located on the elements vertex, nodes inside the physical domain are penalized
with a spread interface penalization. In the quarter disk case, interior penalized nodes are globally
farther of the physical interface than the exterior nodes.
In the F.V. approach, we can observe that, with an exterior approximated interface, theH1-penalty of the
exterior domain and the surface penalization lead to the same errors. Indeed, with theH1-penalty, the
solution and its gradient is penalized. Sou ✞ uD on the exterior domain until the approximated inter-
face. Moreover, with a thin interface approach, the errors obtained are better for a “cut” approximated
interface than for an exterior interface. The cut approximation of the interface is more precise.
The last conclusion to draw is that the effect of theH1 exterior penalization is similar with the two
schemes.

As drawn on the Figure 5 the main differences between the approximated solution and the analytic
one are located around the spread interface. Using the F.E. scheme, an adaptive mesh refinement is
performed in this zone. At each level an exterior penalization is performed. A three-grid LDC algorithm
(two refinement levels) is applied on each initial mesh. At each level, the local refinement zone is
composed by all the elements of the spread interface✄ h � ☎ and their neighbors. This algorithm converges
by three V-cycles.

Figure 5: Absolute error for the exterior penalization -F.E Scheme - Dirichlet case - 32x32 mesh

The errors computed using a three-grid mesh refinement and the ones obtained without refinement
are represented on Figure 6.
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Dirichlet B.C. − F.E. Scheme

Penalization on the exterior domain => order=0.86
Mesh refinement (2 levels)+ exterior penalization=> order=0.9

Figure 6: Relative error norms with or without refi nement - F.E. Scheme - Exterior penalization - Dirichlet case

The results obtained with a local refinement are in� ✂
h✝ where h is the discretization step of the finest

refinement grid. With A.M.R., on the initial “coarse” mesh, the error obtained after correction is similar
to the one obtained without A.M.R. on a mesh with a discretization step equal to the finest local grid’s
one. Even if the order of the method doesn’t increase with a local refinement, the errors on the initial
meshes are reduced.

3.2 Robin case

We consider the following problem:✞✟ ✠ ✁✁� ũ ✞ 16r2 in ˜✠
✂

˜u✂
n ✞ 0 on ˜☛

✁
✂

˜u✂
n ✞ u ✏ 3 on ☞

Identifying with the generic formulation (1), we get:

ã ✗ 1
✂
ã ✗ Id ✝✓✖ f̃ ✞ 16r2 ✖ ✍ R ✞ 1 ✖ uR ✞ 0 and gR ✞ 3

✂
Robin B✄ C ✄ ✝

The solution of this problem is :
ũ ✞ 2 ✁ r4 in ˜✠

In the F.E. approach, the characteristic parameter✏ can be estimated be several ways. In this section
we present three of them. From the equation (6), supposing that the flux carried by the spread interface
and the flux carried by the physical interface are rather similar (this approximation is as much justified
as the discretization step becomes small), we obtain :✄

☎ dS �

✄ ✑
h ✓ ✔ 1✏ dV (11)

The three estimations of✏ can be deduced of the equation (11):

✂ In a first approach,✏ is supposedconstanton ✄ h � ☎ :✏ ✞ meas
✂ ✄ h � ☎ ✝

meas
✂ ☞ ✝

✂ In the second approach, in the equation (11), the integration on ✄ h � ☎ is weighted by a coefficient✁ .
This coefficient estimates the presence rate of the physicaldomain in each elementK crossed by
the boundary☞ (K

✂ ✄ h � ☎ ). By construction,✁ is constant on eachK :

✁ K ✞ volume of ˜✠
included inK

volume of the elementK
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By this way, the right hand side of (11) is integrated only on the physical domain included in✄ h � ☎ .
We get : ✏ K ✞

�
e ★ ✁ e ✄meas

✂
K ✝ ✦

✁ e ✄meas
✂ ☞ ✝

The value of✏ is given by element.
This approximation of✏ is calledvolume weighted approximation.

✂ In the last approach, the boundary☞ is piecewiselinear approximated by a segment☞ l � K in
each elementK included in ✄ h � ☎ . The equation (11) is written for each of these elementsK
(respect to equation (6), we use test functionsv lying only onK). Using the linear approximation☞ l ✞ ✂

K ✁

✑
h ✓ ✔ ☞ l � K of ☞ , we get: ✄

☎ l ✓ K dS �

✄
K

1✏ dV

Finally, ✏ K ✞ meas
✂
K ✝

meas
✂ ☞ l �K ✝

As in the second case, the value of✏ depends on the elementK.
This approach induces a local reconstruction of the interface.

For these three estimations of✏ , the errors obtained according to the methodology described Section
2.1.2 are reported Figure 7(a).

In the F.V. approach, the characteristic parameter is estimated by two manners.

✂ Global correction : the characteristic parameter✏ is deduced from the same equation as in (11)
with a surface integral on the thin approximated interface☞ h instead of the volume integral on the
spread interface✄ h � ☎ : ✏✟✞ meas

✂ ☞ h ✝
meas

✂ ☞ ✝
✂ Local correction : A local estimation of✏ is made in each cellK of the mesh crossed by the

immersed interface☞ . In this case✏ K corresponds to the ratio between the sum of the measures
of the normal projections of the physical boundary☞ on each mesh axis (x andy in 2D), and the
measure of the physical immersed interface☞ itself. In 2D, with a piecewise linear approximation☞ l of ☞ composed by a segment☞ l � K in eachK crossed by☞ , we get:✏ K ✞ cos✂ K ✏ sin ✂ K

where ✂ K indicates the angle between the normal directionn ☎ l ✓ K of ☞ l � K and the horizontal axisx.

Figure 7(b) shows the errors obtained for these two estimations of ✏ with the transfer parameters
introduced Section 2.2.2 for two kinds of thin approximation of the interface (exterior and cut approxi-
mated interface).

All the F.E. variants are approximatively of order one (a little bit under). The method using a
piecewise linear approximation of the interface leads to little better results but not as excepted. Some
improvements are presented Section 3.3.
Concerning the F.V. variants (using a thin interface approximation), the global correction leads to an
asymptotic stagnation of the error with a cut interface and then the first-order precision is lost. This
stagnation disappears with the local correction (see also Figure 8(b)).
In Fig.7(b), for an exterior interface, the two estimationsof ✏ seem to lead to the same errors and
then to the same first-order method. However, in Fig. 8, we canobserve that for finer meshes
(256 ✩ 256✖ 512 ✩ 512 cells) a stagnation appears also for a global correctionsince the local correction
keeps the first-order precision.
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(a) F.E. method
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(b) F.V. method

Figure 7: Estimation of the discretization error for a Robin B.C.
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(a) Global correction
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Figure 8: Comparison between the two estimations of� for a Robin B.C. with a F.V. Scheme

As in the Dirichlet case, the errors obtained with the cut interface are better as the ones obtained with an
exterior interface.

For the F.E. approach, a local adaptive mesh refinement is performed on the method involving a

constant epsilon (✏ ✞ mes
✁

✑
h ✓ ✔✄✂

mes
✁ ☎ ✂ ) and a local epsilon (linear approximation✏ K ✞ meas

✁
K ✂

meas
✁ ☎ l ✓ K ✂ ). As in the

Dirichlet case, we computed a three-grid LDC algorithm, which converges by three V-cycles. The results
are presented Figure 9.

Here again the refinement method has a discretization error in � ✂
h✝ with h the discretization step

of the local finest grid. However, performing a constant✏ , we observe a stagnation of the error for fine
meshes and the first-order is lost. In this case, the modelization error is reached. This modelization error
seems to be due to the global estimation of✏ (equation (11)) since no stagnation appears with a local
estimation of✏ . The modelization error for a local✏ decreases with the discretization step.

For the two interface modelling (spread and thin), a local correction is required to keep the first-order
method. With a global correction, the rough estimation of✏ leads to a stagnation of the error.
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Figure 9: Relative error norms with and without refi nement - F.E. Scheme -Robin case

3.3 Some improvements

We present briefly some improvements under investigations for aRobin B.C.. Those improvements are
presented for theF.E. approach.

✂ Firstly, we try tocorrect the equation coefficients on the spread interface. The aim of this
correction is to better approximate the physical domain.

� A first step is to set✁ e f instead off on ✄ h � ☎ . In this case the source term is approximatively
integrated on the physical domain (the integration is exactfor a constantf ). Figure 10(a) presents
the errors obtained for the three✏ introduced Section 3.2 with a source term weighted on the
spread interface. Figure 10(b) enables to appreciate the improvement of this approach compared
to the “classic” one of Section 3.2.
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(a) Approach with a weighted source term f
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(b) Comparison of the two approaches :f weighted or not

Figure 10: Relative error norms for a weighted source termf

The correction of the source termf leads to better results for each✏ approach. Moreover, for a con-
stant✏ , the stagnation to the modelization error is reached for a 32✩ 32 mesh, without using A.M.R.

� In a second step, for a local✏ ( ✏ linear approximated), the diffusion coefficient is also weighted
by ✁ e. This approach is implemented in order to get the diffusion coefficient compatible with the
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source term. Locally, on each element of the spread interface, the balance of flux of the initial
problem is approximatively respected. However, we are conscious that this correction isn’t equiv-
alent to a physical domain integration of the diffusion term. Results are presented on Figure 11.
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Figure 11: Relative error norms for a weighted diffusion coeffi cienta

This approach has a much better order as the other ones. Indeed, the order reaches almost 2.
However, even with these corrections of the source term and of the diffusion coefficient, the dis-
cretization error stagnates around a modelization error. With a local ✏ , this modelization error is
reduced compared to the constant✏ ’s one.

✂ Secondly, beginning from the equation (3), we computed on the spread interfacethe surface inte-
gral of the jump of flux :

✌ ★ ★ ✂ a ✄✆☎ uh ✝ ✄ n ✦ ✦ ☎ ☎ ☎ ✖ v ✚ ✞
✄

☎ ★ ★ ✂ a ✄✆☎ uh ✝ ✄ n ✦ ✦ ☎ v dS ✛ v ☎ Vh
✂

H1 ✂ ✠ ✝

On each element of the spread interface, we choose the base functions associated at each node as
test functions. If we callxB the barycenter of the immersed interface intersected in an element, the
local surface integral is approximated by an one point Gaussformula onxB. This approach needs
a local reconstruction of the interface but avoids the estimation of a characteristic parameter✏ in
order to obtain a volume integral. Following figures (Figure12(a) and 12(b)) compare this surface
integral approach (weighting the source termf and the diffusion coefficienta) with an unstructured
mesh approach in term of error/discretization step and error/CPU time.
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(a) Errors versus discretization step
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(b) Errors versus CPU time

Figure 12: Relative error norms for a surface integral approximation

In the approximated surface integral approach, a slope break prevents from determining the order
of the method. However, the errors obtained with this approach are comparable to those obtained
for unstructured meshes, in term of discretization error asin term of in CPU time. Moreover, in
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term of CPU time, the results presented here for the surface integral approach aren’t optimal as the
software used is dedicated to unstructured meshes.

4 CONCLUSIONS

The first step of the introduction of a general fictitious domain approach to deal with structured meshes
for complex industrial applications has been introduced. The fictitious domain approach introduced
here don’t use local unknowns and don’t modify locally the numerical scheme. Moreover, all the usual
embedded B.C. (Dirichlet, Neumann, Fourier) can be treatedwith these methods.

For a diffusion problem in a domain of SG’s type, we exposed :

✂ the methodology to take into account usual B.C. lying on a immersed interface using two numerical
schemes : a F.E. scheme and a F.V. scheme. The two main approximated interface approaches have
been tested : spread and thin interface.

✂ numerical results for Dirichlet and Robin B.C. on the immersed interface. These two cases provide
satisfactory results with errors in� ✂

h✝ .
✂ some recent improvements in order to get better results (comparable to unstructured meshes).

The results presented here give confidence for the use of fictitious domain methods in more complex
industrial applications. Even if the discretization erroris in � ✂

h✝ , the computed relative errors are rather
small.
Moreover the use of structured meshes is full of promise : meshing costs are weak, local adaptive mesh
refinements are easily implemented, moving boundaries can be simulated without mesh reconstruction,
fast solvers can be used...

The resolution of an advection-diffusion problem with the FDM presented here is on hand. Future
works will focus on homogeneous Navier-Stokes equations for the simulation of two-phase flows in
Nuclear Power Plants.

5 NOMENCLATURE

✄̃ : subscript invoking data of the physical problem
˜✠

: physical domain✠
: fictitious domain✠

e : exterior domain☞ : immersed interface
˜☛

= ✁ ˜✠ � ✁ ✠☛
e : exterior boundary

✄ h � ☎ : spread approximated interface☞ l : piecewise linear approximation of☞☞ h : thin approximated interface✏ : characteristic parameter used to impose the immersed flux
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