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Abstract In motion analysis and understanding it is important to be able to fit a suitable

model or structure to the temporal series of observed data, in order to describe motion pat-

terns in a compact way, and to discriminate between them. In an unsupervised context, i.e.,

no prior model of the moving object(s) is available, such a structure has to be learned from

the data in a bottom-up fashion. In recent times, volumetric approaches in which the mo-

tion is captured from a number of cameras and a voxel-set representation of the body is

built from the camera views, have gained ground due to attractive features such as inher-

ent view-invariance and robustness to occlusions. Automatic, unsupervised segmentation of

moving bodies along entire sequences, in a temporally-coherent and robust way, has the po-

tential to provide a means of constructing a bottom-up model of the moving body, and track

motion cues that may be later exploited for motion classification. Spectral methods such as

locally linear embedding (LLE) can be useful in this context, as they preserve “protrusions”,

i.e., high-curvature regions of the 3D volume, of articulated shapes, while improving their

separation in a lower dimensional space, making them in this way easier to cluster. In this

paper we therefore propose a spectral approach to unsupervised and temporally-coherent

body-protrusion segmentation along time sequences. Volumetric shapes are clustered in an

embedding space, clusters are propagated in time to ensure coherence, and merged or split

to accommodate changes in the body’s topology. Experiments on both synthetic and real se-

quences of dense voxel-set data are shown. This supports the ability of the proposed method

to cluster body-parts consistently over time in a totally unsupervised fashion, its robustness

to sampling density and shape quality, and its potential for bottom-up model construction.
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1 Introduction, Background and Contributions

In motion analysis and understanding it is crucial to be able to fit a suitable model to a tem-

poral series of data observed in association with an object’s evolution, in order to describe

motions in a compact way, discriminate between them, or infer the pose, however described,

of the moving object. In an unsupervised context in which no prior model of the moving ob-

ject(s) is available, such a structure has to be learned from the data in a bottom-up fashion.

In recent times, multi-view stereo methods, e.g., [33,39], using a set of synchronized and

calibrated cameras and yielding volumetric or surface representations, have gained ground,

due to attractive features such as inherent view-invariance and relative robustness to occlu-

sion. Moreover, it is also possible to extract 3D motion flows from this kind of data, e.g.,

[57].

Meshes, in particular, are widely used in computer vision, computer graphics and computer-

aided design to describe objects for a variety of tasks such as object recognition, deforma-

tion, animation, visualization, etc. Often, these tasks require the objects to be decomposed

into sub-parts: mesh segmentation, therefore, plays a crucial role in many applications, and

is a well-studied problem in computer graphics [56,43,48,61,62], as it links skeletal rep-

resentations useful for animation with mesh representations necessary for rendering. Most

approaches, however, deal with smooth meshes that are acquired from artists or from laser-

scans of real actors. In opposition, multiple-stereo methods for 3D reconstruction, while

they are true to reality at every instant and allow the texture information to be mapped in a

straightforward way to the reconstructed geometry, may generate topological and geometric

artifacts when assuming no prior knowledge of the scene being observed [70]. For example,

the two legs of a human actor may get clubbed together, or holes can be introduced in the

resulting 3D model because of silhouette extraction problems [31]. In addition, the obtained

meshes are not usually smooth and suffer from local surface distortions due to image and

silhouette noise. As they often make use of surface metrics, such as curvature, which are

extremely sensitive to noise, or they assume genus zero shapes [43], the most common seg-

mentation approaches in computer graphics are limited in their applicability towards visually

acquired meshes. The same remarks hold for volumetric representations of the object(s) of

interest as sets of voxels.

More recently, temporal segmentation of visually reconstructed meshes has been ad-

dressed as well. [69] proposes a method that performs both convex segmentation of a static

mesh and temporally-coherent segmentation of a mesh sequence. [32] proposes a genera-

tive probabilistic method that alternates between segmenting a mesh into rigid parts and

estimating the rigid motion of each part along time. These methods perform temporal seg-

mentation in the mesh/voxel domain and do not take advantage of the properties of spectral

embeddings of articulated shapes.

Mathematically, both mesh and voxel representations can be thought of as graphs de-

scribing either the surface or the volume of a shape, in which each vertex of the graph

represents a 3D point, while each graph edge connects vertices representing adjacent 3D

points. Therefore, mesh/voxel segmentation can be addressed in the framework of graph

partitioning. Spectral graph theory [23,18] provides an extremely powerful framework al-

lowing to cast the graph partitioning problem into a spectral clustering problem [6,51]. In

particular, it has been shown that the Laplacian embedding of a graph is well suited for rep-

resenting the graph’s vertices into an isometric space spanned by a few eigenvectors of the

Laplacian matrix. The problem has been thoroughly investigated. Spectral methods allowing

geometric representations of graphs are well established, and have been applied to automatic

circuit partitioning for VLSI design [3], image segmentation [64], 2D point data [55], docu-



Temporal Laplacian Protrusion Segmentation 3

ment mining [46], web data [30], and so forth. Standard methods assume that the Laplacian

matrix characterizing the data is a perturbed version of an ideal case in which groups of

data-point are infinitely separated from each other. Links between Laplacian eigenmaps and

linear locally embedding (LLE) [6], kernel PCA [7], kernel K-means [27], random walks on

graphs [54], PCA [60,30] and diffusion maps [46] have been since established.

To the best of our knowledge [50] is the first attempt to apply spectral clustering to

meshes using [55]. A specific feature of both meshes and voxel sets is, however, that the

associated graphs are very sparse and that vertex connectivity is relatively uniform over

the graph. Under these circumstances, no obvious partitioning of this kind of graph into

strongly connected components that are only weakly interconnected exists: this makes mesh

segmentation unfeasible via standard graph-partitioning or spectral-clustering algorithms

[18,55], in which the multiplicity of the zero eigenvalue of the Laplacian corresponds to

the number of connected components. Firstly, in the case of meshes there is no “eigengap”

[51]: this makes difficult to estimate the dimension of the spectral embedding, and hence

the number of clusters, in a completely unsupervised way. Secondly, the eigenvalues of any

large semi-definite positive symmetric matrix can be estimated only approximately; this

means that it is not easy to study the eigenvalue multiplicities which play a crucial role in

the analysis of the Laplacian eigenvectors [10]. Finally, ordering the eigenvectors based on

these estimated eigenvalues can be less than reliable [53].

In [63], these issues were addressed based on an analysis of the nodal domains of a

graph [10], and the interpretation of the eigenvectors as the principal components of a mesh

[60]. The theory of nodal domains can be viewed as an extension of the analysis of the

Fiedler vector [18] to the other eigenvectors.

In order to be applicable to the scenario addressed in this paper, in which time series

of measurements are exploited to estimate the pose of a moving object or discriminate

between different types of motion, the obtained mesh/voxel segmentation has to be con-

sistent throughout the temporal sequence. In particular, we are interested in surfaces or

volumes representing articulated objects, i.e., sets of rigid bodies linked by articulations.

Several approaches have been proposed which rely on the availability of sets of correspon-

dences between pairs of volumes/surfaces. For instance, geodesic distances on both meshes

and volumes are invariant to pose and articulation, and can be used for matching surfaces

which differ by a non-rigid deformation [4]. However, they are very sensitive to topologi-

cal changes (which, as we recalled, often occur in visually reconstructed meshes). [5] uses

a metric based on diffusion over the surface through a heat kernel, which is less sensi-

tive in this regard. Functions defined on the mesh-volume are more resistant to topological

changes. [62] uses the local “thickness” of the mesh-volume to consistently partition dif-

ferent surfaces over articulations and pose changes. These and other works in the geometry

processing community use surface curvature to derive the final segmentation, which is fine

for smooth 3D models but is not reliable for visually reconstructed meshes. An example of

these matching based approaches is [34] which consistently segments sets of objects such as

chairs and airplanes, starting from point-wise correspondences via global ICP registration,

without exploiting the temporal information.

Other matching based approaches rely on the use of a graphical model to explicitly

match two surfaces differing from a non-rigid deformation [24,66]. These point correspon-

dences can be later used to recover the articulated structure of the shape, as proposed in

[25]. [15] proposes an interesting alternative to the graphical model approach: it computes

a putative set of rigid transformations between surface points on two articulated shapes, and

treats these transformations (instead of the points themselves) as the labels for the graphical

model.
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A general limitation of model-based approaches to mesh/voxel segmentation is when

dealing with unknown scenes, as in the case of multiple interacting actors. These limitations

can be addressed by exploiting the temporal consistency between individual reconstruc-

tions. Preliminarily computing sets of correspondences between surface or volume points

can greatly help to enforce such consistency. Unfortunately, surface/volume matching is a

very hard problem, its results suffering from the presence of surface occlusions, sensitivity

to topological noise and disjoint objects.

In this paper we focus on volumetric representations, and propose an approach to auto-

matic, unsupervised spectral segmentation of moving bodies (represented as sets of stereo-

reconstructed voxels) along entire sequences, in a temporally coherent, robust way, as a

means of both inferring a bottom-up model of an unknown articulated body and providing

motion cues that can be later used for motion/action recognition, e.g., Figure 1 (Throughout

the paper, the voxel representations are visualized as point clouds.) In this endeavor we rely

neither on any prior model of the moving body nor on sets of previously computed point

correspondences, while accounting for topological artifacts.

Recent attempts to solve the problem at hand proposed manifold learning techniques

to process spatiotemporal data, e.g., [42,49]; these methods rely on enforcing temporal

relationships when embedding time sequences, a hard task when handling dense volume

representations. We propose instead a mechanism to enforce temporal consistency of seg-

ments obtained by clustering shapes in a spectral-embedded space, in which clusters are both

collinear and remarkably stable under articulated motions, and propagate them over time.

Within the class of spectral embedding techniques that are available today we favor local

linear embedding (LLE) [59] for a number of desirable features LLE exhibits in the specific

scenario of unsupervised segmentation: while it conserves shape protrusions in virtue of its

local isometry, their separation is increased and their dimensionality reduced as an effect of

the covariance constraint.

Fig. 1 Sample results of the proposed approach to unsupervised spectral segmentation of moving bodies

(represented as sets of stereo-reconstructed voxels) along entire sequences. Image sequences from multiple

cameras (a) are used to generate a volumetric reconstruction of the moving body at each time instant (b); the

final result is a consistent unsupervised segmentation of the moving body into segments closely related to the

actual body’s links, and their centroids’ trajectories.

In pose estimation, learning-based or example-based approaches [12,35,28] directly

relate visual information (features) to learned body configurations without the need for ac-

curate a priori models of the studied shape. These methodologies are not affected by the

initialization issue, but are limited by the use of training sets of examples. In contrast, tech-

niques have been proposed that directly infer body poses from multiple image cues or vol-

ume sequences: when the articulated structure of the moving body is not known at all, the

automated recovery of at least a skeleton-like model can be useful prior to any pose estima-
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tion step. Skeletonization methods recover the intrinsic articulated structure of 3D shapes,

either directly in 3D [13], or in an embedded space [17,67]. As it is able to automatically

recover the basic structure of an unknown body in terms of protrusions, and to do so consis-

tently along a sequence, the spectral segmentation framework that we propose can be seen

as a preliminary step in which both a time-invariant stick-like structure and its configuration

in the different time instants are recovered.

In action recognition, on the other hand, cues need to be extracted from a video se-

quence in order to recognize the class of motion being performed. While many successful

approaches do not rely on dynamics but favor extracting clues from spatiotemporal volumes

[11,44], others are based on extracting features, instant-by-instant, and explicitly encode

motion dynamics via a graphical model [9,16,36] such as, for instance, a hidden Markov

model [65,14]. In this second case, one has to decide whether to extract features in 2D from

individual images, or use multiple-stereo techniques to produce volumetric/surface recon-

structions of the moving body. The availability of systems of multiple, synchronized cameras

has made this approach both feasible and promising [19,20]. As the recovered body protru-

sions are consistently tracked over time along a sequence, the framework proposed here

can be easily exploited as a preprocessing stage in which, for example, the 3D locations of

the centroids of the recovered segments are used as observations to be fed to a parameter

estimation algorithm (such as Baum-Welch for HMMs) in order to identify the performed

motion class.

This paper is an extended version of [21] and [22]. Here we outline the LLE method,

which is essential for understanding our temporal-coherent segmentation technique, and

we provide an interpretation of LLE in terms of geometric features. A physical interpreta-

tion of LLE can be found in [22]. The segmentation algorithm, initially proposed in [21]

and sketched in [22], is described below in more detail. The experimental section contains

extensive quantitative evaluations based on synthetic data, which were segmented automat-

ically, as well as more results with real sequences and more comparisons with competing

methods. Moreover, with respect to [21,22] we provide a sensitivity analysis with respect to

the LLE free parameters and, in particular, we discuss the algorithm robustness with respect

to these parameters, to topological changes in the moving shape, and to the resolution of the

voxel grid. We propose an interpretation of protrusion segmentation in terms of the nodal

domains of the Laplacian eigenvectors. This in turn provides insights on how to choose the

dimension of the embedded space. An application to bottom-up model recovery is proposed

and illustrated as well.

1.1 Paper Organization

The remainder of this paper is organized as follows. Section 2 starts by outlining the pro-

posed approach, its objectives and the problem constraints. We motivate our approach by the

interesting geometric features of LLE. Section 3 illustrates the proposed algorithm in detail,

step by step: the use of k-wise clustering to segment the embedded cloud, starting from de-

tected branch terminations (section 3.2), followed by how to propagate clusters over time to

ensure consistency (section 3.3) and merge/split them to fit the topology of the body (3.4).

The whole procedure is summarized in section 3.5. Section 4 describes in detail an extensive

set of experimental validations that provides evidence, on both synthetic and real data, on the

performance of the algorithm and in comparison with competing methods. The results are

benchmarked with ground-truth data: therefore we thoroughly test the way our method and

other methods can cope with topology transitions. Moreover we study the robustness of the
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algorithm. Section 5 outlines potential applications to bottom-up model recovery. Section 6

concludes the paper.

2 Problem Formulation and Proposed Solution

The main objective of this paper is a method for performing unsupervised and temporally

coherent protrusion clustering. The proposed methodology should be able to produce an

automatic segmentation of an unknown moving body. Such a body can be represented in-

differently as a set of surface points or a set of voxels obtained by volumetric reconstruction

from a set of synchronized cameras: here, nevertheless, we will pay special attention to vol-

umetric representations. Without loss of generality, the body is supposed to be composed

by a collection of linked rigid parts (a condition that could be possibly relaxed). The pro-

duced segments are “meaningful”, in the sense that they are linked to actual segments of the

moving body. The segmentation process takes place in a completely unsupervised way, i.e.,

neither with previously annotated data nor with human intervention. The segmentation algo-

rithm processes an entire sequence of surface/volumetric shapes in a consistent way, i.e., the

shape is segmented into the “same” elements throughout the sequence. The methodology is

able to adapt to topological changes due to imperfections or self-contacts. Throughout the

paper, the following constraints are assumed:

– no a priori model is available for the moving shape, but instead some model of the latter

can be recovered a posteriori, and

– no correspondences between sets of surface/volume points are necessary to ensure the

consistency of the segmentation (freeing the approach from the limitations of matching

algorithms).

The remainder of this section explains how spectral segmentation, once LLE is applied,

yields geometric features that allow us to design such a system, to be later used for model/pose

estimation or action recognition (Section 5), and outline an approach to the above defined

problem based on it. Then we will detail the various steps of the process, and validate it in a

variety of scenarios.

2.1 Locally Linear Embedding

LLE [59] is a graph Laplacian [71] algorithm which computes the set of d-dimensional em-

beddings Y = {Yi, i = 1, ..,N} of a set of input points X = {Xi, i = 1, ..,N}, while preserving

their local structure. For each data point Xi, the algorithm computes the weights {Wi j, j =
1, ...,N(i)} that best linearly reconstruct Xi from its k nearest neighbors {X j, j = 1, ..,k}
by solving the following constrained least-square problem: argmin∑

N
i=1 |Xi −∑

k
j=1 Wi jX j|

2.

Then the low-dimensional embedded vectors {Yi} associated with the original cloud of

points {Xi} are computed by minimizing the sum of the squared reconstruction errors (Fig-

ure 2):

argmin
{Yi}

N

∑
i=1

∣

∣

∣
Yi −

k

∑
j=1

Wi jYj

∣

∣

∣

2

. (1)

The embedded cloud Y is constrained to be centered at the origin 0 of R
d (∑i Yi = 0) and to

have unit covariance:
1

N

N

∑
i=1

YiY
T
i = I. (2)
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The objective function to minimize (1) is in fact a quadratic form ∑
N
i, j=1 Mi j〈Yi,Yj〉 (where

〈.〉 denotes the usual scalar product of vectors) involving the “affinity” matrix: M
.
= (I −

W )T (I −W ), W = [wi j]. The optimal embedding (up to a global rotation) is found by com-

puting the bottom d +1 eigenvectors of M, and discarding the bottom (unit) one.

Fig. 2 Graphical description of the LLE algorithm.

2.2 Geometric Features of LLE

Despite having been originally introduced as an unsupervised dimensionality reduction tech-

nique, LLE displays a number of attractive geometric features for unsupervised segmenta-

tion as well, as it is illustrated by Figure 3. Given a cloud of 3D points representing, for

instance, the voxels occupying the volume of an articulated shape, for a large interval of its

parameters k (scale of the neighborhood to preserve) and d (dimensionality of the embedding

space), the corresponding embedded cloud after LLE exhibits two interesting properties:

1. it is (roughly) lower dimensional, i.e, the embedded points live (approximately) on a

manifold of dimension lower than the original one (a 1-D tree in Figure 3-a);

2. the protrusions (chains of smaller rigid links) in the original shape are mapped to roughly

equally spaced, widely separated branches of the embedded cloud.

Intuitively, this is due to the fact that the covariance constraint (2) pulls outwards and

stretches the chain of links formed by all local neighborhoods, redistributing them on a

(roughly) lower dimensional manifold. As the force pulls those chains in a radial direction,

their separation increases in the embedding space. Clustering/segmenting such protrusions

becomes much easier there: compare in Figure 3-a)-right the output of the ISOMAP embed-

ding on the same shape.



8 F. Cuzzolin, D. Mateus & R. Horaud

Fig. 3 a) How LLE (middle) and ISOMAP [68] (right) map the same 3D cloud (left) for the same number of

neighbors k = 13. LLE increases the separation of protrusions like legs and arms, unlike methods based on

geodesic distances. b) The number of neighborhoods affected by articulated motion is relatively small.

.

However, our purpose is to cluster moving objects in a temporally coherent way: we

need the segments obtained at different time instants to be consistent, i.e., to cover the same

body-parts. Some embedding schemes, such as ISOMAP, are inherently pose-invariant un-

der articulated motion (as, while the articulated body evolves, the geodesic distances be-

tween all pairs of points do not vary). This is not true, in a strict sense, for LLE and other

graph Laplacian embeddings [6]. However, for articulated bodies formed by a number of

rigid parts linked by rotational joints, all local neighborhoods incident on a rigid part are

preserved along the motion, while only the few neighborhoods interested by the evolving

joint(s) are affected (Figure 3-b). Figure 4 illustrates two different poses of a dancer per-

forming a ballet, and how the related embedded clouds obtained through LLE for d = 3 and

k = 10 are stable (up to an orthogonal transformation).

Fig. 4 Stability of LLE under articulated motion. Two different poses (left and middle) of the same person

are mapped onto the same embedded shape (right), for a large interval of parameter values and up to an

orthogonal transformation.
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2.3 The Proposed Formulation

Shape protrusions are then conserved in the LLE spectral domain, while their separation is

increased and their intrinsic dimensionality reduced. The effect is dramatic in situations in

which body-parts are physically close to each other in the original space, and makes clus-

tering significantly easier after embedding. Moreover, the embedded shape of an articulated

body is to a large extent pose-invariant, making the propagation in time of the obtained

clusters much easier.

Here we are going to exploit these geometric features of LLE to devise an unsupervised,

time-consistent method for protrusion segmentation of 3D articulated shapes. The proposed

segmentation technique does not assume any prior model (not even a weak topological or

graphical one). The number of clusters themselves is unknown while it is inherently deter-

mined by the lower dimensional structure of the embedded cloud. The proposed method

follows the following steps:

1. At each time-instant the current 2D voxel-cloud is mapped via LLE to a suitable embed-

ding space;

2. The most suitable number of clusters is estimated by counting the number of branches

in the embedded cloud;

3. The k-wise clustering technique devised in [1] is used to segment such branches, due to

their intrinsic lower dimensionality;

4. Such a embedded-space clustering induces protrusion segmentation in the original 3D

space, and finally

5. The resulting segmentation is propagated to the next time-instant to ensure temporal

coherence of the segmented body.

In the next section we are going to provide a detailed description of each step.

3 Method

As articulated shapes are mapped by LLE onto an embedded space, it would make no sense

to employ generic k-means [52] to segment embedded-space protrusions (as it happens in

classical spectral clustering [55]). We therefore adopt the k-wise clustering introduced in [1]

to segment protrusions in the embedding space. Given a sequence of 3D shapes, the initial

segmentation is consistently propagated along time, and the number of clusters estimated in

an automatic way to fit the changing topology of the moving articulated body.

3.1 K-wise Clustering of the Embedded Shape

Consider Figure 3. For a dimension d = 3 of the LLE embedding space, the embedded

cloud is (for a wide interval of values of k) a tree-like one-dimensional curve. When trying

to segment its branches, then, it is natural to look for clusters formed by sets of roughly

collinear points. Traditional clustering algorithms, such as k-means [52], are based on mea-

suring pairwise distances between data points. In opposition, it is possible to define measures

of similarity between triplets of points, which signal how close these triplets are to being

collinear (Figure 5-left) [38,37]). More generally, the problem of clustering points based on

similarity between k-tuples of points is called k-wise clustering. An interesting approach to

k-wise clustering has been proposed in [1], based on the notion of “hypergraph”.
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Fig. 5 Left: rationale of 3-wise (k-lines) clustering. The areas of the triangles defined by triads of points

measure their collinearity. As the points tend towards collinearity, the area of the triangle tends to 0. Right:

affinity of k-tuples in a hypergraph H.

A weighted undirected hyper-graph H is a pair (V,h), where V is the set of vertices

of H. Subsets of V of size k are called hyper-edges (just as subsets of two elements in a

normal graph are potential edges). The function h associates nonnegative weights h(z) with

each hyper-edge (k-tuple) z, and measures the affinity of each hyper-edge (Figure 5-right),

in analogy with the weight of edges in conventional graphs.

Consider then a set of data-points Y = {Yi, i = 1, ...,N}.

1. First, an affinity hyper-graph H is built by measuring the affinity of all the k-tuples of

points in Y ;

2. Next, a weighted graph G with the same vertices Y approximating the hyper-graph H is

constructed by constrained least square optimization;

3. Finally, the approximating graph G is partitioned into n parts via a spectral clustering

algorithm [64,55].

In the problem of interest to us, the hyper-graph to approximate has as vertices the embedded

points {Yi}. If the embedding is d-dimensional, d-tuples of embedded points are considered

as hyper-edges: in particular, hyper-edges are triads of points when d = 3. A natural choice

for the affinity of these triads of embedded points is the area of the triangle they form, e.g.,

Figure 5-left, or the volume of the (d −1)-dimensional hyper-edge in the general case.

The outcome of the above clustering algorithm is a segmentation of the embedded cloud

Y , which can be trivially transferred back to the original 3D space using the known corre-

spondences between the 3D points and the embedded-space points. A mechanism for auto-

matically estimating the number n of clusters is the next step in the algorithm.

3.2 Branch Detection and Number of Clusters

The fact that embedded clouds typically appear as one-dimensional strings formed by a

number of branches (corresponding to the extremities of the moving body) provides us with

a simple method to estimate, at each time instant, the most suitable number of clusters

(Figure 6).

Each point of the embedded cloud is tested to decide whether or not it is a branch ter-

mination. This test is performed by looking for its nearest neighbors, for a certain threshold

distance empirically learned from the data. The best interpolating line (in blue) for all the

neighbors (in green in Figure 6) of the considered point is found, and all such neighbors
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Fig. 6 Termination (left) and internal (right) points of the embedded cloud are characterized by their projec-

tion (red square) on the line (in blue) interpolating their neighborhoods (in green) being an extremum of the

interval of all projections.

are projected onto it. A point of the embedded cloud (red star) is considered a branch ter-

mination if the projections of all its neighbors on the interpolating line lay on one side of

its own projection (red square), e.g., Figure 6-left. It is not considered a termination when

its projection has neighbors on both sides (Figure 6-right). This algorithm proves to work

extremely well on embedded clouds generated through LLE. It becomes then possible to

detect transitions in the topology of the moving body whenever they happen, and modify

the number of clusters accordingly. We will return on this in Section 3.4.

3.3 Temporal Consistency and Seed Propagation

When considering entire sequences of 3D clouds we need to ensure the temporal consistency

of the segmentation: in normal situations (no topology changes due to contact of different

body-parts) the cloud has to be decomposed into the “same” groups in all instants of the

sequence. We propose a propagation scheme in which centroid clusters at time t are used to

generate initial seeds for clustering at time t +1 (Figure 7). Let n be the number of clusters.

3.3.1 The Seed Propagation Algorithm

1. The embedded cloud {Yi(t), i = 1, ...,N(t)} at time t is clustered using d-wise clustering

(Section 3.1, Figure 7-bottom-left);

2. for each cluster centroid c j(t) ( j = 1, ...,n) in the embedding space (a square in Figure

7-bottom-left), the original datapoint, denoted by Xi j
(t), whose embedding Yi j

(t) is the

closest neighbor of c j(t) (and which we call “3D centroid”) is found (a square of the

same color in Figure 7-top-left):

i j(t) = arg min
i=1,...,N

‖Yi(t)− c j(t)‖
2;

3. at time t + 1 the dataset of 3D input points X(t + 1) = {Xi(t + 1), i = 1, ...,N(t + 1)}
is augmented with the positions of the old “3D centroids” at time t (colored circles),

yielding the set (Figure 7-top-right): X ′(t +1) = X(t +1)∪{Xi j
(t), j = 1, ...,n};
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Fig. 7 Seed propagation for consistent clustering along time in the embedding space. The anti-images of the

embedded centroids at time t are added to the 3D cloud X(t +1) at time t +1. Their own embeddings c′j(t +1)

are the seeds from which to start clustering the new embedded cloud Y (t +1).

4. LLE is applied to the extended dataset X ′(t + 1), obtaining (Figure 7-bottom-right) 1

Y (t + 1)∪{c′j(t + 1), j = 1, ...,n}, where c′j(t + 1) is the embedded version of the old

3D centroid Xi j
(t) in the new embedded cloud at time t + 1 (a colored circle in Figure

7-bottom-right);

5. such embedded points c′j(t +1) are then used as seeds from which to cluster via k-wise

the new embedded cloud Y (t +1).

3.4 Topology Changes and Dynamic Clustering

The question of how to initialize the seeds at t = 0 naturally arises. Besides, even though

working in an embedding space helps to dramatically contain the issue with segmenting

body-parts which get dangerously close to each other, instants in which different parts of the

articulated body come into contact still have important effects on the shape of the embedded

cloud. In fact, in an unsupervised context in which we do not possess any prior knowledge

about the number of rigid parts which form the body or the way they are arranged, but only

1 The embeddings c′j(t + 1) of the previous 3D centroids Xi j
(t) in the new embedded cloud can also be

computed by out of sample extension [8].
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the fact that they belong to an articulated shape, there is no reason to distinguish touch-

ing body-parts. It appears more sensible to adapt the number of clusters to the number of

actually distinguishable protrusions.

The branch detection algorithm of Section 3.2 provides, on one side, a suitable tool

for initializing the embedded clustering machinery, while allowing at the same time the

framework to adapt the number and location of the clusters when a topology change occurs.

3.4.1 The Cluster Merging-Splitting Algorithm

1. At each time instant t all the branch terminations of the embedded cloud Y (t) are de-

tected; if t = 0 they are used as seeds for d-wise clustering;

2. otherwise (t > 0), first standard k-means with k = d is performed on Y (t) using branch

terminations as seeds, yielding a rough partition of the embedded cloud into distinct

branches;

3. if two or more propagated seeds c′j(t) (see Section 3.3) fall inside the same element of

this preliminary partition obtained via k-means, they are replaced by the branch termi-

nation of the element of the preliminary partition;

4. for each element of the preliminary partition of Y (t) which does not contain any propa-

gated seed, a new seed is defined as the related branch termination;

5. finally, d-wise clustering is applied to the resulting set of seeds.

Step 3 takes place when previously separated protrusions get too close (in the original 3D

space) to be distinguished: it makes then sense to merge the corresponding clusters. Step 4

represents the opposite event in which a body-part which was previously impossible to dis-

tinguish becomes well separated, requiring the introduction of a new cluster. As a result,

clusters are allowed to merge and/or split according to topological changes in the moving

articulated body. We will validate this approach to topology change management in Section

4.7.

3.5 Summary of the Method

Let us at this point summarize our approach for unsupervised, robust segmentation of parts

of moving articulated bodies in a consistent way along a time sequence, by integrating the

separate algorithms of Sections 3.1, 3.2, 3.3, 3.4 into a coherent whole.

Given the values d,k of the parameters of LLE, for each time instant t:

1. the current data-set X ′(t) = X(t)∪{Xi j
(t − 1)} for t > 0, X ′(0) = X(0) = {Xi(0), i =

1, ...,N(0)} for t = 0 (Figure 8-a), is mapped to an embedding space of dimension d,

yielding an embedded cloud Y (t) = LLE[k,d](X ′(t));
2. all the branch terminations of the embedded cloud Y ′(t) are detected (Section 3.2): the

number of clusters n(t) at time t is then set to the number of branches (plus one for the

torso), Figure 8-b;

3. the embedded cloud Y ′(t) is clustered into n(t) groups by d-wise clustering (Section

3.1) starting from n(t) seeds (Figure 8-c):

– if t = 0, we use as seeds the branch terminations;

– if t > 0, seeds are obtained from the old propagated centroids {c′j(t), j = 1, ...,n(t −
1)} and the new branch terminations via the splitting/merging procedure described

in Section 3.4;
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Fig. 8 Graphical illustration of the proposed coherent spectral segmentation algorithm.

4. this yields a new set of centroids {c j(t), j = 1, ..,n(t)} in the new embedding space

Y ′(t);
5. the labeling of the embedded points induces a segmentation in the original 3D shape

(Figure 8-d);

6. the new cluster centroids c j(t) are re-mapped to 3D (Section 3.3), the corresponding 3D

centroids Xi j
(t) are added to the data-set X(t +1) at time t +1 (Figure 7);

7. we go back to step 1, until the last time instant of the sequence is attained.

4 Experiments

4.1 Experimental Setup

We tested the algorithm of Section 3.5 on both synthetic and real data, in order to have both

qualitative and quantitative assessments on its performances.

In the first experiment (Section 4.3) we tested our algorithms on a set of synthetic se-

quences depicting a moving person, for which a “ground truth” segmentation of the person’s

body into rigid links was available, e.g., Figure 9. The sequences were generated by sim-

ulating the evolution of a human body model formed by a kinematic model [45], plus the

volume elements representing its rigid links. As it can be seen in Figure 9, the grid sampling

was such that the height of a standing person was 200 voxels, corresponding to a real-world

resolution of around 1cm.

In a second experiment (Section 4.4) we used a multiple-camera setup composed by

eight synchronized and cross-calibrated video cameras to capture images sequences in a

constrained environment, such that the silhouette of a moving person could be easily ex-

tracted from each image. Using the resulting silhouettes, a standard space-carving algorithm

was employed to generate at each time instant a voxel-based representation of the person.

The frame rate of the cameras was 30 frames per second. The original voxel size was 1cm.

Figure 10 shows as an example a few frames from the “dancer”, one of the real-world voxel-

set sequences, and a number of images for the same sequence1. As it can be appreciated, the

original resolution of the voxel-set grid is quite high.

1 These data are available on-line at http://4drepository.inrialpes.fr/public/datasets.

http://4drepository.inrialpes.fr/public/datasets
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Fig. 9 A few sample frames from the synthetic sequence “reveil” used in the first experiment. The automati-

cally generated ground-truth segmentation into rigid links is shown in colors.

Fig. 10 Top: sample frames of the “dancer” sequence. Bottom: frames 20-26 of the real voxel-set sequence

“dancer” used in the second experiment.

In the case of sequences for which motion capture estimates were not available, and

could not be used to provide ground truth on the “true” segmentation into rigid links, we

could nevertheless provide visual results which provide qualitative evidence on the effec-

tiveness of the approach.

In a third experiment (Section 4.5) we were able to calculate performance scores for

real-world sequences for which motion capture data was available, and a ground truth seg-

mentation of the moving person could be built. In all these experiments we compared our

results with those of similar schemes in which seeds are also passed to the next frame to

ensure time consistency, but clustering is either performed in 3D on the original data-set

using a Gaussian mixture and the EM algorithm [26] (time-consistent EM clustering) or in

the ISOMAP space [68] using k-means (time-consistent ISOMAP clustering).

In Section 4.6 we further analyzed the sensitivity of the algorithm to changes in the

values of its basic parameters: the set of eigenvectors selected to compute the desired LLE

embedding, the size k of the neighborhood, and the resolution of the grid of voxels. Finally,

in Section 4.7 the robustness with respect to topological changes in the moving shape was

assessed.
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Fig. 11 Left: Ground-truth labels for voxels are automatically generated from an articulated model of a

virtual human. Each voxel is assigned the label of the closest generating link. Right: different performance

scores can be calculated by comparing the unsupervised segmentation produced by an algorithm with the

three a-priori segmentations shown here (black lines in the plots).

4.2 Ground Truth and Performance Scores

In order to quantitatively assess the performance of our segmentation algorithm we produced

ground-truth segmentation for the analyzed sequences. In the case of synthetic sequences we

used as ground-truth the labels automatically generated by associating each (synthetic) voxel

with the closest link of the model which had generated the voxel set in the first place, e.g.,

Figure 11-left.

We worked out three distinct performance measures. Firstly, for a body composed by a

number of rigid parts, a segmentation is valid if it does not cut in half a rigid link, i.e., the

segmentation is a coarsening of the partition of all rigid links. We defined as coarsening

score the average percentage of points across all rigid links which belong to the majority

cluster (the unsupervised cluster containing the largest number of points, whichever it is)

for the link.

Secondly, the obtained segmentation can be compared with three different “natural”

subdivisions of the human body, e.g., Figure 11-right, by counting for each a priori segment

s the histogram distribution hists(l) of the different unsupervised labels l, and retain the

percentage of “majority” voxels, i.e., those associated with the unsupervised cluster with

the highest frequency: score(s) = maxl hists(l). A segmentation score can then be obtained

as the simple average score for all segments: segm = 1
#s ∑s score(s). When the obtained

unsupervised clusters correspond to the a-priori segments the largest cluster contains 100%

of the points for each segment, and the score is equal to 1.

Finally, the consistency along time of the obtained unsupervised segmentation is mea-

sured by storing at t = 0 (as a reference) for each link of the body the percentage of voxels

which belong to each unsupervised cluster, and measure for each t > 0 and for each link

l the similarity of the current label distribution and the initial one, as 1 minus the L1 dis-

tance between the two histograms. This consistency score tends to one when the proportion

of unsupervised cluster labels is constant in time for all the ground-truth segments of the

articulated body.

4.3 Experiment 1: Quantitative Performance on Synthetic Data

Figure 12 shows the segmentation scores for six different synthetic sequences, of length

comprised between 25 and 70 frames. We can appreciate how, typically, the obtained un-

supervised segmentation turns out to be very consistent along time, as witnessed by a con-

sistency score (in red) between 95% and 100% at all times, even for fairly long sequences
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Fig. 12 Segmentation scores obtained by comparing the labeling generated by our segmentation algorithm

with ground truth labels automatically provided for a number of synthetic sequences of articulated motion.

Scores obtained over six different sequences of different length from 25 to 70 frames are shown. From top

left to bottom right: “walk”, “walk on mars”, “waking up”, “laughter”, “surf1”, and “surf2”. Red: consistency

score. Blue: coarsening score. Solid, dash-dot and dashed black lines plot the segmentation scores respectively

associated with the three a-priori segmentations of Figure 11, taken in the same order.
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Fig. 13 Segmentation scores obtained by time-consistent EM clustering on the same synthetic sequences of

Figure 12. For sequence 5, the scores produced by two runs of EM are shown (as there is a random component

to it): its performance is consistently not good.
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Fig. 14 Segmentation results (left) and centroid trajectories (right) obtained by our algorithm (top) and time-

consistent EM clustering (bottom) for the sequences “walk” and “surf1”. The voxelset segmentation for the

last frame of the sequence is shown as an example.

picturing quite different types of motion. In all cases the boundaries between unsupervised

clusters normally lie in correspondence of actual articulations, as witnessed by the values of

the coarsening score (in blue). As for the a-priori segmentation scores (the three different

black curves) we can notice that, at least for the given collection of sequences, the designed

unsupervised spectral clustering algorithm seems to favor the second a-priori partition of

Figure 11-right, i.e., it tends to highlight the outermost rigid links rather than whole protru-

sions (such as legs and arms). This unexpected result can be explained by pointing out that

lower density regions (such as articulated joints) cause the embedded cloud to bend.

Figure 13 shows the corresponding results produced by time-consistent EM clustering

in the original 3D space. Not only the absolute segmentation performance (measured by

the black plots) is consistently, dramatically worse than that of the proposed algorithm,

but the obtained segmentation is not at all consistent along time (red curves). Incidentally,

EM segmentation appears to relatively favor the first a-priori segmentation (whole legs and

arms), as the dominance of the solid black curve attests. Clusters drift inside the shape during

the motion, and usually span different distinct body-parts. This phenomenon is made clear in

Figure 14, where the irregular trajectories of the obtained 3D clusters for two sub-sequences

of “walk” and “surf” are plot, while the obtained segmentation is visually rendered for two

key-frames of the two sequences, showing its lack of relation with articulated segments.

4.4 Experiment 2: Qualitative Assessment on Real Data

In a second series of tests we applied the algorithm of Section 3.5 to several different real-

world, high-resolution sequences of voxelsets, generated by our multi-camera acquisition
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Fig. 15 Examples of results produced by the dynamic segmentation algorithm of Section 3.5 on a number of

real-world sequences: a) “fly” sequence of 11 frames; b) “arm-waving” sequence of length 50; c) “walking”

motion, length 10; d) a subsequence of “danceuse”, 16 frames; e) another “danceuse”, length 10. Both the

evolution of whole unsupervised clusters in 3D and their centroids’ trajectories are shown. f) Example of

topology transition management: after 11 frames in which arms are spread out (left) the left arm gets in

contact with the torso: the algorithm adapts the number of clusters accordingly and proceeds to segment in a

smooth way for other 7 frames (right, from a different viewpoint).
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Fig. 16 Segmentation scores (left) and centroid trajectories (right) obtained by our algorithm for the real-

world sequence “mars”, from t = 389 to t = 415. Top: our algorithm. Bottom: time-consistent EM clustering.

The actual voxelset segmentation corresponding to the critical frame t = 408 of the sequence is also shown

(middle).

system. Among those, a 200-frame-long sequence capturing a dancer who moves and swirls

all around the scene, and voxelset resolution of 1cm.

Figure 15 illustrates some typical results of the dynamic segmentation algorithm de-

scribed in Section 3.5, for a number of real-world sequences. It can be appreciated how the

resulting unsupervised segmentation turns out to be pretty consistent in time, yielding very

smooth cluster centroid trajectories, not only in situations where body-parts are well sepa-

rated ( a), b)) but also during walking gaits (c) or even extremely complicated motions like

the dance performed in d), e). Figure 15-f) shows how the algorithm copes with transitions

in the body’s topology, in particular the arm of a walking person touching their torso. Cluster

evolution displays remarkable stability before and after the transition.

4.5 Experiment 3: Quantitative Assessment on Real Sequences

When motion capture data are available it is possible to measure quantitatively the perfor-

mance of the three competing methods (the proposed time-consistent d-wise LLE segmenta-

tion, time consistent EM clustering, and time-consistent ISOMAP embedding with K-means

clustering) on real-world sequences as well, by assigning as ground-truth to each voxel the

label of the closest estimated link.

Voxelset sequences actually captured through a multi-camera system suffer from a num-

ber of unpleasant phenomena, like presence of large gaps or holes in the grid of voxels

(e.g. the gap in the wrists in Figure 16-middle), noise, disconnected components, not to
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Fig. 17 Performance scores for two more real-world sequences of length 29 and 40 respectively, and for

all the competing methods. Only the coarsening (blue) and the (second) segmentation (in black) scores are

plotted. Solid lines: our method, time-consistent d-wise clustering in LLE space; dashed lines: time-consistent

EM clustering in 3D. Dash and dotted lines: time-consistent k-means clustering in ISOMAP space. The

performance scores of the proposed approach clearly dominate all the others’.

mention entire missing body-parts (compare the missing head in Figure 16-middle, top and

bottom). Figure 16-top illustrates how, for adequate values of the parameters (in the plots

d = 4,k = 25), the segmentation scores achieved by our algorithm are once again very high,

with the method showing remarkable resilience to unreliable data capture (red line). This

compares very favorably with the behavior of time-consistent EM clustering (bottom).

We can still notice a couple of drops in the scores (top-left), mirrored by a brief sudden

glitch in clusters trajectories, (top-right). They correspond to frames (such as t = 408, whose

voxelset segmentation is shown in the middle) in which gaps are so wide that they affect the

quality of the segmentation, even though the shape of the embedding cloud remains stable.

Figure 17 shows the scores obtained by all three competing methods over two other chal-

lenging sequences of real voxelsets. It is apparent how our method exhibits strong resilience

to data of very poor quality, easily outperforming both EM clustering in 3D or k-means clus-

tering in the geodesic-based ISOMAP space. At times glitches due to extremely corrupted

data (t = 8, t = 17, right) appear, but the topology adaptation algorithm of Section 3.4 brings

swiftly the segmentation back on track.

4.6 Sensitivity analysis

4.6.1 Estimating the Optimal Number of Neighbors

The proposed segmentation methodology critically relies on the “desirable” geometric prop-

erties of LLE discussed in Section 2.1, which in turn depend on its two basic parameters:

the size k of the neighborhoods and the dimension d of the embedding space. The former,

in particular, affects both the stability of the embedded shape along time and its lower-

dimensionality, from which the estimation of the number of clusters itself depends. It can be

noticed empirically that, while the embedded shape shows a remarkable stability for some

values of k, this is not in general the case for arbitrary such values. Figure 18-a) shows how

the embedded shape varies for two frames (top, bottom) in the “dancer” sequence as k ranges

from 10 to 30.
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a)

b)

Fig. 18 a) This shows how the lower-dimensionality, separability and stability of the embedded cloud along

a sequence depend on the size of the neighborhood k in the LLE algorithm. b) Unsuitable values of k are

characterized by “anomalous” neighborhoods which span distinct body-parts (middle), in opposition to the

case of admissible values (left). Right: plots of the distance between the farthest point of the neighborhood

and all the others in the two cases (top: “regular” neighborhood; bottom: “anomalous” neighborhood).

For higher values of k some neighborhoods of points in a given body-part comprise

regions of a different body-part, e.g., Figure 18-b). However, in those “anomalous” neigh-

borhoods the farthest element (as it belongs to another, distinct link) is relatively distant

from all others. If we plot the distance between this point and all its fellows we can notice

a large jump, e.g.,Figure 18-b) (bottom right). This is not the case for “regular” neighbor-

hoods spanning a single rigid part (top right). We can then set as acceptable value for k any

of those which yield only “regular” neighborhoods.
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Fig. 19 As stationary functions on the shape approximated by a cloud of points, Laplacian eigenfunctions

are associated with symmetries and protrusions of the underlying domain. Here the level sets (in blue) of the

first five eigenfunctions of the depicted “monster” are shown to partition the toy along directions that follow

its natural axes of symmetry: horizontal (leftmost image), left/right (second picture), or radiating from the

barycenter (last image).

.

4.6.2 Laplacian Methods, Selection of Eigenfunctions and Body-part Resolution

Spectral methods have long been used in the computer graphics community as a tool to

analyze and process meshes representing surfaces of objects inside virtual scenes. Generally

speaking, they share a common framework in which an affinity matrix M which reflects the

structure of the input set of points is defined and an eigen decomposition of this matrix which

yields its eigenvalues and eigenvectors is performed. They can be roughly classified into two

categories: methods in which M encodes adjacency information (such as LLE or ISOMAP),

and methods based on the graph Laplacian, an operator L : f 7→ L f mapping functions

f : X →R, Xi 7→ f (Xi) = fi defined on sets of points (vertices) X = {Xi, i = 1, ...,N} forming

a graph, of the form:

(L f )i ∝ ∑
j∈N(i)

wi j · ( fi − f j) (3)

where N(i) is the set of neighbors of the point Xi (the vertices connected to it by an edge) in

X , and wi j is the weight of the edge joining Xi with j-th neighbor.

Functions on a set X of N points can be trivially represented as the vector of their values

on the N points: f = [ f (Xi) = fi]
T . Therefore, the N by N affinity matrix M computed by

LLE can also be seen as an operator on the space of functions defined on the cloud of N

points X , as the matrix multiplication f ′ = M× f yields another vector f ′ of N components,

representing another function on X . As it can be proven that the affinity matrix operator

can be approximated by the square Laplacian, M f = (I −W )T (I −W ) f ≈ 1
2
L 2 f , Locally

Linear Embedding can be considered a form of Laplacian embedding.

Now, the level sets of Laplacian eigenfunctions are related to the geometry of the under-

lying shape X . In particular nodal sets [41], i.e., zero-level sets of eigenfunctions, partition

X into a set of “nodal domains” strongly related to protrusions and symmetries of the under-

lying grid of points.

Figure 19 shows a clear example of how the level sets of different eigenfunctions of the

Laplacian operator defined on (the discretized version of) any given shape follow the sym-

metries of the shape itself [47]. As the n-th eigenfunction has at most n nodal domains, the

first eigenfunctions are associated with relatively “coarse” partitions of the shape of interest.

As the LLE affinity matrix is linked to the graph Laplacian operator, its eigenvectors are

also associated with specific symmetries of the underlying cloud of points. In other words,
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Fig. 20 Different eigenfunctions capture different aspects of the shape’s geometry. Top: the first four eigen-

functions for the frame t = 209 of the “mars” sequence. Each eigenfunction corresponds to a 1 by N eigen-

vector of the affinity matrix: its value of the i-th point of the grid is the i-th entry of the eigenvector and

is rendered here in color. Bottom-left: segmented embedding cloud and corresponding 3D segmentation for

the same frame, obtained by selecting eigenvectors 1,2, and 3. Bottom-right: segmentation associated with

eigenvectors 2,3, and 4.

the choice of which eigenvectors of M we select after SVD determines the structure of

the embedded cloud. While in standard LLE always the bottom d are chosen, d being the

dimension of the resulting embedding, LLE is used here just as a tool to make the structure

of the 3D shape in terms of protrusions clearly emerge. It makes then more sense to look for

an appropriate, arbitrary selection of eigenfunctions of the affinity matrix able to facilitate

the clustering of the shape at hand.

To visually render these concepts, we can visualize functions f (and in particular eigen-

vectors of M) on the original cloud X of 3D points as “colored” versions of the same cloud,

in which the color of each point Xi is determined by the value f (Xi) of the function in that

particular point.

We used this technique to depict in Figure 20-top the top four eigenvectors of the LLE

affinity matrix for frame 209 of the “Mars” sequence. It is striking (but to be expected, fol-

lowing the brief discussion on graph Laplacian methods) to notice how the positive (red)

and negative (dark blue) peaks of the different eigenfunctions of M are located exactly on

the protrusions of the underlying shape, i.e., its high-curvature regions. Selecting a specific

set of eigenfunctions is then equivalent to highlighting the associated peaks.

The resulting embedded clouds may even possess a different number of distinguishable

branches. In Figure 20-bottom-left, for instance, eigenfunctions 1,2,3 determine an embed-

ding not able to resolve the head as a separate protrusion. The head appears instead as an

additional cluster when selecting eigenfunctions 2,3,4 (right).
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Fig. 21 How the discrete sampling of a 3D shape influences the performance of the algorithm. Top: sequence

“space surf” from t = 300 to t = 319. Bottom: “reveil” from t = 150 to t = 200. Left: consistency (red)

and segmentation (black) scores throughout each sequence, for different values of the product k by s: 3×14

(solid), 4× 10 (dashed), 5× 8 (dash-dotted), 6× 7 (dotted) for “space surf”; 5× 18, 6× 15 and 7× 14 for

“reveil”. Center: example segmentation (t = 319 for s = 3, k = 14 for the top sequence; t = 218 for the bottom

one). Right: corresponding centroid trajectories.

4.6.3 Influence of Voxel-grid Resolution

As we just argued, the quality of the segmentation depends on the “good” features of the

embedding, namely its lower dimensionality and improved branch separation. In turn, those

depend (amongst other factors) on the assumption that the graph Laplacian of the actual

cloud of points representing the shape is a good approximation of the (unknown) Laplace-

Beltrami operator.

Figure 21 illustrates how performances degrade as the number of voxels (seen as samples

of an underlying continuous shape) decreases. To allow a fair comparison we kept roughly

constant at all runs the product s ·k between number of neighbors k and sampling factor s (as

the original voxel sets contain as many as 25000 voxels, it is convenient to sub-sample them

to limit computation time). In Figure 21 the consistency score and the segmentation score

for the “natural” segmentation of the body into lower limbs, head, and bulk are shown for

two subsequences of “space surf” and “reveil” (top and bottom, respectively). For more static

sequences (bottom) the segmentation score (black) is more stable as a function of the product

k · s, even though subject to sudden jumps. The consistency score (red) is more sensitive,

while performance degrades consistently when grid resolution is reduced for sequences in

which the body moves significantly (top).



Temporal Laplacian Protrusion Segmentation 27

Fig. 22 Consistency (left), segmentation (middle), and average (right) scores obtained over two sample syn-

thetic sequence (top and bottom) for different values of the parameters k = {14,16,18,20,22} (on the ab-

scissa) and d = {3,4,5,6,7} (on the ordinate) of the algorithm. Top performances are achieved for a wide

range of the parameters. Top: “walk”, from t = 71 to t = 80. Bottom: “surf”, from t = 1 to t = 25.

This is due to two different effects. On one side, for sparser clouds of points the graph

Laplacian is a worse approximation of the Laplace-Beltrami operator. On the other, as the list

of points is randomly sampled to produce the reduced dataset, the fewer the samples the less

they happen to be distributed along the nodes of a regular 3D grid, as in the original voxel

set. As this deforms the local structure of the neighborhoods, it causes irregular instability in

the embedded cloud along the sequence which influences in particular the consistency score

(red).

4.6.4 Robustness with Respect to the LLE Parameters

It is important to assess the sensitivity of the algorithm to the main parameters k and d (or,

better, the indices of the selected eigenvectors). Figure 22 illustrates how the segmentation

scores vary when different values of the parameters k,d are used to compute the embed-

ding (assuming for sake of simplicity that we want to select the first d eigenfunctions). The

consistency score, the segmentation score (w.r.t. the second a-priori segmentation of Figure

11-right) and their average are plotted as functions of k and d, for k = {14,16,18,20,22}
and d = {3,4,5,6,7}, for two synthetic subsequences of “walk” and “surf”. The stability

of both consistency in time and quality of the segmentation in a fairly large region of the

parameter space is apparent, and speaks for the robustness of the approach.

4.7 Robustness to Topological Changes

No matter how robust to pose variation LLE embedding may be, instants in which different

parts of the articulated body come into contact still have important effects on the shape of the

embedded cloud. These events have truly dramatic consequences on embeddings based on
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Fig. 23 How the splitting/merging algorithm deals with topology changes in the embedded space. At t = 16

the left arm of the dancer touches her scarf (left), and a single cluster covers body, arm, and scarf. Then

(t = 18) the left arm becomes visible and a new cluster is assigned to it, while the dancer’s feet get too close

to each other to be distinguished (middle). Finally (t = 20) her legs pull again apart, generating a separate

cluster for each of them (right).

measuring geodesic distances along the body, since new paths appear, affecting in general

the distance between all pairs of points in the cloud.

Figure 23 illustrates how the splitting-merging algorithm of Section 3.4 copes with such

changes. Full consistency of the segmentation cannot be preserved, as the number of protru-

sions in the embedding shape changes, and we do not make use of point-to-point correspon-

dences (which would themselves have trouble coping with such situations). Nevertheless,

most protrusion end up been preserved through the event changing the body’s topology,

while the others can be recovered as soon as they can be distinguished once again.

Figure 24, instead, compares the segmentation scores of methods based on the local

(LLE) and global (ISOMAP) structure of the shape in similar situations, in which the topol-

ogy of the body changes, for two significant synthetic sequences (“wake up”, left, and

“clap”, right). As the plots on top show, propagating clusters in the LLE space exhibits

superior performance and robustness, as the algorithm smoothly adapts to topology changes

in virtue of the geometric features of LLE embedding.

The bottom plots in Figure 24 show, as an example, the segmentations produced by k-

means in the ISOMAP space for the final frame of the two sequences. As ISOMAP embed-
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Fig. 24 Measuring the relative performance of “local” methods based on graph Laplacians (represented in

this paper by LLE), EM clustering, and “global” embeddings based on geodesic distances (represented by

ISOMAP) for sequences affected by topology changes. Left column: “wake up” sequence, from t = 95 to

t = 114. Right column: “clap” sequence. Top: consistency (blue) and segmentation (black) scores throughout

the sequence: solid - our method; dashed - time-consistent EM clustering; dash-dotted - time-consistent k-

means clustering in ISOMAP space. Middle: some examples of how our algorithm copes with topology

transitions are given in terms of 3D segmentations before, during and after the transition. Bottom: ISOMAP

clusterings for the final frames of the two sequences.

dings do not exhibit any detectable lower-dimensionality or separation between body-parts

/ protrusions, k-wise clustering is just not feasible there. Clustering is then performed in the

ISOMAP space by k-means. Indeed, Figure 25 illustrates how ISOMAP (as a representative

of all geodesic-based spectral methods) copes with the same transitions of Figure 23. The

comparison clearly shows the advantage of doing clustering after Laplacian embedding.

5 An Application to Bottom-up Model/Pose Recovery

In our view, the unsupervised segmentation algorithm we propose can be seen as a building

block of a wider motion analysis framework. We mentioned in the introduction two possible

applications of time-consistent unsupervised segmentation: action recognition and bottom-
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Fig. 25 Behavior of ISOMAP along the sequence of topology transitions of Figure 23. The shape of the

embedded cloud (we chose d = 2 for sake of readability) changes dramatically, gravely affecting the segmen-

tation in the original 3D space.

up body-model recovery. As for the first one, a look at Figures 14, 15, and 16 clearly shows

the smoothness and coherence of the tracks associated with the centroids of the unsupervised

clusters generated by our framework. Just as in the case of image features, we can assume

that these tracks are generated by a graphical model, such as for instance an HMM [29]

(see Figure 26), or possibly a sophisticated hierarchical, non-linear [58], or even chaotic [2]

model. Classical algorithms can then be employed to estimate the parameters of this model

in a generative approach to recognition: each test sequence is then classified according to

the label of the training model which is the closest to the one that more likely generated it.

Another natural application of our unsupervised, time-consistent segmentation algo-

rithm is recovering and fitting simple stick models to the segmented clusters along the se-

quence. As it provides a coherent protrusion segmentation along a sequence, and protrusions

typically correspond to chains of rigid links, its output is suitable to reconstruct rough mod-

els of the moving body as a first step, for instance, of a model-free motion capture algorithm.

However, here we do not aspire at providing a full solution to this problem. We can illus-

trate with a simple example of how this can be done. Ellipsoids can be easily fitted to the

segmented protrusions, for instance by aligning the moments or principal axes, or position

sticks along the main axis of the segmented body-part.

Figure 27 shows the resulting model fitted to a sequence of voxel-sets representing a

hand and its fingers. In an augmented reality environment the 3D reconstruction of a hand

could be used to interact with virtual objects in a virtual environment. From this ellipsoid-

based representation one can easily infer an implicit-surface representation which can be
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Fig. 26 The segments’ centroid trajectories produced by our unsupervised segmentation algorithm are con-

sistent enough to be used as feature vectors for a parameter estimation algorithm generating a dynamical

model (for instance, a hidden Markov model) which represent the input video sequence. Such a model can

later be used for action classification.

Fig. 27 Fitting a rough model formed by a number of ellipsoids to the obtained clusters is straightforward and

yields remarkable results. Top: a sequence of voxel-sets capturing a hand’s motion in an augmented reality

environment where the user interacts with virtual objects. Bottom: corresponding rough articulated model

fitting.

used for real-time interactive applications. Such a parametric description of the object is

complementary to data, e.g., voxel, representations. It can be noted by looking at Figure

27 that our methodology does not (by construction) necessarily identify all articulations. It

does, however, identify remarkable protrusions in the moving body. As the hand evolves and

more fingers become clearly separated from the palm, they are isolated as separated clusters

and the rough model of the hand can be updated. Even though limb articulations do not show

up in the embedding space, these can be later identified by refining the obtained segments

in a more comprehensive model recovery framework.
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6 Conclusions

In this paper we presented a novel dynamic, unsupervised spectral segmentation scheme

in which moving articulated bodies are clustered in an embedding space, and clusters are

propagated in time to ensure temporal consistency. By exploiting some desirable geometric

characteristics of LLE, in particular, we can estimate the optimal number of clusters in order

to merge/split them when topology transitions occur. We compared the performance of our

algorithm versus (time-consistent) EM clustering in 3D, k-means clustering in ISOMAP

space, and ground truth labeling provided through motion capture or synthetic generation.

An extension of the proposed approach to widely separated, non contiguous poses can

be devised in a quite straightforward manner by resorting for cluster propagation to methods

that match different poses of the same articulated object by aligning their embedded images

[40,4,53]. Though the methodology has been proposed for articulated objects, we can also

hope to extend it to certain classes of deformable objects. This could be done by exploiting

the property of graph Laplacian methods which states that the eigenvalues of the graph

Laplacian remain stable under deformations of the object to segment which preserve its

volume [71]. Much further work needs to be done in this sense, and will be the aim of our

research in the near future.

References

1. S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. Kriegman and S. Belongie. Beyond pairwise cluster-

ing. In Computer Vision and Pattern Recognition, 838 – 845, 2005.

2. S. Ali, A. Basharat, and M. Shah. Chaotic invariants for human action recognition. In International

Conference on Computer Vision, 2007.

3. A. B. Alpert, C. J. Kahng and S.-Z. Yao. Spectral partitioning with multiple eigenvectors. In Discrete

Applied Mathematics, 90(1–3):3–26, 1999.

4. A. M. Bronstein, M. M. Bronstein and R. Kimmel. Generalized multidimensional scaling: A framework

for isometry-invariant partial surface matching. In Proceedings of the National Academy of Sciences,

103(5):1168–1172, 2006.

5. A. M. Bronstein, M. M. Bronstein and R. Kimmel. Topology-invariant similarity of nonrigid shapes. In

International Journal of Computer Vision, 81(3):281–301, 2009.

6. M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation. In

Neural Computation, 15:1373–1396, 2003.

7. Y. Bengio, O. Delalleau, N. Le Roux, J.-F. Paiement, P. Vincent and M. Ouimet. Learning eigenfunctions

links spectral embedding and kernel PCA. In Neural Computation, 16(10):2197–2219, 2004.

8. Y. Bengio, J.-F. Paiement and P. Vincent. Out-of-sample extensions for LLE, Isomap, MDS, eigenmaps,

and spectral clustering. Technical report, Université Montreal, 2003.
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