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ABSTRACT

In this paper we address the problem of detecting and locating

speakers using audiovisual data. We address this problem in

the framework of clustering. We propose a novel weighted

clustering method based on a finite mixture model which

explores the idea of non-uniform weighting of observations.

Weighted-data clustering techniques have already been pro-

posed, but not in a generative setting as presented here. We

introduce a weighted-data mixture model and we formally

devise the associated EM procedure. The clustering algorithm

is applied to the problem of detecting and localizing a speaker

over time using both visual and auditory observations gathered

with a single camera and two microphones. Audiovisual fusion

is enforced by introducing a cross-modal weighting scheme.

We test the robustness of the method with experiments in two

challenging scenarios: disambiguate between an active and

a non-active speaker, and associate a speech signal with a

person.

Index Terms— Mixture models, audiovisual fusion, mul-

timodal signal processing, weighted-data clustering.

1 Introduction

The problem of detecting and localizing active speakers from

audiovisual data arises in many applications, e.g, human-

computer interaction and human-robot interaction. A robust

solution to this problem is likely to provide rich spatiotempo-

ral information that can be exploited in complex situations,

e.g., multi-party dialog between a robot and a group of people.

In this paper we emphasize the role of audiovisual fusion in

human-to-human, human-to-computer, and human-to-robot

interactions and we show that multimodal data processing

compensates for the weaknesses of visual-only or audio-only

data analysis.

In this context, we focus on the development of a general-

purpose active-speaker localization algorithm based on cross-

modal clustering. In other words we would like to retrieve

the spatiotemporal status of speakers in a group of people

engaged in a social interplay. More importantly, we present a

clustering methodology in which the two modalities (visual
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and auditory) are weighted accordingly to their relevance. The

original contribution of this paper is a weighted-data clustering

algorithm that robustly localizes people that are both seen and

heard.

A number of authors addressed speaker localization based

on audio-visual fusion. [1] locates a sound source in an im-

age, based on quantifying the temporal synchrony between the

auditory and visual data flows. Subsequently [2] proposes a

statistical framework to measure the amount of mutual infor-

mation between an image region of interest and the auditory

signal. [3–5] follow a similar approach to determine the active

speaker among a few candidate faces. Both [6] and [7] achieve

audio-visual alignment based on correlating the audio signal

and the video content. The main advantage of these approaches

is the versatility, since they are not constrained to a particu-

lar kind of objects and they only require one camera and one

microphone. However, they require high-resolution images

acquired with speaker-dedicated cameras. Therefore, their use

is restricted mostly to static scenarios when the number of

speakers is constant and known in advance.

Audio-visual speaker localization and detection has also

been cast as a clustering task [8–10]. In [8, 9] two Gaussian

mixture models (GMM) are used, one GMM per modality.

The parameters of the two GMM are constrained via a sub-

set of tying parameters. The resulting EM algorithm has a

computationally expensive M-step, involving non-linear opti-

mization, due to the constraints on the parameters. In [10] the

visual observation are mapped onto the one dimensional space

of auditory observations and hence a single GMM is used to

cluster both the audio and the visual data.

In this paper we introduce a novel cross-modal clustering

algorithm based on weighting the data. A weight associated

with each observation (auditory or visual) indicates the rel-

evance of that observation. Intuitively, higher the weight,

stronger the observation. As it will be described in detail

below, the weights can be modeled as random variables and

incorporated into a maximum-likelihood formulation. This

will give rise to a weighted-data Gaussian mixture model (WD-

GMM) that is naturally solved via an EM procedure. We show

that the latter has an elegant closed-form solution. We explain

in detail how the proposed formulation can be applied to clus-

ter auditory and visual data. To the best of our knowledge

only a few weighted-data clustering methods were proposed



in the past, either in conjunction with K-means [11] or for

segmentation [12]. To the best of our knowledge weighted

clustering has not yet been applied to audio-visual data.

The reminder of the paper1 is structured as follows. Sec-

tion 2 describes in detail the proposed weighted-data mixture

model and the associated EM algorithm. Section 3 describes

how we apply the proposed mixture model for speaker localiza-

tion. Section 4 describes experiments with realistic scenarios.

Section 5 concludes the paper.

2 Weighted-Data GMM

In this Section, we present the intuition and the formal defi-

nition of the proposed weighted-data model. Let x ∈ R
d be

a random vector following a multivariate Gaussian distribu-

tion with mean µ ∈ R
d and covariance Σ ∈ R

d×d, namely

p(x|θ) = N (x;µ,Σ), with the notation θ = {µ,Σ}. Let

w > 0 be a weight indicating the relevance of the observation

x. Intuitively, higher the weight w, stronger the impact of x.

The weight can therefore be incorporated into the model by

“observing x w times”. In terms of the likelihood function,

this is equivalent to raise p(x|θ) to the power w. However,

(N (x;µ,Σ))w is not a probability distribution because it does

not integrate to one. It is straightforward to notice that

(N (x;µ,Σ))w ∝ N

(

x;µ,
1

w
Σ

)

.

Therefore, w plays the role of a precision. Nevertheless, this
model is not a standard Gaussian because there is weight w
associated with each sample. Subsequently, we write:

p̂(x|θ, w) = N

„

x; µ,
1

w
Σ

«

, (1)

from which we write a mixture model with K components:

p̃(x|Θ, w) =
K
X

k=1

πk N

„

x; µk,
1

w
Σk

«

, (2)

where Θ = {π1, . . . , πK , θ1, . . . , θK} are the model parame-

ters, π1, . . . , πK are the mixture coefficients, satisfying πk ≥ 0
and

∑K

k=1 πk = 1, and θk = {µk,Σk} are the parameters of

the k-th component. We will refer to the model in (2) as the

weighted-data Gaussian mixture model (WD-GMM).
The difference between the standard GMM and WD-GMM

is the data weight w. This raises the question on how to
define w. We already remarked that in the proposed model the
data weights play the role of precisions. Therefore, notable
difference between standard Gaussian mixtures and our model
is that given n observations, X = {xi}

n
i=1, there is a different

weight wi, hence a different precision, associated with each
observation xi. Therefore the weights wi could be considered
as hidden variable characterizing the mixture, in addition to

1Supplementary materials for this paper are available online at

https://team.inria.fr/perception/research/wdgmm/.

the standard mixture model parameters. Within a Bayesian
formalism, the weights will be treated as random variables.
Since (1) is a Gaussian, a convenient choice for the conjugate
prior p(w) is the gamma distribution. This ensures that the
weight posteriors are gamma distributions as well. Hence we
have:

p(w) = G (w; α, β) (3)

G (w; α, β) =
1

Γ (α)
βαwα−1 exp (−βw) (4)

where Γ is the gamma function. The mean and variance of the
gamma distribution are given by:

E[w] =
α

β
, var[w] =

α

β2
. (5)

We now formulate the maximum likelihood problem and
an associated EM algorithm to estimate the model parameters.
Given the observed data, X = {x1, . . . ,xn}, we assume X
to be independent and drawn from (2). Let W = {wi}

n
i=1

be the set of associated weights, i.e., wi is associated with
xi and follows a gamma distribution with parameters αi, βi.
We denote with φi = {αi, βi} the parameters of the prior
distribution on wi, and with Φ = ∪n

i=1φi. The observed-data
log-likelihood writes:

ln p̃(X |Θ, W ) =

n
X

i=1

ln

 

K
X

k=1

πk N

„

xi; µk,
1

wi
Σk

«

!

. (6)

It is well known that direct maximization of the log-likelihood

function is problematic in case of mixtures and that the ex-

pected complete-data log-likelihood must be considered in-

stead of (6). Hence, we introduce a set of n hidden (or

assignment) variables Z = {z1, . . . , zn} associated with the

observed variables X and such that zi = k, k ∈ {1, . . . ,K}
if and only if xi is generated by the k’s Gaussian component

of the mixture.
Maximum likelihood problems with hidden variables are

usually solved with EM, which iteratively maximizes the ex-
pected complete-data log-likelihood:

Q
“

Θ, Θ(r)
”

= Eq(Z ,W )[ln P (Z , W , X |Θ, Φ)], (7)

where q (Z,W ) = P
(

Z,W |X,Φ,Θ(r)
)

denotes the poste-
rior distribution given the observations and the parameters at

the rth iteration, namely Θ(r). Indeed, the EM algorithm iter-
ates between computing the posterior distribution q (Z,W )
using the current parameter set Θ(r) (E-step) and use this pos-
terior to maximize Q over the model parameters, thus yielding

Θ(r+1) (M-step). We notice that, for the posterior distribution,
we can always write:

P
“

Z , W |X , Φ, Θ(r)
”

=
n
Y

i=1

p
“

zi, wi|xi, φi, Θ
(r)
”

. (8)

This posterior can be farther factorized as:

p
“

zi, wi|xi, φi, Θ
(r)
”

=P
“

wi|zi, xi, φi, Θ
(r)
”

P
“

zi|xi, Θ
(r)
”

,



where both quantities on the right-hand side have closed-form

expressions. The computation of each of these expressions can

be seen respectively as a E-W step and as a E-Z step, although

it would be more correct to talk about a E-ZW step.
E-Z step. The marginal posterior distribution for zi is

obtained by integrating over the weight variable in the ex-

pression of p
(

zi, wi|xi, φi,Θ
(r)

)

. As above, we denote the

responsibilities with η
(r+1)
ik = p(zi = k|xi, φi,Θ

(r)). We
successively obtain:

η
(r+1)
ik =

Z

p
“

zi = k, wi|xi, φi, Θ
(r)
”

dwi

∝

Z

π
(r)
k p

“

xi|zi = k, wi, φi, Θ
(r)
”

p(wi|φi) dwi

∝ π
(r)
k P(xi|µ

(r)
k , φi,Σ

(r)
k ),

where P(xi|µk,Σk, φi) denotes the probability distribution
function of the Pearson type VII distribution which can be
seen as a generalization of the Student’s t-distribution:

P(xi|µk,Σk, φi) =
Γ(αi + d/2)

|Σk|1/2 Γ(αi) (2πβi)d/2

×

0

B

B

@

1 +

‚

‚

‚xi − µ
(r)
k

‚

‚

‚

2

Σ
(r)
k

2βi

1

C

C

A

−(αi+d/2)

E-W step. The posterior distribution for wi, namely

p(wi|zi = k, xi, φi,Θ
(r)) is a Gamma distribution since the

Gamma distribution is the conjugate prior for the precision of
a Gaussian distribution. Therefore, we just need to compute
the parameters defining the Gamma distribution:

p(wi|zi = k, xi, φi, Θ
(r)) ∝ p(xi|zi = k, wi, φi, Θ

(r))p(wi)

∝ N (xi; µ
(r)
k ,Σ

(r)
k /wi) G(wi; αi, βi)

= G(wi; α
(r+1)
i , β

(r+1)
ik ) (9)

with α
(r+1)
i = αi + d

2
, and β

(r+1)
ik = βi + 1

2

‚

‚

‚xi − µ
(r)
k

‚

‚

‚

2

Σ
(r)
k

. We

denote by wik the conditional expectation of wi:

wik = E[wi|Zi = k, xi]. (10)

Using (5) we obtain the following update rule for the weights:

w
(r+1)
ik =

α
(r+1)
i

β
(r+1)
ik

. (11)

Although estimates of the weights wi are needed neither by
the E-step nor by the M-step of the algorithm, one may want
to update the weights through the marginal posteriors:

p(wi|xi, φi, Θ
(r)) =

K
X

k=1

p(wi|zi = k, xi, Θ
(r), φi)p(zi = k|xi)

=

K
X

k=1

G(wi; α
(r+1)
i , β

(r+1)
ik ) η

(r+1)
ik ,

and from (11) we obtain w
(r+1)
i = E[wi] =

PK
k=i η

(r+1)
ik w

(r+1)
ik .

M-step. This step maximizes the expected complete-data
log-likelihood over the mixture parameters. By expanding (7)
and by omitting terms that do not depend on the parameters
πk, µk and Σk, we have:

QR

“

Θ, Θ(r)
”

=

n
X

i=1

K
X

k=1

Z

wi

η
(r+1)
ik lnN

„

xi; µk;
1

wi
Σk

«

× p(wi|xi, zi = k, Θ(r))dwi

=

n
X

i=1

K
X

k=1

η
(r+1)
ik

„

ln πk − ln |Σk|
1/2

−
w

(r+1)
ik

2
(xi − µk)⊤Σ

−1
k (xi − µk)

«

.

The parameters updates come from canceling out the deriva-
tives of the expected complete-data log-likelihood (7). All
updates are closed-form expressions:

π
(r+1)
k =

1

n

n
X

i=1

η
(r+1)
ik , (12)

µ
(r+1)
k =

n
X

i=1

w
(r+1)
ik η

(r+1)
ik xi

n
X

i=1

w
(r+1)
ik η

(r+1)
ik

, (13)

Σ
(r+1)
k =

n
X

i=1

η
(r+1)
ik w

(r+1)
ik

“

xi − µ
(r+1)
k

”“

xi − µ
(r+1)
k

”⊤

n
X

i=1

η
(r+1)
ik

.

(14)

3 Active Speaker Localization

We now show how the WD-GMM algorithm can robustly and

accurately solve the speaker localization problem. We briefly

describe an audio source localization method that is able to

map natural sounds, such as speech, onto an image. Once

the audio sources are represented in the 2D image plane, it is

possible to combine them with a face detection and localization

algorithm. The auditory and visual observations thus obtained

are grouped into clusters in order to associated a sound source

with the face of a speaker.

3.1 2D Audio Source Localization

Extracting meaningful features from the auditory signals ac-

quired with one or several microphones is a difficult task for

several reasons. First, the auditory data are contaminated

by background and microphone noise and by reverberations,

which highly perturb the signal. Second, the information we

need for our task, i.e., the position of sound source, is em-

bedded in the different auditory channels in a complex and

environment-dependent fashion. Third, the information is



sparsely distributed in the spectrograms of the auditory signals,

and it is only meaningful when the sound sources are active.

In this work we use the 2D sound source localization

method proposed in [13]. This method uses a binaural acoustic

head attached to a camera. It is a supervised sound localization

method that starts by learning a regression model between

spectral binaural featuers and the associated sound position in

the image plane (please consult [13] for more details). Once

the regression model is trained, it is possible to estimate the po-

sition of an observed sound. Let A = {aj}
na

j=1 ∈ R
2 denote

the set auditory observations.

3.2 Face Detection and Localization

In a human-computer or human-robot interactive scenario, ac-

tive speakers are likely to face the recording device. Hence,

one can rely on face detection. However, this has shown to

be a limitation. e.g., [2,5,14], in which non-frontal detection

was not possible. Instead, we first detect human upper body

using [15]. This detector provides an approximate location

of the head. In order to refine this localization, we use the

facial-landmark detector of [16]. One of the prominent fea-

tures of this method is that it provides position of the lips.

Therefore, once a face is detected and located in the image,

the approximate position of the lips can be easily estimated.

In this way a general-purpose visual-based face localizer, that

is robust to light changes and to head orientation, can be built.

Let V = {vl}
nv

l=1 ∈ R
2 denote the set of visual observations,

namely lip positions in the image plane.

3.3 Cross-Modal Weighting

In this section we explain how the WD-GMM algorithm is
applied to the problem at hand. Let X denote the joint set of
audio and visual data: X = A ∪ V with xi = ai for i =
1, . . . , na and xi = vi−na

for i = na + 1, . . . , n = na + nv.
In other words, the first na are auditory observations and the
remaining nv are the visual observations. As with any EM
algorithm we must provide initial values for the model param-
eters, in particular we must provide a set of initial weights

W (0) = {w
(0)
i }i=n

i=1 ∈ R. Intuitively, we would like audi-
tory observations that are close to visual observations to have
higher relevance that those auditory observation lying far away
from all visual observations. The same intuition hold for visual
observations that are close/far from auditory observations. The
rationale behind this choice is that one auditory observation
far away from all visual observations is probably an outlier.
However, when an auditory observation is close to many visual
observations, there is a bigger chance that it corresponds to
an underlying audio-visual cluster (a speaker). Therefore, the
latter kind of observations should have larger weights than the
former kind of observations. In order to implement this, we
initialize the each weight in the following way:

w
(0)
i =

X

s∈Si

exp

„

−
D2(xi, xs)

σ

«

,

where D is a distance function and σ is a positive scalar. In

the previous formula, Si = {1, . . . , na} if i > na and S =
{na + 1, . . . , nv} if i ≤ na. That is to say that we use the

visual observations to compute the weight for the aj’s and

the auditory observations to compute the weight for the vl’s.

The parameters of the prior gamma distribution are set to

αi = w
(0)
i

2 and βi = w
(0)
i . In this way, the mean and variance

of the prior distribution for wi are w
(0)
i and 1 respectively.

3.4 Determining the Number of Speakers

One of the limitations of EM algorithms is that, by itself, it

is unable to choose the best model fitting the set of observa-

tions X . In other words, the number of K of GMM com-

ponents must be provided. In our particular application K

corresponds to the number of speakers, but we do not know

K beforehand. In order to overcome this issue, we use the

Bayesian information criterion (BIC). BIC is a quantity that

can be estimated from the maximum likelihood parameters.

Most importantly, BIC penalizes the models based on their

dimensionality: Higher the number of free model parameters,

larger the penalization. This is meant to avoid over-fitting

and in the particular case of GMM, it has desirable statistical

properties [17].

3.5 Post Processing the Clusters

Together with the cross-modal weighting and with BIC, the

proposed EM sets up a robust method to coherently group audi-

tory and visual observations. However, so far the formulation

is application-independent. The model best fitting the auditory

and visual observations does not necessarily correspond to the

best representation in terms of detecting active speakers. In

our particular case, this translates into getting spurious groups

of observations that do not correspond to a speaker that is both

seen and heard. More precisely, three types of clusters may be

present: (i) auditory clusters with weak visual content, (ii) vi-

sual clusters with weak auditory content and (iii) audiovisual

clusters containing strong audio and visual content. In the first

case, the cluster should be discarded, since the probability of a

systematic fail of the upper-body detector is very low. More-

over, an auditory cluster may represent a non-speech audio

source or a reverberant sound. In the second case, we could

keep the cluster and mark it as a potentially silent speaker.

We are mostly interested in third type of clusters that con-

tain both auditory and visual observations. With this aim, we

classify all the observations into clusters based on maximum a

posteriori (MAP). Clusters containing both video observations

and a sufficient number of audio observations are marked as

active speakers. By “sufficient” we mean no less than na+nv

K̂
,

where K̂ is the number of clusters chosen with BIC. We found

this value high enough to discard clusters containing auditory

outliers and small enough to guarantee the good sensibility of

the system.



(a) green: audio, blue: visual
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Fig. 1: Results obtained with Scene-1: the right person speaks while the left person makes lip movements: (a) audio (green) and visual

(blue) observations, (b)-(d) the audio-visual cluster found with our method.

4 Experimental Results

The active speaker detection and localization method is applied

to audio-visual sequences acquired using a setup composed of

a binaural acoustic head and a color camera. Two audio-visual

scenarios are used in our experiments. In the first scenario,

Scene-1, we consider a scene involving an active speaker and

a passive one. While the active speaker counts from “1” to

“10”, the passive one makes fake lip movements. In the second

scenario, Scene-2, four persons are engaged in an informal

conversation, i.e., occasionally two persons speak simultane-

ously instead of taking speech turns. Notice that in such a

scenario, people do not always face the camera and may be

partially occluded by another person. Aside from the speech,

there are other acoustic events such as reverberations and non-

speech sounds present in the room. In order to quantify the

performance of the proposed framework, we have manually

labeled the the speakers lips through all the sequences.

We evaluated the performance of the method by computing

the speaker localization error and the percentage of correct

detections. The localization error is computed as the distance

between the center of an audio-visual cluster and the ground

truth. We consider that an active speaker is correctly detected

if there is an overlap between the audio-visual cluster and a cir-

cle of radius r centered at the “true” location of the speaker’s

lips. It is meaningless to perform localization if there is no

auditory activity in the scene. Hence, localization is performed

only if there is auditory activity. In this context, we introduce

an analysis temporal window. A window of 0.8 seconds (or

20 video frames) is used to acquire audio-visual observations

in Scene-1, and 0.4 seconds for Scene-2. We found that these

values are long enough to collect enough audio-visual obser-

vations. Clearly, the value of the window length have to be

chosen considering a trade-off between the scene dynamics

and the system response time. In total we analysed ten test

windows in Scene-1 and 100 test windows in Scene-2. The

values of r that we considered were 40 and 80 pixels. These

values were chosen such as to correspond to a face bounding

box way that resembles the face bounding box (80×80 pixels)

as well as half of it (40 × 40 pixels). We compared the perfor-

mance of the proposed framework with audio-only clustering,

Table 1: This table compares the localization error (in pixel). A “-”

means that no active speaker is found based on the post-processing

procedure, see Section 3.5.

Counting 1 2 3 4 5 6 7 8 9 10 Avg.

Audio-only 148.02 47.81 67.84 51.27 50.28 69.02 49.72 46.21 69.19 61.99 71.78
WD-GMM 3.91 4.04 5.75 0.46 4.70 5.03 5.14 1.81 2.38 3.93 4.20
GMM 12.24 6.72 3.86 17.48 20.79 16.97 16.30 16.97 22.49 22.49 15.13

(a) Results for Scene-1. Localization errors are computed on each time interval

corresponding to audio-visual activity.
Time Interval #64 #72 #156 #164 #180 #212 #220 #256 #288 #328 Total Avg.

Audio-only 64.55 61.65 76.67 131.70 44.86 56.92 21.48 88.44 115.82 49.68 73.17
WD-GMM 23.86 42.54 12.15 − 10.45 16.56 20.00 34.98 99.78 47.25 37.17
GMM − − 19.21 − − 35.82 − 152.31 127.92 72.82 64.61

(b) Results for Scene-2. The first ten detections are given here. The time

interval is indexed by the number of its first frame, namely #64. . . #72, etc.

Table 2: This table displays the number of times the active speaker is

correctly detected, over all the sequences.
Scene-1 (10 time intervals) Scene-2 (100 time intervals)

r = 80 r = 40 r = 80 r = 40

WD-GMM 10 10 82 72
GMM 10 10 42 20

and with standard GMM-based clustering.

Table 1 summarizes the results in terms of localization

error. It can be seen that audio-only clustering yields the

lowest performance. The method with standard GMM gives

improved performance since it uses additional visual informa-

tion. However, the proposed framework outperforms the other

two methods. The use of cross-modal weights increases the

robustness of the proposed method in fitting the given audi-

tory and visual data in the presence of outliers. These outliers

are visual observations from non-speaking faces and noisy

sound-source positions.

Table 2 summarizes the results in terms of the number

of correct detections. Both GMM and WD-GMM work per-

fectly on Scene-1, i.e.,thet are able to correctly associate the

sound track with the true speaker, all the time. This is as

expected because there is only one active speaker in Scene-1

and both methods are able to find audio-visual clusters. In

a more realistic scenario, Scene-2, occasionally two people

speak simultaneously, and when this happens the auditory ob-

servations contain many outliers. As a result, GMM only finds



(a) green: audio, blue: visual
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Fig. 2: Results obtained Scene-2 showing both a success and a failure of the method. (a) and (c): audio (green) and visual (blue)

observations, (b): the active speaker is correctly detected, (d): the active speaker is not detected because the speaker’s face is not detected

and hence there is no audio-visual cluster in this case.

noisy clusters that do not corresponds to any of the speakers

present in the scene. On the contrary, WD-GMM performs

much better because of the weights; Moreover, it is able to

find audio-visual clusters that belong to the dominant speaker

when there are several active speakers. Fig. 1 shows some

results from Scene-1 while Fig. 2 shows both a success case

and a failure in an extremely challenging situation.

5 Conclusion

In this paper, we presented a weighted-data mixture model and

derived an EM algorithm that is theoretically well justified.

The data weighting scheme provides a flexible tool to charac-

terize the quality of the data. However, initial weight values

must be informative with respect to the application at hand.

We demonstrated the validity and usefulness of the model on

the task of active speaker detection and localization and vali-

dated the fact that audio source localization and face detection

are complementary and hence their union can substantially

improve both the robustness and the accuracy of cross-modal

clustering. Because of the usage of weights, the proposed clus-

tering method is less affected by the presence of non-speaking

faces, reverberations, background sounds, and so forth. The

proposed method has the ability to locate an active speaker,

and disambiguate between speaking and non-speaking people

in a realistic scenario.
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