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Theoretical and numerical stability for the reduced MHD

models in the JOREK code.

Emmanuel Franck∗†, Matthias Hölzl∗, Alexander Lessig∗, Eric Sonnendrücker∗

August 9, 2014

Abstract

In this paper we present a rigorous derivation of the reduced MHD models with and

without parallel velocity that are implemented in the non-linear MHD code JOREK. The

model we obtain contains some terms that have been neglected in the implementation but

might be relevant in the non-linear phase. These are necessary to guarantee exact conservation

with respect to the full MHD energy.

For the second part of this work, we have replaced the linearized time stepping of JOREK

by a non-linear solver based on the Inexact Newton method including adaptive time stepping.

We demonstrate that this approach is more robust especially with respect to numerical errors

in the saturation phase of an instability and allows to use larger time steps in the non-linear

phase.
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5 Conclusion 27

1 Physical context and resistive MHD

1.1 Physical context: ITER and ELM’s simulations

The aim of magnetic confinement fusion is to develop a power plant that gains energy from the
fusion of deuterium and tritium in a magnetically confined plasma. ITER, a tokamak type fusion
experiment currently being built in the South of France, is the next step towards this goal.

In order to achieve a reasonable lifetime of first wall materials in ITER and future fusion
reactors, plasma instabilities like edge localized modes (ELMs) [17], [18] need to be well controlled.
Numerical modelling can help to develop the necessary understanding of the relevant physical
processes. A physical model well suited to describe those large scale instabilities is the set of
magneto-hydrodynamic equations (MHD) or the simpler reduced MHD model.

1.2 Resistive MHD

We begin by introducing the resistive MagnetoHydrodynamic (MHD) fluid system in 3D. x ∈ R
3

is the spatial component. We note ρ the mass density of the plasma, v the velocity, T the
temperature, B the magnetic field, J the current and E the electric field. The evolution of the
plasma can be described by the following MHD model





∂tρ+∇ · (ρv) = 0

ρ∂tv + ρv · ∇v +∇(p) = J×B+ ν△v

∂tp+ v · ∇p+ γp∇ · v = 0

∂tB = −∇×E = ∇× (v ×B− ηJ)

∇×B = J

∇ ·B = 0

(1)

with ν the viscosity coefficient, η the resistivity coefficient. The pressure is given by p = ρT .
Now we consider the ideal MHD (without viscosity and resistivity terms). The total energy for
the ideal MHD is given by

E = ρ
|v|2

2
+

|B|2

2
+

1

γ − 1
p.

with p = ρT and γ = 5
3 . The total energy is given by the sum of the kinetic energy, magnetic

energy and internal energy. The conservation law for the total energy is given by

∂tE +∇.

[
v

(
ρ
|v|2

2
+

γ

γ − 1
p

)
+ |B|2v − (v ·B)B

]
= 0

If the unknowns are equal to zero at the boundary, using the flux-divergence theorem we obtain
the total energy conservation

d

dt

∫

Ω

E = 0.

This result comes from the flux divergence theorem and the assumptions on the boundary condi-
tions. We consider the energy conservation important for the numerical stability.
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1.3 Reduced MHD models

The reduced resistive MHD models are designed to reduce the CPU cost by making assumptions
reasonable for the tokamak configuration. For the magnetic field we consider that it is much larger
in the toroidal direction than the magnitude in the poloidal plane. Consequently we consider that
the magnetic field is constant in time in the toroidal direction and depends on the poloidal flux
function ψ. The magnetic field is given by

B = Bφ +Bpol =
F0

R
eφ +

1

R
∇ψ × eφ.

The velocity field depends on the electrical potential in the poloidal plane and the parallel velocity
(parallel to the magnetic field). It is given by

v = vpol + v|| = −R∇u× eφ + v||B.

If the parallel velocity is equal to zero the term which depends on the electrical potential is
nearly incompressible. This potential formulation allows to reduce the number of variables and
filter the fast magnetosonic waves of the MHD for nearly incompressible flows. The full MHD
system with all waves is a very stiff problem with restrictive CFL stability conditions or bad
conditioning for the numerical methods. Consequently eliminating these waves allow to obtain a
less stiff problem which is easier to solve. To obtain the final reduced models we plug the potential
formulations in the full MHD model and use projections to obtain the equations on u and v||.
For the electrical potential equation we project by applying the operator eφ · ∇ × (R2....) to the
momentum equation. To obtain the equation on v|| we project by applying the operator B · (...)
to the momentum equation. In the following sections we derive exactly the reduced MHD model
used in the JOREK code and prove that this model satisfies the energy conservation law. Indeed
the energy conservation is a very important property to ensure the numerical stability of the time
method for nonlinear models.

1.4 JOREK code

The non-linear JOREK code [7], [15] solves the reduced or full MHD equations in realistic three-
dimensional tokamak geometry. The spatial discretization is given by isoparametric Bezier finite
elements in the poloidal plane and a toroidal Fourier decomposition. As a first step in a simulation,
the Grad Shafranov equation given by

△∗ψ = −R2 ∂p

∂ψ
− F

∂F

∂ψ

with △∗ψ = R ∂
∂R

(
1
R
∂ψ
∂R

)
+ ∂2ψ

∂Z2 , F = RBφ, p the pressure and Bφ the toroidal magnetic field,

is solved on an initial grid (Fig. 1, on the left) to calculate the plasma equilibrium and again
on a grid aligned to the equilibrium magnetic flux surfaces (Fig. 1, on the right in blue). This
second grid is used during the following time integration as well, in which the (reduced) MHD
equations are solved by a fully implicit method (Crank-Nicholson or Gear scheme). The resulting
large sparse matrix system is solved using the iterative GMRES method with a physics-based
preconditioning during which the direct sparse matrix solver Pastix is employed. JOREK is im-
plemented in Fortran 90/95 and uses a hybrid MPI plus OpenMP parallelization suitable for large
scale simulations on supercomputers. The realistic treatment of the tokamak geometry including
the plasma region, separatrix and X-point, as well as scrape-off layer and divertor region makes
the code suitable for simulations of many different types of plasma instabilities.

In this paper, we provide a rigorous algebraic derivation of the reduced MHD equations that
are implemented in JOREK from the full MHD equations (Sections 2.1–2.3) and investigate the
energy conservation properties of this reduced MHD model (Section 2.4). In Section 3, we de-
scribe an approach of introducing a non-linear time solver based on inexact Newton iterations into
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Figure 1: Initial grid (grey) and flux aligned grid (blue) used in JOREK X-point simulations
(shown with reduced resolutions).

JOREK in order to increase the robustness and performance of the code in highly non-linear stages.
Numerical tests of the non-linear time stepping are presented in Section 4 and brief conclusions
of the work are provided in Section 5.

2 Derivation of the models

The derivation of the reduced MHD models is not a new topic of research. We can find the
derivation of the model with parallel velocity for small curvature in the Tokamak in [13], [6]. This
derivation is based on an asymptotic analysis with the small parameter ε which correspond to the
curvature. In this type of derivation some terms are neglected. In our case we use an algebraic
derivation. Using the same assumptions for the magnetic field and the velocity field as in [13]-[6].
We can find the same method and the same type of calculation in the works of R. Sart and B.
Després in [1], [3]-[13]. In these papers the authors propose two methods to derive the reduced
MHD in the low β case where β is the ratio between plasma and magnetic pressures (which
correspond to p << |Bφ|

2) for general density profiles. In this work we use the same technique
as the first paper, but we apply this method to obtain the more complicated models used in the
JOREK code. So far, no rigorous derivation existed for the reduced MHD models implemented
in JOREK. For this reason we give these proofs and identify previously neglected terms in the
reduced MHD physics models.

2.1 Notation

The fundamental coordinate system used in JOREK is the cylindrical system (R,φ, Z) illustrated
by the Fig. 2. The connection to Cartesian coordinates is given by





X = R cosφ
Y = −R sinφ
Z = Z

(2)

We define eR = ∇R, 1
R
eφ = ∇φ and eZ = ∇Z with R, φ, Z functions of (X,Y ,Z). By definition

of the basis we have eR × eφ = −eZ , eφ × eZ = −eR and eZ × eR = −eφ.
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Figure 2: Illustration of the cylindrical coordinate system used in JOREK.

The domain is defined by (R,Z, φ) ∈ Ω = D × [0, 2π[. To finish we define the different
differential operators used for the calculation:

∇f = ∂R(f)eR +
1

R
∂φ(f)eφ + ∂Z(f)eZ

∇polf = ∂R(f)eR + ∂Z(f)eZ

∇ · f =
1

R
∂R(RfR) +

1

R
∂φ(fφ) + ∂Z(fZ)

∇× f =

(
1

R
∂φfZ − ∂Zfφ

)
eR + (∂ZfR − ∂RfZ) eφ +

1

R
(∂R(Rfφ)− ∂ZfR) eZ

△∗f = R2∇ ·

(
1

R2
∇⊥f

)
= R∂R

(
1

R
∂Rf

)
+ ∂ZZf

△pol = ∇ · (∇f) =
1

R
∂R(R∂Rf) + ∂ZZf

[a, b] = eφ · (∇a×∇b) = ∂Ra∂Zb− ∂Za∂Rb.

The variables associated to the reduced MHD models are the poloidal magnetic flux ψ, the elec-
trical potential u, ρ the density, T the temperature and v|| the parallel velocity. To avoid high
order differential operators we introduce two additional variables: the toroidal current j defined
by j = △∗ψ and the vorticity w defined by w = △polu For the integration we note dW = RdRdZ

the cylindrical measure and dV = dRdZ. When no measure is given explicitly, dRdZ is used.

2.2 Derivation of the model

To derive the model we begin with the following resistive MHD model





∂tρ+∇ · (ρv) = 0
ρ∂tv + ρv · ∇v +∇p = J×B

∂tp+ v · ∇p+ γp∇ · v = 0
∂tB = ∇× (v ×B− ηJ)

(3)
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2.2.1 Magnetic poloidal flux equation

To begin we note that, since ∇ · B = 0 and ∂tF0 = 0 we get ∂tB = ∂t
(
F0

R
eφ +∇×

(
1
R
ψeφ

))
=

∇×
(
∂t(

1
R
ψeφ)

)
. Consequently the equation on the magnetic field in (3) becomes

∇×

(
∂t(

1

R
ψeφ)

)
= ∇× (v ×B− ηJ) (4)

with J = ∇×B. The equation becomes

∂t

(
1

R
ψeφ

)
= v ×B− ηJ+∇V (5)

with V a potential. We begin by estimating the term v × B. Since B × B = 0 we obtain
v ×B =

(
−R2∇×

(
1
R
ueφ

))
×
(
F0

R
eφ +∇×

(
1
R
ψeφ

))
which gives

v ×B = vpol ×B = (−R∂ZueR +R∂RueZ)×
F0

R
eφ

+ (−R∂ZueR +R∂RueZ)×

(
1

R
∂ZψeR −

1

R
∂RψeZ

)

= F0 (∂ZueZ + ∂RueR) + [ψ, u]eφ.

Now we study the term J = ∇×B.

J = ∇× (F0∇φ) +∇× (∇ψ ×∇φ).

Since F0 is constant, using the properties of curl and gradient operators we have ∇×∇φ = 0. So

∇× (∇ψ ×∇φ) = ∇×

(
1

R
∂ZψeR −

1

R
∂RψeZ

)
.

Since ∇× eR = ∇×∇R = 0 and ∇× eZ = ∇×∇Z = 0 we have

∇× (∇ψ ×∇φ) = ∇

(
1

R
∂Zψ

)
× eR −∇

(
1

R
∂Rψ

)
× eZ .

Therefore developing the gradient for each component we obtain

∇× (∇ψ ×∇φ) = −
1

R
∂ZZψeφ +

1

R2
∂φ(∂Zψ)eZ − ∂R(

1

R
∂Rψ)eφ +

1

R2
∂φ(∂Rψ)eR,

and using the definition of Grad-Shafranov diffusion operator we have

∇× (∇ψ ×∇φ) = −
1

R
△∗ψeφ +

1

R2
∂φ(∂Zψ)eZ +

1

R2
∂φ(∂Rψ)eR.

We plug together all the terms to obtain

∂t

(
1

R
ψeφ

)
= +F0 (∂ZueZ + ∂RueR) + [ψ, u]eφ

− η

[
−

1

R
△∗ψeφ +

1

R2
∂φ(∂Zψ)eZ +

1

R2
∂φ(∂Rψ)eR

]
+∇V

Now we write the equation on V :




∂RV = −F0∂Ru+
η

R2
∂φRψ

∂ZV = −F0∂Zu+
η

R2
∂φZψ

(6)

Consequently V = −F0u+
η∂φψ

R2 and ∇V · eφ = −F0

R
∂φu+ η

∂φφψ

R3 . This definition of V gives the
final result.

∂tψ = R[ψ, u] + η△∗ψ − F0∂φu+ η
∂φφψ

R2
(7)

with j = −RJ · eφ = △∗ψ the toroidal current.
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2.2.2 Poloidal momentum equation

To obtain an equation on the electric potential we apply the projection operator eφ · ∇×
(
R2.....

)

in the poloidal plane to the momentum equation. The equation obtained is

eφ · ∇ ×
[
R2 (ρ∂tv = −ρv · ∇v −∇p+ J×B)

]
. (8)

We begin by considering the first term of (8): eφ · ∇ × (R2ρ∂tv). Using the definition of vpol we
obtain

∇× (R2ρ∂tvpol) = ∇×
[
−ρR3∂Z(∂tu)eR + ρR3∂R(∂tu)eZ

]
,

and
eφ · ∇ × (R2ρ∂tvpol) = ∂Z

(
ρR3∂Z(∂tu)

)
+ ∂R

(
ρR3∂R(∂tu)

)
.

By definition of the gradient and the divergence we obtain

eφ · ∇ × (R2ρ∂tvpol) = R∇ · (ρR2∇pol∂tu). (9)

We consider the term associated to the time derivative of the parallel velocity eφ ·∇×(R2ρ∂tv||) =

eφ · ∇ ×
[
R2ρ∂t(v||B)

]
. Developing B we obtain

∇× (R2ρ∂tv||) = ∇×

[
R2ρ

[
∂t

(
v||
∂Zψ

R

)
eR − ∂t

(
v||
∂Rψ

R

)
eZ +

F0

R
∂tv||eφ

]]
.

Some computations give

eφ · ∇ × (R2ρ∂tv||) = −∂Z
[
Rρ∂t(v||∂Zψ)

]
− ∂R

[
Rρ∂t(v||∂Rψ)

]
= −R∇ ·

[
ρ∂t(v||∇polψ)

]
. (10)

Secondly, we study the current term eφ ·∇× (R2(J×B)). To begin we define the toroidal current
j = △∗ψ. By definition of the magnetic flux density B = 1

R
(F0eφ + ∂ZψeR − ∂RψeZ) and using

the definition of the curl operator we obtain

J = ∇×B =
1

R2
(∂RφψeR −Rjeφ + ∂ZφψeZ) . (11)

So, using (10) - (11) we have

R2J×B =+
1

R
[(−Rj∂Rψ + F0∂Zφψ)eR + (−Rj∂Zψ − F0∂Rφψ)eZ ]

+
1

R
[−((∂Rψ)(∂Rφψ) + (∂Zψ)(∂Zφψ))eφ] .

Applying the operator eφ · ∇ × (R2...) we obtain

eφ · ∇ × (R2J×B) = +∂Z (j∂Rψ)− ∂Z

(
F0

R
∂Zφψ

)
− ∂R (j∂Zψ)− ∂R

(
F0

R
∂Rφψ

)
.

The final calculation gives the following result

eφ · ∇ × (R2J×B) = [ψ, j]−
F0

R
∂φ△

∗ψ = [ψ, j]−
F0

R
∂φj. (12)

For the pressure term, trivial computations allow to obtain the following result

∇× (R2∇p) · eφ = −∂R(R
2)∂Zp = −[p,R2] = [R2, p]. (13)

The last term considered is eφ · ∇ × (R2ρv · ∇v). Firstly we study the part which depends only
on the poloidal velocity: eφ ·∇× (R2ρvpol ·∇vpol). To begin we note α = −R∂Zu, β = R∂Ru and
ρ̂ = R2ρ. So

vpol = αeR + βeZ and vpol · ∇vpol = (α∂Rα+ β∂Zα)eR + (α∂Rβ + β∂Zβ)eZ .
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To estimate this term we propose the following decomposition

∇× (ρ̂vpol · ∇vpol) · eφ = (ρ̂∇× (vpol · ∇vpol) +∇ρ̂× vpol · ∇vpol) · eφ = A+B. (14)

One has the identities

A = −ρ̂ [∂Z(α∂Rα+ β∂Zα)− ∂R(α∂Rβ + β∂Zβ)] ,

and
A = −ρ̂ [α∂R(∂Zα− ∂Rβ) + β∂Z(∂Zα− ∂Rβ) + (∂Rα+ ∂Zβ)(∂Zα− ∂Rβ)] .

Using (∂Zα−∂Rβ) = −R△polu = −Rw and ρ̂(∂Rα+∂Zβ) = −ρ̂[R, u] we obtain A = −Rρ̂[Rw, u]−
Rρ̂w[R, u]. In a first time we propose to estimate the term B. The definition of the vector product
gives

B = − [∂Z(ρ̂)(α∂Rα+ β∂Zα)− ∂R(ρ̂)(α∂Rβ + β∂Zβ)]

which we can rewrite in the following form

B = −

(
∂Z(ρ̂)

[
∂R(

1

2
α2 +

1

2
β2) + β(∂Zα− ∂Rβ)

]
− ∂R(ρ̂)

[
∂Z(

1

2
α2 +

1

2
β2)− α(∂Zα− ∂Rβ)

])

Using ∂Zα− ∂Rβ = −Rw, we obtain the final writing of the term B:

B = −
1

2
[R2|∇polu|

2, ρ̂]−∂Z(ρ̂)β(∂Zα−∂Rβ)−∂R(ρ̂)α(∂Zα−∂Rβ) = −
1

2
[R2|∇polu|

2, ρ̂]−R2w[ρ̂, u].

To finish we sum A and B to obtain

∇× (ρ̂vpol · ∇vpol)eφ = −
1

2
[R2|∇polu|

2, ρ̂]−R[Rρ̂w, u]−Rρ̂w[R, u].

Therefore

∇× (ρ̂vpol · ∇vpol)eφ = −
1

2
[R2|∇polu|

2, ρ̂]− [R2ρ̂w, u]. (15)

At this moment of the derivation we have obtained the equation on u implemented in the code.
Now we propose to derive the terms neglected in the code which correspond to the following cross
terms between the parallel and poloidal velocities

eφ · ∇ ×R2ρ
(
∂tv|| + v|| · ∇v|| + v|| · ∇vpol + vpol · ∇v||

)
. (16)

Firstly we consider the term eφ ·∇× (R2ρv|| ·∇v||). We begin by splitting the term into two parts

A = ρ̂∇× (v||B · ∇(v||B)) · eφ and B = ∇ρ̂× (v||B · ∇(v||B)) · eφ

and we define v||B = v||aeR + v||beZ + v||ceφ with a = ∂Zψ
R

, b = −∂Rψ
R

and c = F0

R
, consequently

B · ∇(v||B) = +
[
a∂R(av||) + b∂Z(av||) +

c

R
∂φ(av||)

]
eR +

[
a∂R(bv||) + b∂Z(bv||) +

c

R
∂φ(bv||)

]
eZ

+
[
a∂R(cv||) + b∂Z(cv||) +

c

R
∂φ(cv||)

]
eφ −

(
v2||
c2

R

)
eR +

(
v2||
c

R
a
)
eφ.

The term B can be decomposed as B = C +D with

C = (∂Rρ̂)
[
av||∂R(bv||) + bv||∂Z(bv||)

]
− (∂Z ρ̂)

[
av||∂R(av||) + bv||∂Z(av||)

]
,

and

D = +(∂Rρ̂)
[cv||
R
∂φ(bv||)

]
− (∂Z ρ̂)

[cv||
R
∂φ(av||)

]
+ ∂Z(ρ̂)(v

2
||

c2

R
)

= −
F0

R3
v||
(
∇polρ̂ · ∂φ(v||∇polψ)

)
+ ∂Z(ρ̂)(v

2
||

c2

R
).
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We rewrite the term C to obtain

C =+ ∂R(ρ̂)

[
∂Z(

1

2
v2||a

2 +
1

2
v2||b

2) + av||∂R(bv||)− av||∂Z(av||)

]
−∂Z(ρ̂)

[
∂R(

1

2
v2||a

2 +
1

2
v2||b

2) + bv||∂Z(av||)− bv||∂R

which is equal to

C =
1

2
[ρ̂, v2||

|∇polψ|
2

R2
]− v||∂R(ρ̂)a(∂Z(av||)− ∂R(bv||))− v||∂Z(ρ̂)b(∂Z(av||)− ∂R(bv||)). (17)

We remark that ∂Z(av||) − ∂R(bv||) =
v||
R
△∗ψ + 1

R
(∇polv|| · ∇polψ). Using this result we obtain

the following expression for B:

B =+
1

2
[ρ̂, v2|||Bpol|

2]−
v2||

R2
j[ρ̂, ψ]−

v||

R2
(∇polv|| · ∇polψ)[ρ̂, ψ]

−
F0

R3
v||(∇polρ̂ · ∂φ(v||∇polψ)) + ∂Z(ρ̂)(v

2
||

c2

R
),

with Bpol =
1
R
∇ψ × eφ.

Now we study the term A = ρ̂∇× (v||B · ∇(v||B)) · eφ which is equal to

A =− ρ̂∂Z

[
av||∂R(av||) + bv||∂Z(av||) +

cv||

R
∂φ(av||)− v2||

c2

R

]

+ ρ̂∂R

[
av||∂R(bv||) + bv||∂Z(bv||) +

cv||

R
∂φ(bv||)

]
.

We split these terms into two termsA = A1+A2 defined byA1 = −ρ̂∂Z(av||∂R(av||)+bv||∂Z(av||))+

ρ̂∂R(av||∂R(bv||) + bv||∂Z(bv||)) and A2 = −ρ̂∂Z(
cv||
R
∂φ(av||)) + ρ̂∂R(

cv||
R
∂φ(bv||))− ρ̂∂Z(v

2
||
c2

R
).

Factorizing the term A1 we obtain

A1 =− ρ̂
[
av||∂R(∂Z(av||)− ∂R(bv||)) + bv||∂Z(∂Z(av||)− ∂R(bv||))

]

− ρ̂
[
(∂R(av||) + ∂Z(bv||))(∂Z(av||)− ∂R(bv||))

]
.

Using that ∂Z(av||)− ∂R(bv||) =
v||
R
△∗ψ+ 1

R
(∇polv|| · ∇polψ) and ∂R(av||) + ∂Z(bv||) = [

v||
R
, ψ] we

obtain

A1 =−
ρ̂v||

R
[
v||

R
j, ψ]−

ρ̂v||

R
[
1

R
(∇polv|| · ∇polψ), ψ]

−
ρ̂v||

R
j[
v||

R
,ψ]−

ρ̂

R
(∇polv|| · ∇polψ)[

v||

R
,ψ].

The properties of the Poisson bracket allow to conclude

A1 = −ρ̂[
v2||

R2
j, ψ]− ρ̂[

v||

R2
(∇polv|| · ∇polψ), ψ]. (18)

For the term A2, some computations allow to obtain the result

A2 = −Rρ̂∇ ·

(
F0

R4
v||∂φ(v||∇polψ)

)
+ ρ̂∂φ

(
F0

R4
v2||∂R(ψ)

)
+ ρ̂∂Z

(
F 2
0

R3
v2||

)
. (19)

At the end using Poisson bracket properties and ∇ · (fg) = f∇ · g +∇f · g we obtain

eφ · ∇ × (R2ρv|| · ∇v||) = −[ρv2||j, ψ]− [ρv||(∇polv|| · ∇polψ), ψ] +
1

2
[ρ̂, v2|||Bpol|

2]
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−R∇ ·

(
ρ
F0

R2
v||∂φ(v||∇polψ)

)
+ ρ̂∂φ

(
F0

R4
v2||∂R(ψ)

)
+ ρ̂∂Z

(
F 2
0

R3
v2||

)
.

To finish the derivation associated with poloidal velocity, we study the last term eφ · ∇ × (ρ̂vpol ·
∇v|| + ρ̂v|| · ∇vpol). Firstly we note

v||B · ∇vpol = v||

[
a∂Rα+ b∂Zα+

c

R
∂φα

]
eR + v||

[
a∂Rβ + b∂Zβ +

c

R
∂φβ

]
eZ + v||

c

R
αeφ

and

vpol·∇(v||B) =
[
α∂R(av||) + β∂Z(av||)

]
eR+

[
α∂R(bv||) + β∂Z(bv||)

]
eZ+

[
α∂R(cv||) + β∂Z(cv||)

]
eφ.

The term eφ · ∇ × (ρ̂vpol · ∇(v||B) + ρ̂v||B · ∇vpol) can be split into two terms

(A) = ∇ρ̂× (vpol · ∇(v||B) + v||B · ∇vpol) · eφ

(B) = ρ̂∇× (vpol · ∇(v||B) + v||B · ∇vpol) · eφ.

Using our notation we obtain that (A) = (A1) + (A2) with

(A1) =− ∂Z ρ̂
[
v||a∂Rα+ α∂R(av||) + v||b∂Zα+ β∂Z(av||)

]

+ ∂Rρ̂
[
v||b∂Zβ + β∂Z(bv||) + v||a∂Rβ + α∂R(bv||)

]
,

and
(A2) = −∂Z ρ̂

cv||

R
∂φα+ ∂Rρ̂

cv||

R
∂φβ.

Straightforward calculations show that the term (A2) is equal to (A2) = F0

R
v||(∇polρ̂ · ∇pol(∂φu)).

Now we consider the term (A1) which can me rewritten in the following form

(A1) = −∂Z(ρ̂)
[
∂R(av||α+ bv||β)− v||b∂Rβ

+ ∂R(ρ̂)
[
∂Z(av||α+ bv||β)− v||a∂Zα− α∂Z(av||) + α∂R(bv||) + v||a∂Rβ

]
.

Using the definition of the different coefficients we obtain that (A1) = −[ρ̂, v||(∇polψ · ∇polu)] +
(A3) + (A4) with

(A3) = −∂Z(ρ̂)v||(−b∂Rβ + b∂Zα) + ∂R(ρ̂)v||(−a∂Zα+ a∂Rβ)

(A4) = −∂Z(ρ̂)(−β∂R(v||b) + β∂Z(av||)) + ∂R(ρ̂)(−α∂Z(v||a) + α∂R(bv||)).

Now we consider the term (A3) which can be factorize in the following way

(A3) = (∂Z(ρ̂)v||b+ ∂R(ρ̂)v||a)(−∂Zα+ ∂Rβ)

Using that (∂Zα − ∂Rβ) = −R△polu we obtain that (A3) = v||w[ρ̂, ψ] and (A4) = −(∂Z ρ̂β +
∂Rρ̂α)(∂Z(av||)− ∂R(bv||)).

We known that ∂Z(av||)− ∂R(bv||) =
1
R
(∇polψ · ∇polv||) +

1
R
v||j, consequently at the end we have

(A4) = [u, ρ̂](∇polψ · ∇polv|| + v||j) with (∂Z(ρ̂)β + ∂R(ρ̂)α) = R[u, ρ̂]. Putting all the terms
together we obtain that

(A) = −[u, ρ̂](∇polψ · ∇polv||)− [u, ρ̂]v||j − [ρ̂, v||(∇polψ · ∇polu)]

+ v||w[ρ̂, u] +
F0

R
v||(∇polρ̂ · ∇pol(∂φu)).

Now we consider the term (B) = ρ̂∇× (vpol ·∇v||B+ v||B ·∇vpol) ·eφ decomposed into two terms
(B) = (B1) + (B2) with

(B1) = −ρ̂∂Z
[
v||a∂Rα+ v||b∂Zα+ α∂R(av||) + β∂Z(av||)

]

+ ρ̂∂R
[
v||a∂Rβ + v||b∂Zβ + α∂R(bv||) + β∂Z(bv||)

]
,
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and
(B2) = ρ̂

(
−∂Z(

cv||

R
∂φα) + ∂R(

cv||

R
∂φβ)

)
.

We consider the term (B1). We begin by expending (B1) and after rearranging terms we obtain

(B1) =− ρ̂
[
v||a∂R(∂Zα− ∂Rβ) + v||b∂Z(∂Zα− ∂Rβ)

+α∂R(∂Z(av||)− ∂R(bv||)) + β∂Z(∂Z(av||)− ∂R(bv||))

+(∂R(v||a) + ∂Z(v||b))(∂Zα− ∂Rβ) + (∂Rα+ ∂Zβ)(∂Z(av||)− ∂R(bv||))
]
.

We use that (∂Zα− ∂Rβ) = −R△polu and ∂Z(av||)− ∂R(bv||) =
v||
R
j + 1

R
(∇polψ · ∇polv||). Using

∂R(v||a) + ∂Z(v||b) = [
v||
R
, ψ] and (∂Rα + ∂Zβ) = [u,R], we write the term (B1) on the following

form

(B1) = +
1

R
ρ̂v||[Rw,ψ] + ρ̂Rw[

v||

R
,ψ]−Rρ̂[u,

v||

R
j]− ρ̂[u,R]

v||

R
j

=−Rρ̂[u,
1

R
(∇polψ · ∇polv||)]−

ρ̂

R
[u,R](∇polψ · ∇polv||)

= + ρ̂[v||w,ψ]− ρ̂[u, v||j]− ρ̂[u, (∇polψ · ∇polv||)].

The term (B2) is equal to ρ̂R∇ · ( F0

R2 v||∇pol(∂φu)), consequently we obtain

(B) = ρ̂[v||w,ψ]− ρ̂[u, v||j]− ρ̂[u, (∇polψ · ∇polv||)] + ρ̂R∇.(
F0

R2
v||∇pol(∂φu)). (20)

All together we have derived the following term

eφ · ∇ × (ρ̂vpol · ∇v|| + ρ̂v|| cot∇vpol) =− [ρ̂, v||(∇polψ · ∇polu)] + [ρ̂v||w,ψ]− [u, ρ̂v||j]

− [u, ρ̂(∇polψ · ∇polv||)] +R∇ ·

(
ρ̂
F0

R2
v||∇pol(∂φu)

)
.

In this work we don’t derive the operator associated with the physical viscosity. We propose to
consider the term used in the code: Rν⊥∇

2w.

2.2.3 Equation on ρ and T

For the thermodynamic equations ∂tρ = −ρ∇·v−v ·∇ρ and ∂tp = −γp∇·v−v ·∇p , we propose
to rewrite the equations in order to obtain a dependency on u and v||. We begin with

vpol · ∇ρ =+ (−R∇u× eφ) · ∇ρ,

=+ (−R∂ZueR +R∂RueZ) ·

[
∂RρeR +

1

R
∂φρeφ + ∂ZρeZ

]
,

=−R(∂Zu)(∂Rρ) +R(∂Ru)(∂Zρ) = −R[ρ, u].

Then we compute the second term ρ∇ · vpol.

ρ∇ · vpol = −ρ
1

R
∂R(R

2∂Zu) + ρ∂Z(R∂Ru) = −2ρ∂Zu

Now we derive the term associated to the parallel velocity v|| = v||B.

v||B · ∇ρ = v||

[
F0

R
eφ +

1

R
∂ZψeR −

1

R
∂RψeZ

]
· ∇ρ,

= v||
F0

R2
∂φρ+

1

R
v||[ρ, ψ].
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The second term is

ρ∇ · (v||B) = ρ∇ ·

[
v||(

F0

R
eφ +

1

R
∂ZψeR −

1

R
∂RψeZ)

]
,

=
ρ

R
[v||, ψ] +

ρF0

R2
∂φv||.

Consequently we obtain

∂tρ = R[ρ, u] + 2ρ∂Zu−
v||F0

R2
∂φρ−

v||

R
[ρ, ψ]−

ρ

R
[v||, ψ]−

ρF0

R2
∂φv||, (21)

and

∂tp = R[p, u] + 2γp∂Zu−
v||F0

R2
∂φp−

v||

R
[p, ψ]−

γp

R
[v||, ψ]−

γpF0

R2
∂φv||. (22)

2.2.4 Equation on the parallel velocity

We consider the equation ρ∂tv = −ρv ·∇v−∇p+J×B. To obtain the equation on v|| we project
the momentum equation applying the operator B · (...). Firstly we remark that B · (J × B) =
Det(B,J,B) = 0. Secondly we consider B · ρ∂t(v|| + vpol). Using the definition of B we prove
that the term B · ρ∂t(v||B) is equal to

ρ|B|2∂tv|| + ρv||
1

R2
∇polψ · ∇pol(∂tψ).

For the poloidal term B · ρ(∂tvpol), quick computations show that this term is given by B ·
ρ(∂tvpol) = −ρ∇polψ · ∇pol(∂tu).

For the pressure term B · ∇p, we obtain

B · ∇p = (
F0

R
eφ +

1

R
∂ZψeR −

1

R
∂RψeZ)(∂RpeR +

1

R
∂φpeφ + ∂ZpeZ) =

F0

R2
∂φp+

1

R
[p, ψ] (23)

Now we consider the following terms (the four last terms which are neglected in the model imple-
mented in the code JOREK):

B · ρ
(
v|| · ∇v|| + v|| · ∇vpol + vpol · ∇v|| + vpol · ∇vpol

)
. (24)

Firstly we study B · (ρv|| · ∇v||) = B · (ρv||B · ∇(v||B)). For this we note v|| = v||B = v||(aeR +

beZ + ceφ) with a = 1
R
∂Zψ, b = − 1

R
∂Rψ and c = F0

R
. Using these notations we obtain

ρv|| · ∇v|| = ρv||

(
a∂R(v||a) + b∂Z(v||a) +

c

R
∂φ(v||a)− v||

c2

R

)
eR

+ ρv||

(
a∂R(v||b) + b∂Z(v||b) +

c

R
∂φ(v||b)

)
eZ

+ ρv||

(
a∂R(v||c) + b∂Z(v||c) +

c

R
∂φ(v||c)

)
eφ + v||a

c

R
eφ.

Now we rewrite the term as B · (ρv|| · ∇v||) =W1 +W2 +W3, where W1 is given by

W1 = ρ
c

R
v||
[
a∂φ(v||a) + b∂φ(v||b) + c∂φ(v||c)

]

= ρ
F0

2R2
∂φ

(
v2||a

2 + v2||b
2 + v2||c

2
)
= ρ

F0

R2
∂φ

(
v2|||B|2

2

)
.

The term W2 is given by

W2 = bρv||
[
a∂Z(v||a) + b∂Z(v||b) + c∂Z(v||c)

]

= bρ∂Z
1

2

(
v2||a

2 + v2||b
2 + v2||c

2
)
= −

ρ

R
∂Rψ∂Z

(
v2|||B|2

2

)
.
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The term W3 is given by

W3 = aρv||
[
a∂R(v||a) + b∂R(v||b) + c∂R(v||c)

]

= aρ∂R
1

2

(
v2||a

2 + v2||b
2 + v2||c

2
)
=
ρ

R
∂Zψ∂R

(
v2|||B|2

2

)
.

At the end we obtain

B · (ρv|| · ∇v||) = −
ρ

R
[ψ,

v2|||B|2

2
] + ρ

F0

R2
∂φ

(
v2|||B|2

2

)
. (25)

Now we propose to study the fourth term B (cdotρvpol · ∇vpol). To estimate this term we define
α = −R∂Zu and β = R∂Ru. Using this notation we prove that

vpol = αeR + βeZ and vpol · ∇vpol = (α∂Rα+ β∂Zα)eR + (α∂Rβ + β∂Zβ)eZ .

Using the definitions of the coefficients we obtain

B · (ρvpol · ∇vpol) =
ρ

R
ρ (∂Z(ψ)(α∂Rα+ β∂Zα)− ∂R(ψ)(α∂Rβ + β∂Zβ))

which is equal to

B·(ρvpol·∇vpol) =
1

R

(
∂Z(ψ)(∂R(

1

2
α2 +

1

2
β2) + β(∂Zα− ∂Rβ))− ∂R(ψ)(∂Z(

1

2
α2 +

1

2
β2)− α(∂Zα− ∂Rβ))

)

to obtain

B · (ρvpol · ∇vpol) =
1

2R
ρ[R2|∇polu|

2, ψ] +
ρ

R
[∂Z(ψ)β(∂Zα− ∂Rβ) + ∂R(ψ)α(∂Zα− ∂Rβ)] .

After quick computations we obtain

B · (ρvpol · ∇vpol) =
1

2R
ρ[R2|∇polu|

2, ψ] + ρRw[ψ, u]. (26)

Now we consider the term B · (ρvpol · ∇(v||B)). To estimate this term we define α = −R∂Zu,

β = R∂Ru, a = 1
R
∂Zψ, b = − 1

R
∂Rψ and c = F0

R
. Consequently we obtain

vpol = αeR + βeZ , and v||B = v||(aeR + beZ + ceφ).

Using these notations we obtain

ρvpol · ∇(v||B) = + ρ[α∂R(v||a) + β∂Z(v||a)]eR

+ ρ[α∂R(v||b) + β∂Z(v||b)]eZ + ρ[α∂R(v||c) + β∂Z(v||c)]eφ,

consequently

B · (ρvpol · ∇(v||B)) = + ρa[α∂R(v||a) + β∂Z(v||a)]

+ ρb[α∂R(v||b) + β∂Z(v||b)] + ρc[α∂R(v||c) + β∂Z(v||c)].

Rearranging terms we obtain

B · (ρvpol · ∇(v||B)) = + ρ(a2 + b2 + c2)α∂R(v||) + ρ(a2 + b2 + c2)β∂Z(v||)

+
1

2
ραv||∂R(a

2 + b2 + c2) +
1

2
ρβv||∂Z(a

2 + b2 + c2).

Using that (a2 + b2 + c2) = |B|2 we obtain that

B · (ρvpol · ∇(v||B)) = Rρ|B|2[u, v||] +Rρv||[u,
|B|2

2
]. (27)
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To finish we consider the term B · (ρv||B · ∇(vpol)) = ρv||(B · (B · ∇vpol)). We define vpol =
αeR + βeZ and B = aeR + beZ + ceφ. Using these definitions we obtain

B · (B · ∇vpol) = a
[
a∂Rα+ b∂Zα+

c

R
∂φα

]
+ b

[
a∂Rβ + b∂Zβ +

c

R
∂φβ

]
+
c2

R
α,

= a [a∂Rα+ b∂Zα] + b [a∂Rβ + b∂Zβ] +
ac

R
∂φα+

bc

R
∂φβ +

c2

R
α.

Now we consider the first term A = a(a∂Rα + b∂Zα) + b(a∂Rβ + b∂Zβ). For this we rewrite the
term in the following form

A = a∂R(aα+ bβ) + b∂Z(aα+ bβ)− α∂R(
a2

2
)− β∂Z(

b2

2
)− βa∂Rb− αb∂Za.

We define C = a∂R(aα + bβ) + b∂Z(aα + bβ) and D = −α∂R(
a2

2 ) − β∂Z(
b2

2 ) − βa∂Rb − αb∂Za.
We can rewrite the term D in the following form

D = −(α∂R(
a2

2
+
b2

2
) + β∂Z(

a2

2
+
b2

2
) + αb(∂Za− ∂Rb)− βa(∂Za− ∂Rb)).

We obtain

D = −R[u,
|Bpol|

2

2
] +

j

R
[u, ψ]

Quick computations show that C = 1
R
[ψ, (∇polψ · ∇polu)]. The term A is given by A = C + D.

Now we consider the term B = ac
R
∂φα+ bc

R
∂φβ + c2

R
α and it is easy to prove that

B = − F0

R2 (∇polψ · ∇pol(∂φu))−
F 2

0

R2 ∂Zu. At the end we obtain

B · (ρv||B · ∇(vpol)) = −Rρv||[u,
|Bpol|

2

2
] + ρv||

j

R
[u, ψ] +

ρv||

R
[ψ, (∇polψ · ∇polu)]

−
ρv||F0

R2
(∇polψ · ∇pol(∂φu))− ρv||

F 2
0

R2
∂Zu.

2.3 Final Model

We define the magnetic and velocity fields by B = F0

R
eφ+

1
R
∇ψ× eφ and v = −R∇u× eφ+ v||B.

Using all the previous results based on these definitions of the fields, we obtain the final reduced
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MHD model with parallel velocity.





∂t
1

R2
ψ =

1

R
[ψ, u] +

η

R2

(
j +

∂φφψ

R2

)
−

1

R2
F0∂φu

∇ · (ρ̂∇pol∂tu)−∇ · (ρ∂t(v||∇polψ)) =
1

2R
[R2|∇polu|

2, ρ̂] +
1

R
[ρ̂R2w, u]−

1

R
[R2, p] +

1

R
[ψ, j]−

F0

R2
∂φj

+∇ · (νperp∇w) +
1
R
[ρv2||j, ψ] +

1
R
[ρv||(∇polv|| · ∇polψ), ψ] +∇ · (ρ F0

R2 v||∂φ(v||∇polψ))

+
1

R
[ρ̂, v||(∇polψ · ∇polu)]−

1

2R
[ρ̂, v2|||Bpol|

2]−
1

R
[ρ̂v||w,ψ] +

1

R
[u, ρ̂v||j] +

1

R
[u, ρ̂(∇polψ · ∇polv||)]

−∇ ·

(
ρ̂
F0

R2
v||∇pol(∂φu)

)
− ∂φ

(
ρ̂
F0

R5
v2||∂R(ψ)

)
− ∂Z

(
ρ̂
F 2
0

R4
v2||

)

w = △polu

j = △∗ψ

∂tρ = R[ρ, u] + 2ρ∂Zu−
v||F0

R2
∂φρ−

v||

R
[ρ, ψ]−

ρ

R
[v||, ψ]−

ρF0

R2
∂φv||

∂tp = R[p, u] + 2γp∂Zu−
v||F0

R2
∂φp−

v||

R
[p, ψ]−

γp

R
[v||, ψ]−

γpF0

R2
∂φv||

ρ|B2|∂tv|| + ρv||
1
R2∇polψ · ∇pol(∂tψ)− ρ∇polψ · ∇pol(∂tu) = − 1

R
[p, ψ]− F0

R2 ∂φp+
ρ
R
[ψ,

v2|||B|2

2 ]

−
F0

R
ρ∂φ

(
v2|||B|2

2R

)
−

1

2R
ρ[R2|∇polu|

2, ψ]−
ρ̂

R
w[ψ, u]−Rρ|B|2[u, v||]−Rρv||[u,

|B|2

2
] +Rρv||[u,

|Bpol|
2

2
]

−ρv||
△∗ψ

R
[u, ψ]−

ρv||

R
[ψ, (∇polψ · ∇polu)] +

ρv||F0

R2
(∇polψ · ∇pol(∂φu)) + ρv||

F 2
0

R2
∂Zu

2.4 Energy estimate

For the full MHD model the total energy is conserved in the ideal case and dissipated in the
resistive case. To validate the derivation of the model, to validate the choice of the projection
operators and to obtain results of stability important for the numerical method we prove that the
reduced MHD model satisfies the same energy balance equation as the full MHD model [3]-[6] .

Lemma 2.1. We define the energy E = |B|2

2 + ρ
|v|2

2 + 1
γ−1p . If η = ν = 0 the total energy

satisfies
d

dt

∫

Ω

EdW =
d

dt

∫

Ω

REdV = 0

and if η 6=, ν 6= 0

d

dt

∫

Ω

EdW = −ν

∫

ω

w2dW − η

∫

ω

j2dW − η

∫

Ω

|∇pol

(
∂φψ

R2

)
|2dW
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Proof. To begin we compute dE = d
dt

∫
Ω

|B|2

2 + ρ
|v|2

2 + 1
γ−1pdW . We obtain

dE =

∫

Ω

∂t
|∇polψ|

2

2R2
dW +

∫

Ω

ρ∂t
|vpol|

2

2
dW +

∫

Ω

ρ∂t
|v|||

2

2
dW +

∫

Ω

ρ(v|| · ∂tvpol + vpol · ∂tv||)dW

+

∫

Ω

|vpol|
2

2
∂tρdW +

∫

Ω

|v|||
2

2
∂tρdW +

∫

Ω

(v|| · vpol)∂tρdW +

∫

Ω

∂tp

γ − 1
dW.

After quick computations we shows that the derivative of the energy is given by

dE =

∫

Ω

∂t

(
|∇polψ|

2

2R2

)
dW +

∫

Ω

ρ̂∂t

(
|∇polu|

2

2

)
dW +

∫

Ω

ρ|B|2∂t

(
v2||

2

)
dW

+

∫

Ω

ρv2||

R2
(∇polψ · ∇pol(∂tψ))dW −

∫

Ω

ρ(∇polu · ∂t(v||∇polψ))dW −

∫

Ω

ρv||(∇polψ · ∂t(∇polu))dW

+

∫

Ω

|∇polu|
2

2
∂tρ̂dW +

∫

Ω

v2|||B|2

2
∂tρdW −

∫

Ω

v||(∇polu · ∇polψ)∂tρdW +

∫

Ω

∂tp

γ − 1
dW.

The term
∫
Ω
∂t

(
|∇polψ|

2

2R2

)
dW is equal to

∫
Ω
(
∇polψ

R
·∇pol(∂tψ))dW . Integrating by parts we obtain

∫

Ω

∂t

(
|∇polψ|

2

2R2

)
dW =

∫

Ω

∂t

(
|∇polψ|

2

2R

)
dV = −

∫

Ω

△∗ψ

R
∂tψdV = −

∫

Ω

j

R2
∂tψdW.

Using an integration by parts we obtain also

∫

Ω

ρ̂∂t

(
|∇polu|

2

2

)
= −

∫

Ω

∇ · (ρ̂∇pol(∂tu))udW.

Consequently we obtain

dE = −

∫

Ω

(∂tψ)
j

R2
dW −

∫

Ω

(
∇ · (ρ̂∇pol(∂tu))−∇ · (ρ∂t(v||∇polψ))

)
udW

+

∫

Ω

ρ
(
|B|2∂tv|| +

v||

R2
(∇polψ · ∇pol(∂tψ))− (∇polψ · ∂t(∇polu))

)
v||dW

+

∫

Ω

|∇polu|
2

2
∂tρ̂dW +

∫

Ω

v2|||B|2

2
∂tρdW −

∫

Ω

v||(∇polu · ∇polψ)∂tρdW +

∫

Ω

∂tp

γ − 1
dW.

Using 2∂Zu = 1
R
[R2, u], we obtain

∂tρ = R[ρ, u] +
ρ

R
[R2, u]−

v||F0

R2
∂φρ−

v||

R
[ρ, ψ]−

ρ

R
[v||, ψ]−

ρF0

R2
∂φv||.

Before computes the energy estimate we give an equation on ρ̂. For ρ̂ we multiply by R2 the
equation on ρ. We obtain

∂tρ̂ =R3[ρ, u] + 2ρ̂∂Zu+R[ψ, ρv||]− F0∂φ(ρv||)

=R[ρ̂, u]−
ρ̂

R
[R2, u] + 2ρ̂∂Zu+R[ψ, ρv||]− F0∂φ(ρv||).

Using that 2ρ̂∂Zu = ρ̂
R
[R2, u], we obtain

∂tρ̂ = R[ρ̂, u] +R[ψ, ρv||]− F0∂φ(ρv||),

which is equal to

∂tρ̂ = R[ρ̂, u] +Rρ[ψ, v||] +Rv||[ψ, ρ]− F0ρ∂φv|| − F0v||∂φρ.
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To compute dE we add to the final model three equations on the density :




v2|||B|2

2
∂tρ =

v2|||B|2

2R
[ρ̂, u]−

v2|||B|2

2

F0

R2
∂φ(ρv||)−

v2|||B|2

2

1

R
[ρv||, ψ]

v||(∇polu · ∇polψ)∂tρ =
v||

R
(∇polu · ∇polψ)[ρ̂, u]− v||(∇polu · ∇polψ)

F0

R2
∂φ(ρv||)− v||(∇polu · ∇polψ)

1

R
[ρv||, ψ]

|∇polu|
2

2
∂tρ̂ =

|∇polu|
2

2
R[ρ̂, u]−

|∇polu|
2

2
F0∂φ(ρv||)−

|∇polu|
2

2
R[ρv||, ψ]

Now we compute

dE = −

∫

Ω

(∂tψ)
j

R2
dW −

∫

Ω

(
∇ · (ρ̂∇pol(∂tu))−∇ · (ρ∂t(v||∇polψ))

)
udW

+

∫

Ω

ρ
(
|B|2∂tv|| +

v||

R2
(∇polψ · ∇pol(∂tψ))− (∇polψ · ∂t(∇polu))

)
v||dW

+

∫

Ω

|∇polu|
2

2
∂tρ̂dW +

∫

Ω

v2|||B|2

2
∂tρdW −

∫

Ω

v||(∇polu · ∇polψ)∂tρdW +

∫

Ω

∂tp

γ − 1
dW.

The derivative in time dE can by writing as the sum of 17 groups of terms: dE = (E1)+...+(E18).
Now we propose to prove that each group of terms is equal to zero or negative.

(E1) = −

∫

Ω

1

R
[ψ, u]jdW −

∫

Ω

1

R
[ψ, j]udW = −

∫

Ω

([ψ, u]j + [ψ, j]u)dV = 0,

(E2) = −

∫

Ω

F0

R2
∂φ(u)jdW +

∫

Ω

F0

R2
∂φ(j)udW =

∫

Ω

F0

R
(∂φ(u)j + ∂φ(j)u)dV = 0.

These results are obtained by integrating by part. Now we study the term (E3)

(E3) = −

∫

Ω

1

R
[ρ̂R2w, u]udW = −

∫

Ω

[ρ̂R2w, u]udV =

∫

Ω

[u, u]ρ̂R2wdV = 0.

The term (E4) corresponds to the viscosity and resistivity terms:

(E4) = −ν

∫

Ω

△polwudW −

∫

Ω

η
j2

R2
dW − η

∫

Ω

∂φφψ

R4
jdW

= −ν

∫

Ω

w2dW −

∫

Ω

η
j2

R2
dW − η

∫

Ω

|∇pol

(
∂φψ

R2

)
|2dW.

To obtain this result we use w = △polu and a double integrating by part. Now we define the term
(E5) which depends on the pressure.

(E5) =

∫

Ω

1

R
[R2, p]udW +

1

γ − 1

∫

Ω

R[p, u]dW +
2γ

γ − 1

∫

Ω

p∂ZudW.

Using 2p∂Zu = p
R
[R2, u] and integrating by parts we obtain

(E5) =

∫

Ω

[R2, p]udV +
1

γ − 1

∫

Ω

R2[p, u]dV +
γ

γ − 1

∫

Ω

p[R2, u]dV.

(E5) = −

∫

Ω

[R2, u]pdV −
1

γ − 1

∫

Ω

p[R2, u]dV +
γ

γ − 1

∫

Ω

p[R2, u]dV = 0.

Now we study the terms (E6) and (E7). In these two cases using integration by part and the
anti-symmetric properties of bracket operator we conclude.

(E6) = −

∫

Ω

1

2R
[R2|∇polu|

2, ρ̂]udW +

∫

Ω

|∇polu|
2

2
R[ρ̂, u]dW,

= −

∫

Ω

1

2
[R2|∇polu|

2, ρ̂]udV −

∫

Ω

u[ρ̂,
|∇polu|

2

2
R2]dV = 0,

17



(E7) = +

∫

Ω

1

R
[ρ̂v||w,ψ]udV −

∫

Ω

ρ̂

R
w[ψ, u]v||dW.

=−

∫

Ω

ρ̂v||w[u, ψ]dV −

∫

Ω

ρ̂w[ψ, u]v||dV = 0.

The term (E8) correspond to the coupling between the pressure and the parallel velocity v||. We
obtain

(E8) = −
1

γ − 1

∫

Ω

F0v||

R2
(∂φp)dW −

1

γ − 1

∫

Ω

v||

R
[p, ψ]dW −

γ

γ − 1

∫

Ω

γ
p

R
[v||, R]dW

−
γ

γ − 1

∫

Ω

F0

R2
p(∂φv||)dW −

∫

Ω

F0v||

R2
(∂φp)dW −

∫

Ω

v||

R
[p, ψ]dW.

Integrating by part the terms which depend on γ
γ−1 and factorizing we obtain that (E8) = 0. The

term (E9) is defined by

(E9) = +

∫

Ω

v2|||Bpol|
2

2

1

R
[ρv||, ψ]dW +

∫

Ω

ρv||

R
[ψ,

v2|||Bpol|
2

2
]dW

−

∫

Ω

v2|||Bpol|
2

2

F0

R2
∂φ(ρv||)dW −

∫

Ω

F0

R2
ρv||∂φ

(
v2|||Bpol|

2

2

)
dW.

Integrating by parts we obtain

(E9) = +

∫

Ω

ρv||

(
[ψ,

v2|||Bpol|
2

2
] + [

v2|||Bpol|
2

2
, ψ]

)
dV

+

∫

Ω

F0

R
ρv||∂φ

(
v2|||Bpol|

2

2

)
dV −

∫

Ω

F0

R
ρv||∂φ

(
v2|||Bpol|

2

2

)
dV = 0.

The term (E10) is defined by

(E10) = −

∫

Ω

|∇polu|
2

2
R[ρv||, ψ]dW −

∫

Ω

1

2R
ρv||[R

2|∇polu|
2, ψ]dW.

We apply the classical integration to conclude. Now we study the term (E11)

(E11) = −

∫

Ω

1

R
[u, ρ̂v||j]udW −

∫

Ω

1

R
[u, ρ̂(∇polψ · ∇polv||)]udW.

To conclude we use the integration by part and the fact that [u, u] = 0. The term (E12) depends
of the toroidal direction

(E12) = +

∫

Ω

∇ ·

(
ρ̂
F0

R2
v||∇pol(∂φu)

)
dW −

∫

Ω

|∇polu|
2

2
F0∂φ(ρv||)

=−

∫

Ω

ρ̂
F0

R
v|| (∇polu · ∇pol(∂φu)) dV −

∫

Ω

|∇polu|
2

2
F0∂φ

(
ρ̂

R
v||

)
.

Using that (∇polu·∇pol(∂φu)) = ∂φ(
|∇polu|

2

2 ) and integrating by part the second term we conclude.
The term (E13) also depends on the toroidal derivative. It is defined by

(E13) = −

∫

Ω

∇ ·

(
ρ
F0

R2
v||∂φ(v||∇polψ)

)
udW +

∫

Ω

v||(∇polu · ∇polψ)
F0

R
∂φ(ρv||)dW

+

∫

Ω

ρv2||

R
F0 (∇polψ · ∇pol(∂φu)) dW.
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We integrate by part the first term and expend this term, we integrate by part the second one to
obtain

(E13) =

∫

Ω

ρ
F0

R
v||(∂φ(∇polψ) · ∇polu)dV +

∫

Ω

ρv||
F0

R
(∇polu · ∇polψ)∂φ(v||)dV

−

∫

Ω

F0ρv||

R
∂φ(v||(∇polu · ∇polψ))dV +

∫

Ω

ρF0

R
v2||(∇polψ · ∇pol(∂φu))dV.

To conclude we expand the third term
F0ρv||
R

∂φ(v||(∇polu · ∇polψ)) in two terms
F0ρv

2

||

R
∂φ(∇polu ·

∇polψ) and
F0ρv||
R

(∇polu ·∇polψ)∂φ(v||). The sum of the five terms obtained is equal to zero. Now
we introduce the terms (E14) and (E15).

(E14) = −

∫

Ω

1

R
[ρ̂, v||(∇polψ · ∇polu)]udW −

∫

Ω

1

R
v||(∇polu · ∇polψ)[ρ̂, u]dW,

(E15) = −

∫

Ω

1

R
[ρv2||△

∗ψ, ψ]udW −

∫

Ω

ρv||
△∗ψ

R
[u, ψ]dW.

A integration by part of the first term is sufficient to prove that (E14) and (E15) are equal to
zero. The term (E16) is defined by

(E16) = +

∫

Ω

1

2R
[ρ̂, v2|||Bpol|

2]udW +

∫

Ω

v2|||B|2

2R
[ρ̂, u]dW

−

∫

Ω

Rρv2||[u,
|B|2

2
]dW −

∫

Ω

Rρv||
F0

R2
[u, v||]dW +

∫

Ω

Rρv2||[u,
|Bpol|

2

2
]dW.

The fourth term of (E16) is the toroidal part of the term Rρ|B|2[u, v||] in the parallel velocity
equation. Now we split (E16) between two terms (E16a) and (E16b). (E16a) is defined by

(E16a) = +

∫

Ω

1

2R
[ρ̂, v2|||Bpol|

2]udW +

∫

Ω

v2||
|Bpol|

2

2R
[ρ̂, u]dW

−

∫

Ω

Rρv2||[u,
|Bpol|

2

2
]dW +

∫

Ω

Rρv2||[u,
|Bpol|

2

2
]dW.

This term is equal to zero (integrating by part the first term is sufficient to prove this). The
(E16b) is defined by

(E16b) =

∫

Ω

v2||

R

F 2
0

2R2
[ρ̂, u]dW −

∫

Ω

Rρv2||[u,
F 2
0

2R2
]dW −

∫

Ω

Rρv||
F 2
0

R2
[u, v||]dW

We rewrite the term (E16b) to obtain

(E16b) = +

∫

Ω

v2||
F 2
0

2R2
[ρ̂, u]dV −

∫

Ω

ρ̂v2||[u,
F 2
0

2R2
]dV

−

∫

Ω

ρ̂v||
F 2
0

2R2
[u, v||]dV −

∫

Ω

ρ̂v||
F 2
0

2R2
[u, v||]dV

We combine the second and third terms and use the anti-symmetry property of the bracket for
the fourth term. We obtain

(E16b) = −

∫

Ω

ρ̂v||[u,
F 2
0

2R2
v||]dV +

∫

Ω

v2||
F 2
0

2R2
[ρ̂, u]dV +

∫

Ω

ρ̂v||
F 2
0

2R2
[v||, u]dV

Now we combine the two last terms and we use anti-symmetric property of the bracket in the first
to obtain

(E16b) =

∫

Ω

ρ̂v||[
F 2
0

2R2
v||, u]dV +

∫

Ω

v||
F 2
0

2R2
[ρ̂v||, u]dV = 0
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The result is obtained using an integration by part. The last (E17) is given by

(E17) =−

∫

Ω

1

R
[ρv||(∇polv|| · ∇polψ), ψ]udW +

∫

Ω

1

R
v||(∇polu · ∇polv||)[ρv||, ψ]dW

−

∫

Ω

1

R
ρv2||[ψ, (∇polψ · ∇polu)]dW −

∫

Ω

Rρ|Bpol|
2[u, v||]v||dW

Firstly Rρ|Bpol|
2[u, v||]v|| =

ρ
R
(∇polψ · ∇polψ)v||[u, v||], secondly we have the identity

(∇polv|| · ∇polψ)[u, ψ] = (∇polψ · ∇polψ)[u, v||] + (∇polu · ∇polψ)[v||, ψ].

Using these two identities we obtain

(E17) = +

∫

Ω

ρv||(∇polv|| · ∇polψ)[u, ψ]dW −

∫

Ω

ρv2||[(∇polu · ∇polψ), ψ]dW

−

∫

Ω

ρv||(∇polu · ∇polψ)[v||, ψ]dW −

∫

Ω

ρv2||[ψ, (∇polu · ∇polψ)]dW

−

∫

Ω

ρv||(∇polψ · ∇polψ)[u, v||]dW

The sum of second and fourth terms is equal to zero (anti-symmetry property of the bracket). The
sum of the other terms is equal to zero (second identity). To finish the proof we compute (E18)
defined by

(E18) =

∫

Ω

∂φ

(
ρ̂
F0

R5
v2||∂R(ψ)

)
u+

∫

Ω

∂Z

(
ρ̂
F 2
0

R4
v2||

)
u+

∫

Ω

ρv2||
F 2
0

R2
∂Zu

The first term is equal to zero using the divergence flux theorem and the boundary condition. The
sum of the two other terms is also equal to zero (using a integration by part). This last result
finishes the proof.

This result proves that the physical energy associated with the MHD system is conserved in
the ideal case (ν = η = 0) and dissipated in the resistive case. Firstly this result is an argument to
justify the derivation of the reduced MHD models as the conservation of the energy is an essential
physical property. Secondly this result is useful to study at the mathematical level that the model
is well-posed. For example in [1]-[3] the authors explain and detail the key role of the energy
balance to prove the existence of weak solutions. Finally, this energy estimate is very important
to ensure the numerical stability of the schemes. Indeed a way to ensure the stability is to design
a numerical method which dissipates the energy at the discrete level and we cannot obtain this
stability property without energy conservation on the continuous model.

A small remark: the term
∂φφψ

R4 which is the poloidal current is neglected in the JOREK code.
With or without this term we have a model which conserve the energy in the ideal case and
dissipate the energy in the resistive case.

3 Spatial and Time discretization

3.1 Spatial discretization

In the JOREK code, different discretization methods are applied for the toroidal direction and the
poloidal plane. For the toroidal direction we use a classical Fourier expansion. This discretization
is easy to implement but generates a large matrix. Using a Fast Fourier transformation we obtain
a faster algorithm to construct the matrix and the right hand side. For the Poloidal plane we use
a classical finite element method with numerical viscosity to stabilize the method. The elements
chosen are Cubic Bezier elements which allows to guarantee C1 continuity useful to discretize the
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fourth order operators and preserve the free divergence constraints. However this C1 reconstruction
is not guaranteed for the grid center and for the X-Point. These elements use 4 degrees of freedom
by node contrary to the Lagrangian cubic element ( 9 degrees of freedom by node). Another
advantage comes from the isoparametric formulation. Indeed we can discretize the geometrical
quantities like R and Z with Bezier Splines. This property allows to construct the aligned grid
with the magnetic surfaces easily. The details about the discretization using Bezier elements are
given in [15].

3.2 Original time discretization and preconditioning

In this section we explain the time discretization used in JOREK and the preconditioning used for
the linear solver. The different models implemented in the JOREK code (with or without parallel
velocity) can be written in the following form

∂tA(U) = B(U)

with A and B discrete nonlinear differential operators and U = (ψ, u, j, w, ρ, T, v||). For the time
discretization we use the classical Crank Nicholson or a Gear second order scheme allowing to
write the time scheme in the following form

(1 + ζ)A(Un+1)− θ∆tB(Un+1) = (1 + 2ζ)A(Un)− ζA(Un−1) + (1− θ)∆tB(Un)

with ζ and θ the parameters of the scheme. If θ = 1 and ζ = 0 we obtain the implicit Euler scheme,
if ζ = 0 and θ = 1

2 we obtain the Crank-Nicholson scheme and if θ = 1 and ζ = 1
2 we obtain the

Gears scheme. These implicit schemes does not preserve the decay of the discrete time energy,
because the system is too nonlinear. Find a accurate time with this property is an interesting
problem for the future. Now we define two nonlinear vectors G(U) = (1 + ζ)A(U) − θ∆tB(U)
and b(Un,Un−1) = (1 + 2ζ)A(Un)− ζA(Un−1) + (1− θ)∆tB(Un). At the end we want to solve
the following nonlinear system

G(Un+1) = b(Un,Un−1).

A first order linearization is applied in the original code to obtain the following linear system

(
∂G(Un)

∂U

)
δUn+1 = −G(Un) + b(Un,Un−1) = R(Un)

with δUn+1 = Un+1 − Un and the Jacobian Jn = ∂G(Un)
∂U

. To solve this system we use the
classical GMRES method with left preconditioning. The principle of the left preconditioning is to
replace the solver JnδU

n+1 = R(Un) by M−1
n JnδU

n+1 = M−1
n R(Un). The last system can be

split between two steps. First we solve exactly

Mnδy = R(Un)

and then we solve with the GMRES method

M−1
n JnδU

n+1 = δy.

It is necessary to obtain the final algorithm that the preconditioning matrix Mn is invertible.
The idea currently followed in the code is to write the Jacobian by block, each block corresponds
to the coupling terms between two Fourier modes. Under the assumption of weak coupling it is
possible to eliminate the non diagonal blocks. We obtain a diagonal block matrix where the blocks
correspond to the equations for each Fourier mode. To compute the inverse we use a direct solver
(LU method for example) to obtain the inverse of each block and consequently the inverse of Mn.
To minimize the CPU cost we don’t invert Mn at each time step, but only when the convergence
for the previous linear step is too slow.
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3.3 Nonlinear time solvers

A first order linearization may not be the optimal choice to solve the problem in the nonlinear
phase of the run. Consequently we propose to replace this linearization by a Newton procedure.
Since we use an iterative solver to compute the solution of the linear system, it will be interesting
to use an inexact Newton procedure [4]-[5]. This variation of the Newton method means that the
criterion of convergence of the GMRES method is adapted using the nonlinear residue and the
convergence of the Newton procedure. The aim is to use the nonlinear convergence to minimize
the number of GMRES iteration. Indeed it is not necessary to solve with a high accuracy the
linear system but just enough to converge to the solution of the nonlinear system. In the following
we detail the Inexact Newton algorithm to solve.

Algorithm

• At the time step n, we compute b(Un,Un−1), G(Un)

• We choose ǫ0 and the initial guess δU0

• At each iteration k of the Newton method we have the solution Uk.

• We compute G(Uk) and the Jacobian Jk.

• We solve the linear system with GMRES JkδUk = −G(Uk) + b(Un,Un−1) = R(Uk,Un)
and the following convergence criterion

||JkδUk −R(Uk,Un)||

||R(Uk,Un)||
≤ ǫkgmres

with

ǫkgmres = γ

(
||R(Uk,Un)||

||R(Uk−1,Un)||

)α

• We iterate with Uk+1 = Uk + δUk.

• We apply a convergence test (for example ||R(Uk,U
n)|| < ǫa + ǫr||R(U

n)||).

• When the Newton method has converged we define Un+1 = Uk+1.

We couple this algorithm with an adaptive time stepping which allows to use large time steps in
the linear phase and smaller time steps in the nonlinear phase. Actually the principle is simple if
the Newton process converges very quickly we increase the time step and if the convergence is slow
we decrease the time step for the following iteration. If the Newton process does not converge or
if ||R(Uk+1,Un)|| > ||R(Uk,Un)|| during two or three consecutive linear steps we decrease the
time step and restart the Newton iterations. To have a smooth evolution of the time step it is
necessary to avoid a large increasing or decreasing of the time step.

4 Numerical results

In general the different test cases used in this paper have the same structure. First we compute
the equilibrium on the poloidal grid (Fig 1., left), compute the aligned grid (Fig 1., right) and
begin the time loop. At the beginning of the time loop peeling-ballooning modes set in which
are responsible for the appearance of edge localized modes (ELMs). These linear instabilities are
driven by large pressure gradients (steep pressure pedestal) and large current densities in the edge.
During these instabilities the energy associated with the non principal modes grow exponentially.
The background profiles are modified. When the energies associated with the non principal modes
are sufficiently large, the pressure gradients get smaller which stabilizes the instability. This is the
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nonlinear saturation phase. The implicit time methods are known to be stable without restriction
on the time step (classical property), however this type of result is valid for stable physical dy-
namic and stable models. In our cases we have physical instabilities consequently the numerical
stability is not ensured. Typically we will show that if the numerical error (time error, linearization
error) becomes too large the numerical simulation does not capture correctly the beginning of the
salutation phase and generates critical numerical instabilities.

In this section we present some numerical results for the models with and without parallel ve-
locity. We add to the reduced MHD models, numerical diffusion operators for each equation
and two anisotropic diffusion operators on the density and the temperature (density and pressure
equations). For example, for the pressure equation we add the following diffusion operator

∇ · (k||∇||T + k⊥∇⊥T ) = ∇ · ((k|| − k⊥)∇||T + k⊥∇T )

with ∇||T = B

||B|| · (
B

||B|| · ∇T ) and ∇⊥ = ∇−∇||.

We propose to compare the different methods (Exact and Inexact Newton methods and classical
linearization) mainly in the nonlinear phase. Indeed in the linear phase the classical method is
clearly more efficient. In this phase the preconditioning is very efficient and the GMRES solver
converges quickly (between 1 and 5 iterations). The Newton procedure converges with 3 iterations
in general. Consequently using the Newton method the cost is clearly higher for each time step
in the linear phase. In the nonlinear phase the situation is more complicated. The nonlinear
phase begins when the quantities associated with the non principal modes have the same order of
magnitude as the quantities associated to the principal mode. To compare the numerical results,
we define the beginning of the nonlinear phase as the time where the kinetic and magnetic energies
for n 6= 0 are at the level of the energies associated to n = 0. To compare the classical linearization
and the Newton procedure we use the adaptive time stepping. If the algorithm for one time step
does not converge we recompute it with a smaller time step (typically ∆tnew = 0.8∆told. For
the Newton and the linearization methods the factorization is recomputed for each time step
and during a Newton step the factorization is recomputed if the number of GMRES iterations
associated with the two last Newton steps is superior to 50.

4.1 Model without parallel velocity

4.1.1 First test case

This first case corresponds to a simplified equilibrium configuration associated to the JET reactor.
We solve the model without parallel velocity. In this case the numerical viscosity is zero and the
numerical resistivity is 10−10. The physical viscosity and resistivity, dependent on the temperature
are given by η(T ) = 2 × 10−6 T− 5

2 and ν(T ) = 4 × 10−6 T− 5

2 . We consider a geometry with
X-point. For the Linearization procedure the criterion of convergence for the GMRES procedure
is ε = 10−8. For the Newton procedure the maximum number of Newton iteration is 10 and
the criterion of convergence for the Newton procedure εa = 10−5, the ε0gmres of the GMRES
convergence criterion is 0.0005. Using ∆t = 30 we compare the results for the linearization
method, the exact Newton method and the inexact Newton method. These results are given
between the time 1400 and 3500 corresponding to the nonlinear saturation phase. The code is
executed with 2 MPI and 16 OpenMP threads per MPI process. In the tables (Tab 1) - (Tab 2) -
(Tab 3) we give the average of different quantities associated to the solver during one time step.

Linearization method
∆t = GMRES Iter. LU fact. time
30 19 1 53.25

Table 1: For the linearization method the average number of gmres iterations and LU factorizations
per time step are given as well as the wall clock time

23



Exact Newton
∆t = GMRES Iter. LU fact. Newton iter. Total Gmres iter. time
30 19.8 1.05 3 59 79.6
40 26.6 1.28 3.2 85.5 102

Table 2: For the exact Newton method the average number of total GMRES iterations, LU
factorizations, number of Newton iteration and number to GMRES iteration per Newton step per
time step are given as well as the wall clock time.

Inexact Newton
∆t = GMRES Iter. LU fact. Newton iter. Total Gmres iter. time
30 3.3 1 5.7 18.7 76.25
40 5.4 1 5.8 31 82.9

Table 3: For the inexact Newton method the average number of total GMRES iterations, LU
factorizations, number of Newton iteration and number to GMRES iteration per Newton step per
time step are given as well as the wall clock time.

Some remarks about these results. It is clear that the CPU cost associated with the Newton
procedure is higher compared to the classical linearization for the same time stepping. This result
is expected, indeed by definition of the Newton method, the number of linear problems solved
is larger with the Newton procedure. First in the nonlinear phase we remark that the Newton
procedure is also less performing, but using an inexact Newton method we can reduce the CPU
cost. In the (Tab 2) - (Tab 3). We remark that for the time step ∆t = 30, the main difference
between the Inexact and exact Newton method is small, but for ∆t = 40 the difference is larger.
The main difference between exact and inexact Newton method can be explained by the fact
that the number of GMRES iterations is larger using exact Newton method consequently the
factorization for the preconditioning is called more often. At the end we remark that the inexact
Newton method is clearly more efficient when the problem is more nonlinear and similar when the
problem is not too nonlinear. This result verify the usefulness of the inexact Newton method.

Now we propose to compare the linearization method and the inexact Newton method. In
the nonlinear phase the difference is less important. Indeed in the nonlinear phase the number of
GMRES iterations for each linear problem is larger. Using an inexact Newton procedure we have
more linear problems to solve but each linear system is solved with a small accuracy. Consequently
the cost associated with each linear system is smaller when we use the inexact Newton procedure.
The table (Tab 1) - (Tab 3) for ∆t = 30 show that the total GMRES iteration for one time step
are similar between an inexact Newton procedure and the linearization procedure. Consequently
the additional cost associated with the inexact Newton method come from the computation of
the matrix and in this case is around 1.5 which is an acceptable additional cost. Additionally,
the parallel scaling is better for the construction of the Matrix than the iterative solver and the
preconditioning. Consequently with more MPI process the difference between the CPU cost asso-
ciated with the inexact Newton method and the linearization method can be reduced.

Secondly we compare the two methods with ∆t = 40, 50, 60. For the Newton procedure the
maximum number of Newton iterations is 20 and the criterion of convergence for the Newton
procedure ε = 10−7, the ε0 of the GMRES convergence criterion is 0.0005. We plot the kinetic
and magnetic energies associated with the different modes for the two procedures and the different
time steps (Fig 3.) and (Fig 4.).

These results show that the Newton procedure with adaptive time stepping is more robust
than the classical linearization and allows to use a larger time step. When we use the classical
linearization with a very large time step, the numerical error linked to the time discretization and
the linearization becomes too large such that consequently the numerical scheme does not capture
correctly the beginning of the saturation phase. In this case, numerical instabilities appear and
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Figure 3: Reference solution: Kinetic and Magnetic energies for ∆t = 5 gives by the Newton
method.

the iterative solver does not converge after the beginning of the numerical instability. If we use
an adaptive time stepping the situation is the same because in general the scheme computes the
beginning of the numerical instabilities and at this moment is too late to adapt and decrease the
time step.

With the Newton procedure the situation is different. First the error of linearization and
consequently the global numerical error is smaller consequently we can use larger time step and
capture correctly the beginning of the saturation phase. Secondly we don’t have the problem
associated with the numerical instabilities with the Newton procedure as the Newton method
does not converge in case of the numerical instability such that the time step is recalculated with
smaller ∆t. To conclude the adaptive time stepping works with the Newton method because this
procedure detects the beginning of the numerical instabilities by non convergence of the method
contrary to the linearization and to continue the computation it is necessary to adapt the ∆t
before the beginning of the numerical instability. Consequently the Newton procedure is more
robust because allowing an efficient adaptive time stepping which avoids numerical instabilities
for large time steps and non convergence issues. The figure (Fig 4.) shows that the code with
the linearization method does not converge with ∆t = 40 contrary to the Newton method which
converges even with ∆t = 60.

This test case is not too nonlinear and consequently not too stiff for the numerical method.
For more nonlinear test cases the Newton procedure gives better results when the problems get
stiffer.

4.1.2 Second test case

This second test case corresponds to a realistic ASDEX Upgrade equilibrium configuration with
unrealistically large resistivity which makes the instability especially violent. We solve the model
without parallel velocity. In this case the numerical viscosity and the numerical resistivity are
close to 10−11. The physical viscosity and resistivity are dependent of the temperature : η(T ) =

2 × 10−5 T− 5

2 and ν(T ) = 3 × 10−5 T− 5

2 . We consider a geometry with X-point. For the
Linearization procedure the maximum number of GMRES iteration is 500 and the the criterion of
convergence for the GMRES procedure ε = 10−8. Firstly we propose to compare the two meth-
ods ∆t = 5, 10, 20. For the Newton procedure the maximum number of Newton iterations is 10
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and the the criterion of convergence for the Newton procedure ε = 10−5, the ε0 of the GMRES
convergence criterion is 0.0005.

This test case with violent physical instabilities allows to confirm the previous remarks about
adaptive time stepping and numerical instabilities. First if we choose a too big time step with
the linearization method, we have a numerical instability which appears and the adaptive time
stepping is not efficient.

Gmres ∆t = 1 Newton + adaptive time method
18800 7600

Table 4: Total time of the simulation for the GMRES method with ∆t = 1 and for Newton method
with adaptive time method (initial time step ∆t = 10). Final time T = 450

Due to the violent physical instabilities the problem is strongly nonlinear in the saturation
phase. Contrary to the previous test case, using the Newton method allows to reduce significantly
the CPU cost for the total run (Tab 5.).
The inexact Newton method with adaptive time stepping is more robust than the linearization
method and allows to reduce the CPU costs for highly nonlinear cases due to the larger time steps
possible.

4.2 Model with parallel velocity

This test case is the same as the one used in section 4.1.1 but we solve the model with parallel
velocity. First we compare the two methods in the nonlinear phase with ∆t = 20. For the Newton
procedure the maximum number of Newton iteration is 10 and the the criterion of convergence
for the Newton procedure ε=10

−5, the ε0 of the GMRES convergence criterion is 0.0005. These
results are given between the time 1250 and 3500 which correspond to the saturation phase (stiff
part of the computation).

Linearization method
models Gmres Iter. Precon . called . time

with neglected terms 25.4 1 75.7
without neglected terms 28 1 83.6

Table 5: Average of number of Gmres iteration and preconditioning called during a time step.
Linearization method. ∆t = 20

Inexact Newton method
models Gmres Iter. Precon . called Newton iter. Total Gmres iter. time

with neglected terms 5.1 1 6.4 32.7 119.3
without neglected terms 5.2 1 6.4 33.4 122.5

Table 6: Average of number of Gmres iteration and preconditioning called during a time step.
Inexacte Newton method. ∆t = 20

The conclusions on the comparison between the Newton procedure and the Linearization pro-
cedure are similar to the conclusion to the first test case. Indeed in the Nonlinear phase we have an
additional cost around 1.4 - 1.5. But this additional cost can be reduced using a larger time step.
Indeed with the Newton procedure (as previously) we can use larger time steps with the Newton
procedure without numerical instabilities. For example in this case the Linearization method is
unstable with ∆t = 25 and the Newton method is stable with ∆t = 40.

For all these results we recompute the factorization for the preconditioning at each time step.
For the Newton method we have added an additional rule. The factorization is recomputed if the
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Inexact Newton method
models Gmres Iter. Precon . called Newton iter. Total Gmres iter. time

with neglected terms 10.9 1.1 6.95 75.6 152
without neglected terms 8.7 1 6.7 58 142

Table 7: Average of number of Gmres iteration and preconditioning called during a time step.
Inexacte Newton method. ∆t = 20

convergence is too slow for the previous linear step. To reduce the CPU time we can use only
the second rule for the Newton procedure and the Linearization method. In this case, it is not
necessary to compute the factorization for each time step. The different test cases show that for
the Newton procedure it will be important to use a smaller ε0 (initial ε for the GMRES method
in the Inexact Newton procedure) to compute correctly the first Newton iteration.

The last remark about this result is on the difference between the model with and without
neglected terms. These terms in the potential and parallel velocities equations comes from to the
fact the poloidal and parallel velocity are not perpendicular, this is the cross terms between the
poloidal velocity and the poloidal part of the parallel velocity. In the (Fig 7.) we remark that
we have small differences in the dynamics of kinetic and magnetic energies between the models
with and without neglected terms. We observe these differences for the linearization method with
∆ = 20 and for the Newton methods with ∆ = 40. With the Newton procedure and ∆t = 20 the
difference is smaller. In theory these terms are small consequently it is expected that the impact
of these terms is small when the numerical error (Time and linearization errors) is small. When
the error is larger (Linearization method with ∆ = 20, Newton method with ∆ = 40) the impact
of these terms is more important. However the impact of these additional terms on the stability,
conditioning and convergence issues is not clear and require additional studies for exemple when
the resistivity and viscosity are small.

5 Conclusion

In this paper, we have presented a rigorous analytical derivation of the reduced MHD models
implemented in the non-linear MHD code JOREK. Starting from the potential formulation of the
magnetic field vector and fluid velocity used in JOREK we obtain a few additional terms that
have been neglected in the code but might be relevant in the non-linear phase. We have also given
a proof of the conservation of total energy for this reduced MHD model if the additional terms
are taken into account. This is an important validation for the choices of the projections and the
assumptions of the derivation and an important basis for numerical stability analysis.

The second part of the paper is focused on the time solver of JOREK. The original method
used in JOREK for the time-stepping of the nonlinear system is a linearization solved iteratively
by GMRES with physics-based preconditioning. We have replaced this by the nonlinear inexact
Newton method in which the linear convergence accuracy of GMRES depends on the non-linear
convergence. Especially at the onset of non-linear saturation, large numerical errors can cause
numerical instabilities and prevent convergence. The non-linear time stepping reduces those errors
and consequently allows to use larger time steps as confirmed by numerical tests. We have also
implemented and tested an adaptive time stepping that works very efficiently with the Newton
method and allows to reduce computational costs. The Newton method is more robust than
the linearization method as it avoids certain numerical instabilities, is well suited for adaptive
time stepping, and allows to reduce computational costs in highly non-linear cases. The Newton
method is currently implemented for the single fluid reduced MHD equations in JOREK, and will
be extended to two-fluid terms and further extended models in the future.
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Figure 4: In the left Kinetic and Magnetic energies for Linearization method for ∆t = 30, 40, 50.
In the left Kinetic and Magnetic energies for Newton method for ∆t = 30, 40, 60
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Figure 5: In the left Kinetic and Magnetic energies for Linearization method for ∆t = 1 . In the
middle Kinetic and Magnetic energies for Linearization method for ∆t = 2. In the right Kinetic
and Magnetic energies for the Newton method for ∆t = 10 with adaptive time stepping.
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Figure 6: In the left Kinetic and Magnetic energies for Linearization method for ∆t = 20, 25. In
the left Kinetic and Magnetic energies for Newton method for ∆t = 20, 40
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Figure 7: Comparaison between the full model (model with neglected terms) and the model
without neglected terms. In the top and left results given by the Linearization method with
∆t = 20, in the top and right, results given by the Newton method with ∆t = 20 and in bottom
results given by the Newton method with ∆t = 40.
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