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FAMILIES OF AFFINE RULED SURFACES: EXISTENCE OF CYLINDERS

ADRIEN DUBOULOZ AND TAKASHI KISHIMOTO

Abstract. We show that the generic fiber of a family f : X → S of smooth A1-ruled affine surfaces always
carries an A1-fibration, possibly after a finite extension of the base S. In the particular case where the general
fibers of the family are irrational surfaces, we establish that up to shrinking S, such a family actually factors
through an A1-fibration ρ : X → Y over a certain S-scheme Y → S induced by the MRC-fibration of a
relative smooth projective model of X over S. For affine threefolds X equipped with a fibration f : X → B

by irrational A1-ruled surfaces over a smooth curve B, the induced A1-fibration ρ : X → Y can also be
obtained from a relative Minimal Model Program applied to a smooth projective model of X over B.

Introduction

The general structure of smooth non complete surfaces X with negative (logarithmic) Kodaira dimension
is not fully understood yet. For say smooth quasi-projective surfaces over an algebraically closed field of
characteristic zero, it was established by Keel and McKernan [10] that the negativity of the Kodaira dimension
is equivalent to the fact that X is generically covered by images of the affine line A1 in the sense that the set
of points x ∈ X with the property that there exists a non constant morphism f : A1 → X such that x ∈ f(A1)
is dense in X with respect to the Zariski topology. This property, called A1-uniruledness is equivalent to the
existence of an open embedding X →֒ (X,B) into a complete variety X covered by proper rational curves
meeting the boundary B = X \X in at most one point. In the case where X is smooth and affine, an earlier
deep result of Miyanishi-Sugie [14] asserts the stronger property that X is A1-ruled: there exists a Zariski
dense open subset U ⊂ X of the form U ≃ Z × A1 for a suitable smooth curve Z. Equivalently, X admits a
surjective flat morphism ρ : X → C to an open subset C of a smooth projective model Z of Z, whose generic
fiber is isomorphic to the affine line over the function field of C. Such a morphism ρ : X → C is called an
A1-fibration, and we say that ρ is of affine type or complete type when the base curve C is affine or complete,
respectively.

Smooth A1-uniruled but not A1-ruled affine varieties are known to exist in every dimension ≥ 3 [1]. Many
examples of A1-uniruled affine threefolds can be constructed in the form of flat families f : X → B of smooth
A1-ruled affine surfaces parametrized by a smooth base curve B. For instance, the complement X of a smooth
cubic surface S ⊂ P3

C
is the total space of a family f : X → A1 = Spec(C[t]) of A1-ruled surfaces induced by

the restriction of a pencil f : P3
99K P1 on P3 generated by S and three times a tangent hyperplane H to S

whose intersection with S consists of a cuspidal cubic curve. The general fibers of f have negative Kodaira
dimension, carrying A1-fibrations of complete type only, and the failure of A1-ruledness is intimately related
to the fact that the generic fiber Xη of f , which is a surface defined over the field K = C(t), does not admit
any A1-fibration defined over C(t). Nevertheless, it was noticed in [3, Theorem 6.1] that one can infer straight
from the construction of f : X → A1 the existence a finite base extension Spec(L) → Spec(K) for which the
surface Xη ×Spec(K) Spec(L) carries an A1-fibration ρ : Xη ×Spec(K) Spec(L) → P1

L defined over the field L.
A natural question is then to decide whether this phenomenon holds in general for families f : X → B of

A1-ruled affine surfaces parameterized by a smooth base curve B, namely, does the existence of A1-fibrations
on the general fibers of f imply the existence of one on the generic fiber of f , possibly after a finite exten-
sion of the base B ? A partial positive answer is given by Gurjar-Masuda-Miyanishi in [3, Theorem 3.8]
under the additional assumption that the general fibers of f carry A1-fibrations of affine type. The main
result in loc. cit. is derived from the study of log-deformations of suitable relative normal projective models
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f : (X,D) → B of X over B with appropriate boundaries D. It is established in particular that the structure
of the boundary divisor of a well chosen smooth projective completion of a general closed fiber Xs is stable
under small deformations, a property which implies in turn, possibly after a finite extension of the base B, the
existence of an A1-fibration of affine type on the generic fiber of f . This log-deformation theoretic approach
is also central in the related recent work of Flenner-Kaliman-Zaidenberg [2] on the classification of normal
affine surfaces with A1-fibrations of affine type up to a certain notion of deformation equivalence, defined
for families which admit suitable relative projective models satisfying Kamawata’s axioms of logarithmic
deformations of pairs [8]. The fact that the A1-fibrations under consideration are of affine type plays again
a crucial role and, in contrast with the situation considered in [3], the restrictions imposed on the families
imply the existence of A1-fibrations of affine type on their generic fibers.

Our main result (Theorem 6) consists of a generalization of the results in [3] to families f : X → S of
A1-ruled surfaces over an arbitrary normal base S, which also includes the case where a general closed fiber
Xs of f admits A1-fibrations of complete type only. In particular, we obtain the following positive answer to
Conjecture 6.2 in [3]:

Theorem. Let f : X → S be dominant morphism between normal complex algebraic varieties whose general
fibers are smooth A1-ruled affine surfaces. Then there exists a dense open subset S∗ ⊂ S, a finite étale
morphism T → S∗ and a normal T -scheme h : Y → T such that the induced morphism fT = prT : XT =
X ×S∗

T → T factors as

fT = h ◦ ρ : XT
ρ

−→ Y
h

−→ T,

where ρ : XT → Y is an A1-fibration.

In contrast with the log-deformation theoretic strategy used in [3], which involves the study of certain
Hilbert schemes of rational curves on well-chosen relative normal projective models f : (X,B) → S of X
over S, our approach is more elementary, based on the notion of Kodaira dimension [7] adapted to the case
of geometrically connected varieties defined over arbitrary base fields of characteristic zero. Indeed, the hy-
pothesis means equivalently that the general fibers of f have negative Kodaira dimension. This property is
in turn inherited by the generic fiber of f , which is a smooth affine surface defined over the function field of
S, thanks to a standard Lefschetz principle argument. Then we are left with checking that a smooth affine
surface X defined over an arbitrary base field k of characteristic zero and with negative Kodaira dimension
admits an A1-fibration, possibly after a suitable finite base extension Spec(k0) → Spec(k), a fact which fol-
lows immediately from finite type hypotheses and the aforementioned characterization of Miyanishi-Sugie [14].

The article is organized as follows. The first section contains a review of the structure of smooth affine
surfaces of negative Kodaira dimension over arbitrary base fields k of characteristic zero. We show in par-
ticular that every such surface X admits an A1-fibration after a finite extension of the base field k, and we
give criteria for the existence of A1-fibrations defined over k. These results are then applied in the second
section to the study of deformations f : X → S of smooth A1-ruled affine surfaces: after giving the proof
of the main result, Theorem 6, we consider in more detail the particular situation where the general fibers
of f : X → S are irrational. In this case, after shrinking S if necessary, we show that the morphism f
actually factors through an A1-fibration ρ : X → Y over an S-scheme h : Y → S which coincides, up to
birational equivalence, with the Maximally Rationally Connected quotient of a relative smooth projective
model f : X → S of X over S. The last section is devoted to the case of affine threefolds equipped with a
fibration f : X → B by irrational A1-ruled surfaces over a smooth base curve B: we explain in particular
how to construct an A1-fibration ρ : X → Y factoring f by means of a relative Minimal Model Program
applied to a smooth projective model f : X → B of X over B.

1. A1-ruledness of affine surfaces over non closed field

1.1. Logarithmic Kodaira dimension.

1.1.1. Let X be a smooth geometrically connected algebraic variety defined over a field k of characteristic zero.
By virtue of Nagata compactification [15] and Hironaka desingularization [5] theorems, there exists an open
immersion X →֒ (X,B) into a smooth complete algebraic variety X with reduced SNC boundary divisor B =
X \X . The (logarithmic) Kodaira dimension κ(X) of X is then defined as the Iitaka dimension [6] of the pair
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(X;ωX(logB)) where ωX(logB) = (detΩ1
X/k

)⊗OX(B). So letting R(X,B) =
⊕

m≥0 H
0(X,ωX(logB)⊗m),

we have κ(X) = tr. degk R(X,B) − 1 if H0(X,ωX(logB)⊗m) 6= 0 for sufficiently large m. Otherwise, if

H0(X,ωX(logB)⊗m) = 0 for every m ≥ 1, we set by convention κ(X) = −∞ and we say that κ(X) is
negative. The so-defined element κ(X) ∈ {0, . . . , dimkX} ∪ {−∞} is independent of the choice of a smooth
complete model (X,B) [7].

Furthermore, the Kodaira dimension of X is invariant under arbitrary extensions of the base field k.
Indeed, given an extension k ⊂ k′, the pair (Xk′ , Bk′) obtained by the base change Spec(k′) → Spec(k) is a
smooth complete model of Xk′ = X ×Spec(k) Spec(k

′) with reduced SNC boundary Bk′ . Furthermore letting

π : Xk′ → X be the corresponding faithfully flat morphism, we have ωXk′
(logBk′) ≃ π∗ωX(logB) and so

R(Xk′) ≃ R(X)⊗k k
′ by the flat base change theorem [4, Proposition III.9.3]. Thus κ(X) = κ(Xk′).

Example 1. The affine line A1
k is the only smooth geometrically connected non complete curve C with

negative Kodaira dimension. Indeed, let C be a smooth projective model of C and let Ck be the curve

obtained by the base change to an algebraic closure k of k. Since C is non complete, B = Ck \ Ck consists

of a finite collection of closed points p1, . . . ps, s ≥ 1, on which the Galois group Gal(k/k) acts by k-
automorphisms of Ck. Clearly, H0(Ck, ωC̄k

(logB)⊗m) 6= 0 unless Ck ≃ P1
k

and s = 1. Since p1 is then

necessarily Gal(k/k)-invariant, C \C consists of unique k-rational point, showing that C ≃ P1
k and C ≃ A1

k.

1.2. Smooth affine surfaces with negative Kodaira dimension.

Recall that by virtue of [14], a smooth affine surface X defined over an algebraically closed field of
characteristic zero has negative Kodaira dimension if and only if it is A1-ruled: there exists a Zariski dense
open subset U ⊂ X of the form U ≃ Z × A1 for a suitable smooth curve Z. In fact, the projection
prZ : U ≃ Z × A1 → Z always extends to an A1-fibration ρ : X → C over an open subset C of a
smooth projective model Z of Z. This characterization admits the following straightforward generalization
to arbitrary base fields of characteristic zero:

Theorem 2. Let X be a smooth geometrically connected affine surface defined over a field k of characteristic
zero. Then the following are equivalent:

a) The Kodaira dimension κ(X) of X is negative.
b) For some finite extension k0 of k, the surface Xk0

contains an open subset U ≃ Z × A1
k0

for some
smooth curve Z defined over k0.

c) There exists a finite extension k0 of k and an A1-fibration ρ : Xk0
→ C0 over a smooth curve C0 defined

over k0.

Proof. Clearly c) implies b) and b) implies a). To show that a) implies c), we observe that letting k be
an algebraic closure of k, we have κ(Xk) = κ(X) < 0. It then follows from the aforementioned result of
Miyanishi-Sugie [14] that Xk admits an A1-fibration q : Xk → C over a smooth curve C, with smooth

projective model C. Since Xk and C are of finite type over k, there exists a finite extension k ⊂ k0 such that

q : Xk → C is obtained from a morphism ρ : Xk0
→ C0 to a smooth projective curve C0 defined over k0 by

the base extension Spec(k) → Spec(k0). By virtue of Example 1, ρ : Xk0
→ C0 is an A1-fibration. �

Examples of smooth affine surfaces X of negative Kodaira dimension without any A1-fibration defined over the
base field but admitting A1-fibrations of complete type after a finite base extension were already constructed
in [1]. The following example illustrates the fact that a similar phenomenon occurs for A1-fibrations of affine
type, providing in particular a negative answer to Problem 3.13 in [3].

Example 3. Let B ⊂ P2
k = Proj(k[x, y, z]) be a smooth conic without k-rational points defined by a quadratic

form q = x2 + ay2 + bz2, where a, b ∈ k∗, and let X ⊂ P3
k = Proj(k[x, y, z, t]) be the smooth quadric surface

defined by the equation q(x, y, z) − t2 = 0. The complement X ⊂ X of the hyperplane section {t = 0} is
a k-rational smooth affine surface with κ(X) < 0, which does not admit any A1-fibration ρ : X → C over
a smooth, affine or projective curve C. Indeed, if such a fibration existed then a smooth projective model
of C would be isomorphic to P1

k; since the fiber of ρ over a general k-rational point of C is isomorphic to

A1
k, its closure in X would intersect the boundary X \ X ≃ B in a unique point, necessarily k-rational, in

contradiction with the choice of B.
In constrast, for a suitable finite extension k ⊂ k′, the surface Xk′ becomes isomorphic to the complement

of the diagonal in Xk′ ≃ P1
k′ × P1

k′ and hence, it admits at least two distinct A1-fibrations over P1
k′ , induced
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by the restriction of the first and second projections from Xk′ . Furthermore, since Xk′ is isomorphic to
the smooth affine quadric in A3

k′ = Spec(k′[u, v, w]) with equation uv − w2 = 1, it also admits two distinct
A1-fibrations over A1

k′ , induced by the restrictions of the projections pru and prv.

1.3. Existence of A1-fibrations defined over the base field.

1.3.1. The previous example illustrates the general fact that if X is a smooth geometrically connected affine
surface with κ(X) < 0 which does not admit any A1-fibration, then there exists a finite extension k′ of k such
that Xk′ admits at least two A1-fibrations of the same type, either affine or complete, with distinct general
fibers. Indeed, by virtue of Theorem 2, there exists a finite extension k0 of k such that Xk0

admits an A1-
fibration ρ : Xk0

→ C. Let k′ be the Galois closure of k0 in an algebraic closure of k and let ρk′ : Xk′ → Ck′

be the A1-fibration deduced from ρ. If ρk′ : Xk′ → Ck′ is globally invariant under the action of the Galois
group Gal(k′/k) on Xk′ , in the sense that for every Φ ∈ Gal(k′/k) considered as a Galois automorphism of
Xk′ there exists a commutative diagram

Xk′

Φ
→ Xk′

ρk′ ↓ ↓ ρk′

Ck′

ϕ
→ Ck′

for a certain k′-automorphism ϕ of Ck′ , then we would obtain a Galois action of Gal(k′/k) on Ck′ for which
ρk′ : Xk′ → Ck′ becomes an equivariant morphism. Since Ck′ is quasi-projective and ρ′k is affine, it would

follow from Galois descent that there exists a curve C̃ defined over k and a morphism q : X → C̃ defined
over k such that ρk′ : Xk′ → Ck′ is obtained from q by the base change Spec(k′) → Spec(k). Since by virtue
of Example 1 the affine line does not have any nontrivial form, the generic fiber of q would be isomorphic to
the affine line over the field of rational functions of C̃ and so, q : X → C̃ would be an A1-fibration defined
over k, in contradiction with our hypothesis. So there exists at least an element Φ ∈ Gal(k′/k) considered as
a k-automorphism of Xk′ such that the A1-fibrations ρk′ : Xk′ → Ck′ and ρk′ ◦ ϕ : Xk′ → Ck′ have distinct
general fibers.

Arguing backward, we obtain the following useful criterion:

Proposition 4. Let X be a smooth geometrically connected affine surface with κ(X) < 0. If there exists a
finite Galois extension k′ of k such that Xk′ admits a unique A1-fibration ρ′ : Xk′ → Ck′ up to composition
by automorphisms of Ck′ , then ρ′ : Xk′ → Ck′ is obtained by base extension from an A1-fibration ρ : X → C
defined over k.

Corollary 5. A smooth geometrically connected irrational affine surface X has negative Kodaira dimension
if and only if it admits an A1-fibration ρ : X → C over a smooth irrational curve C defined over the base
field k. Furthermore for every extension k′ of k, ρk′ : Xk′ → Ck′ is the unique A1-fibration on Xk′ up to
composition by automorphisms of Ck′ .

Proof. Uniqueness is clear since otherwise Ck′ would be dominated by a general fiber of another A1-fibration
on Xk′ , and hence would be rational, implying in turn the rationality of X . By virtue of Theorem 2, there
exists a finite Galois extension k′ of k and an A1-fibration ρ′ : Xk′ → C′ over a smooth curve C′. The latter
is irrational as X is irrational, which implies that ρ′ : Xk′ → C′ is the unique A1-fibration on Xk′ . So ρ′

descend to an A1-fibration ρ : X → C over a smooth irrational curve C defined over k. �

2. Families of A1-ruled affine surfaces

2.1. Existence of étale A1-cylinders. This subsection is devoted to the proof of the following:

Theorem 6. Let X and S be normal algebraic varieties defined over a field k of infinite transcendence degree
over Q, and let f : X → S be a dominant affine morphism with the property that for a general closed point
s ∈ S, the fiber Xs is a smooth geometrically connected affine surface with negative Kodaira dimension. Then
there exists an open subset S∗ ⊂ S, a finite étale morphism T → S∗ and a normal T -scheme h : Y → T such
that fT = prT : XT = X ×S∗

T → T factors as

fT = h ◦ ρ : XT
ρ

−→ Y
h

−→ T

where ρ : XT → Y is an A1-fibration.
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Proof. Shrinking S if necessary, we may assume that S is affine, that f : X → S is smooth and that κ(Xs) < 0
for every closed point s ∈ S. It is enough to show that the fiber Xη of f over the generic point η of S is
geometrically connected, with negative Kodaira dimension. Indeed, if so, then by Theorem 2 above, there
exists a finite extension L of K = Frac(Γ(S,OS)) and an A1-fibration ρ : Xη ×Spec(K) Spec(L) → C onto a
smooth curve C defined over L. Letting T be the normalization of S in L and shrinking T again if necessary,
we obtain a finite étale morphism T → S such that the generic fiber of prT : XT → T is isomorphic to the
A1-fibered surface ρ : Xη ×Spec(K) Spec(L) → C and then the assertion follows from Lemma 7 below.

Since X and S are affine and of finite type over k, there exists a subfield k0 of k of finite transcendence
degree over Q, and a smooth morphism f0 : X0 → S0 of k0-varieties such that f : X → S is obtained
from f0 : X0 → S0 by the base extension Spec (k) → Spec(k0). The field K0 = Frac(Γ(S0,OS0

)) has finite
transcendence degree over Q and hence, it admits a k0-embedding ξ : K0 →֒ k. Letting (X0)η0

be the fiber
of f0 over the generic point η0 : Spec(K0) → S0 of S0, the composition Γ(S0,OS0

) →֒ K0 →֒ k induces a
k-homomorphism Γ(S0,OS0

)⊗k0
k → k defining a closed point s : Spec(k) → Spec(Γ(S0,OS0

)⊗k0
k) = S of

S for which obtain the following commutative diagram

Xs

��⑧⑧
⑧
⑧
⑧
⑧
⑧
⑧

��

// X

��⑧⑧
⑧
⑧
⑧
⑧
⑧
⑧

f

��

(X0)η0

//

��

X0

f0

��

Spec(k)

ξ∗

��⑧⑧
⑧
⑧
⑧
⑧
⑧

s
// S //

��⑧⑧
⑧
⑧
⑧
⑧
⑧
⑧

Spec(k)

��⑧⑧
⑧
⑧
⑧
⑧
⑧

Spec(K0)
η0

// S0
// Spec(k0)

The bottom square of the cube being cartesian by construction, we deduce that

(X0)η0
×Spec(K0) Spec(k) ≃ X0 ×S0

Spec(k) ≃ X ×S Spec(k) = Xs.

Since by assumption, Xs is geometrically connected with κ(Xs) < 0, we conclude that (X0)η0
is geometrically

connected and has negative Kodaira dimension. This implies in turn that Xη is geometrically connected and
that κ(Xη) < 0 as desired. �

In the proof of the above theorem, we used the following lemma:

Lemma 7. Let f : X → S be a dominant affine morphism between normal varieties defined over a field k of
characteristic zero. Then the following are equivalent:

a) The generic fiber Xη of f admits an A1-fibration q : Xη → C over a smooth curve C defined over the
fraction field K of S.

b) There exists an open subset S∗ of S and a normal S∗-scheme h : Y → S∗ of relative dimension 1 such
that the restriction of f to V = f−1(S∗) factors as f |V = h ◦ ρ : V → Y → S∗ where ρ : V → Y is an
A1-fibration.

Proof. If b) holds then letting L be the fraction field of Y , we have a commutative diagram

Vξ = Xξ → Vη = Xη → V
↓ ρξ ↓ ρη ↓ ρ

Spec(L)
ξ
→ C = Yη → Y

↓ hη ↓ h

Spec(K)
η
→ S∗

in which each square is cartesian. It follows that hη : C → Spec(K) is a normal whence smooth curve
defined over K and that ρη : Xη → C is an A1-fibration. Conversely, suppose that Xη admits an A1-

fibration q : Xη → C and let C be a smooth projective model of C over K. Then there exists an open

subset S0 of S and a projective S0-scheme h : Y → S0 whose generic fiber is isomorphic to C. After
shrinking S0 if necessary, the rational map ρ : V 99K Y of S0-schemes induced by q becomes a morphism and
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we obtain a factorization f |V = h ◦ ρ. By construction, the generic fiber Vξ of ρ : V → Y is isomorphic to

V ×Y Spec(L) ≃ (V ×Y C)×C Spec(L) ≃ Xη×CSpec(L) ≃ A1
L since V ×Y C ≃ Vη ≃ Xη and ρ : Xη → C →֒ C

is an A1-fibration. So ρ : V → Y is an A1-fibration. �

Example 8. Let R = C[s±1, t±1], S = Spec(R) and let D be the relatively ample divisor in P2
S =

ProjR(R[x, y, z]) defined by the equation x2 + sy2 + tz2 = 0. The restriction h : X = P2
S \ D → S of

the structure morphism defines a family of smooth affine surfaces with the property that for every closed
point s ∈ S, Xs is isomorphic to the complement in P2

C
of the smooth conic Ds. In particular Xs admits

a continuum of pairwise distinct A1-fibrations Xs → A1
C
, induced by the restrictions to Xs of the rational

pencils on P2
C

generated by Ds and twice its tangent line at an arbitrary closed point ps ∈ Ds. On the other
hand the fiber of D over the generic point η of S is a conic without C(s, t)-rational point in P2

C(s,t) and hence,

we conclude by a similar argument as in Example 3 that Xη does not admit any A1-fibration defined over
C(s, t). Therefore there is no open subset S∗ of S over which h can be factored through an A1-fibration.

2.2. Deformations of irrational A1-ruled affine surfaces.

In this subsection, we consider the particular situation of a flat family f : X → S over a normal variety
S whose general fibers are irrational A1-ruled affine surfaces. A combination of Corollary 5 and Theorem 6
above implies that if f : X → S is smooth and defined over a field of infinite transcendence degree over Q,
then the generic fiber Xη of f is A1-ruled. Equivalently, there exists an open subset S∗ ⊂ S and a normal
S∗-scheme h : Y → S∗ such that the restriction of f to X∗ = X ×S S∗ factors through an A1-fibration
ρ : X∗ → Y (see Lemma 7). The restriction of ρ to the fiber of f over a general closed point s ∈ S0 is an
A1-fibration ρs : Xs → Ys over the normal, whence smooth, curve Ys. Since Xs is irrational, Ys is irrational,
and so ρs : Xs → Ys is the unique A1-fibration on Xs up to composition by automorphisms of Ys. So in
this case, we can identify ρs : Xs → Ys with the Maximally Rationally Connected fibration (MRC-fibration)
ϕ : Xs 99K Ys of a smooth projective model Xs of Xs in the sense of [11, IV.5]: recall that ϕ is unique,
characterized by the property that its general fibers are rationally connected and that for a very general point
y ∈ Ys any rational curve in Xs which meets Xy is actually contained in Xy. The A1-fibration ρ : X∗ → Y

can therefore be re-interpreted as being the MRC-fibration of a relative smooth projective model X of X
over S.

Reversing the argument, general existence and uniqueness results for MRC-fibrations allow actually to get
rid of the smoothness hypothesis of a general fiber of f : X → S and to extend the conclusion of Theorem 6
to arbitrary base fields of characteristic zero. Namely, we obtain the following characterization:

Theorem 9. Let X and S be normal varieties defined over a field k of characteristic zero and let f : X → S
be a dominant affine morphism with the property that for a general closed point s ∈ S, the fiber Xs is
irrational and A1-ruled. Then there exists an open subset S∗ and a normal S∗-scheme h : Y → S∗ such that
the restriction of f to X∗ = X ×S S∗ factors as

f |X∗
= h ◦ ρ : X∗

ρ
−→ Y

h
−→ S∗

where ρ : X∗ → Y is an A1-fibration.

Proof. Shrinking S if necessary, we may assume that for every closed point s ∈ S, Xs is irrational and
A1-ruled, hence carrying a unique A1-fibration πs : Xs → Cs over an irrational normal curve Cs. Since
f : X → S is affine, there exists a normal projective S-scheme X → S and an open embedding X →֒ X of
schemes over S. Letting W → X be a resolution of the singularities of X , we may assume up to shrinking
S again if necessary that W → S is a smooth morphism. We let j : X 99K W be the birational map of
S-schemes induced by the embedding X →֒ X. By virtue of [11, Theorem 5.9], there exists an open subset
W ′ of W , an S-scheme h : Z → S and a proper morphism q : W ′ → Z such that for every s ∈ S, the
induced rational map qs : Ws 99K Zs is the MRC-fibration for Ws. On the other hand, since Ws is a smooth
projective model of Xs, the induced rational map πs : Xs 99K Cs is the MRC-fibration for Ws. Consequently,
for a general closed point z ∈ Z with h(z) = s, the fiber Wz of qs, which is an irreducible proper rational
curve contained in Ws, must coincide with the closure of the image by j of a general closed fiber of πs. The
latter being isomorphic to the affine line A1

κ over the residue field κ of the corresponding point of Cs, we
conclude that there exists an affine open subset U of X on which the composition q ◦ j : U → Z is a well
defined morphism with general closed fibers isomorphic to affine lines over the corresponding residue fields.
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So q ◦ j : U → Z is an A1-fibration bu virtue of [9]. The generic fiber of f : X → S is thus A1-ruled and the
assertion follows from Lemma 7 above. �

Example 10. Let h : Y → S be smooth family of complex projective curves of genus g ≥ 2 over a normal
affine base S et let TY/S be the relative tangent sheaf of h. Since by Riemman-Roch H0(Ys, TY/S,s) = 0

and dimH1(Ys, TY/S,s) = g − 1 for every point s ∈ S, h∗TY/S,s = 0, R1gh∗TY/S is locally free of rank g − 1

[4, Corollary III.12.9] and so, H1(Y, TY/S) ≃ H0(S,R1h∗TY/S) by the Leray spectral sequence. Replacing

S by an open subset, we may assume that R1h∗TY/S admits a nowhere vanishing global section σ. Via

the isomorphism H1(Y, TY/S) ≃ Ext1Y (OY , TY/S), we may interpret this section as the class of a non trivial
extension 0 → TY/S → E → OY → 0 of locally free sheaves over Y . The inclusion TY/S → E defines a section

D of the locally trivial P1-bundle ρ : X = Proj(SymOY
E∨) → Y and the non vanishing of σ guarantees that

D is the support of an S-ample divisor. Indeed the S-ampleness of D is equivalent to the property that
for every s ∈ S the induced section Ds of the P1 -bundle ρs : Xs → Ys over the smooth projective curve
Ys is ample. Since by construction, ρs |Xs\Ds

: Xs \ Ds → Ys is a nontrivial torsor under the line bundle

Spec(SymT ∨
Ys
) → Ys, it follows that Ds intersects positively every section D of ρs except maybe Ds itself.

On the other hand, we have (D2
s) = − deg TYs

= 2g(Ys)− 2 > 0, and so the ampleness of Ds follows from the
Nakai-Moishezon criterion and the description of the cone effective cycles on an irrational projective ruled
surface given in [4, Proposition 2.20-2.21].

Letting X = X \D, we obtain a smooth family

f = g ◦ ρ |X : X
ρ|X
−→ Y

h
→ S

where ρ |X : X → Y is nontrivial, locally trivial, A1-bundle such that for every s ∈ S, Xs is an affine surface
with an A1-fibration ρs : Xs → Ys of complete type.

In contrast with the previous example, the following proposition shows in particular that if the total space
of a family of irrational A1-ruled affine surfaces f : X → S has finite divisor class group, then the induced
A1-fibration on a general fiber of f : X → S is of affine type.

Proposition 11. Let X be a geometrically integral normal variety with finite divisor class group Cl(X) and
let f : X → S be a dominant affine morphism to a normal variety S with the property that for a general closed
point s ∈ S, the fiber Xs is irrational and A1-ruled, say with unique A1-fibration πs : Xs → Cs. Then there
exists an effective Ga,S-action on X such that for a general closed point s ∈ S, the A1-fibration πs : Xs → Cs

factors through the algebraic quotient ρs : Xs → Xs//Ga,s = Spec(Γ(Xs,OXs
)Ga,s).

Proof. Let f |X∗
= h ◦ ρ : X∗

ρ
−→ Y

h
−→ S∗ be as in Theorem 9. Since ρ is an A1-fibration, there exists

an affine open subset U ⊂ Y such that ρ−1(U) ≃ U × A1 as schemes over U . Since ρ−1(U) is affine, its
complement in X is of pure codimension 1, and the finiteness of Cl(X) implies that it is actually the support of
an effective principal divisor divX(a) for some a ∈ Γ(X,OX). Letting ∂0 be the locally nilpotent derivation of
Γ(ρ−1(U),OX) ≃ Γ(X,OX)a corresponding to the Ga,U -action by translations on the second factor, the finite
generation of Γ(X,OX) guarantees that for a suitably chosen n ≥ 0, an∂0 lifts to a locally nilpotent derivation
∂ of Γ(X,OX). By construction, the restriction of f to the dense open subset ρ−1(U) of X is invariant under
the corresponding Ga-action, and so f : X → S is Ga-invariant. For a general closed point s ∈ S, the
induced Ga-action on Xs is nontrivial, and its algebraic quotient ρs : Xs → Xs//Ga = Spec(Γ(Xs,OXs

)Ga)
is a surjective A1-fibration over a normal affine curve Xs//Ga. Since Cs is irrational, the general fibers of ρs
and πs must coincide. It follows that πs is Ga-invariant, whence factors through ρs. �

3. Affine threefolds fibered in irrational A1-ruled surfaces

In this section we consider in more detail the case of normal complex affine threefolds X admitting a
fibration f : X → B by irrational A1-ruled surfaces, over a smooth curve B. We explain how to derive the
variety h : Y → B for which f factors through an A1-fibration ρ : X → Y from a relative minimal model
program applied to a suitable projective model of X over B. In the case where the divisor class group of X
is finite, we provide a complete classification of such fibrations in terms of additive group actions on X .
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3.1. A1-cylinders via relative Minimal Model Program.

Let X be a normal complex affine threefold and let f : X → B be a flat morphism onto a smooth curve
B with the property that a general closed fiber Xb of f is an irreducible irrational A1-ruled surface. We let
f : W → B be a smooth projective model of X over B obtained from an arbitrary normal relative projective
completion X →֒ X of X over B by resolving the singularities. We let j : X 99K W be the birational map
induced by the open immersion X →֒ X.

By applying a minimal model program for W over B, we obtain a sequence of birational B-maps

W = W0
ϕ1

99K W1
ϕ2

99K W2 99K · · · 99K Wℓ−1
ϕℓ

99K Wℓ = W ′,

between B-schemes f i : Wi → B, where ϕi : Wi 99K Wi+1 is either a divisorial contraction or a flip, and
the rightmost variety W ′ is the output of a minimal model program over B. The hypotheses imply that W ′

has the structure of a Mori conic bundle ρ : W ′ → Y over a B-scheme h : Y → B corresponding to the
contraction of an extremal ray of NE(W ′/B). Indeed, a general fiber of f being a birationaly ruled projective
surface, the output W ′ is not a minimal model of W over B. So W ′ is either a Moric conic bundle over a
B-scheme Y of dimension 2 or a del Pezzo fibration over B, the second case being excluded by the fact that
the general fibers of f are irrational.

Proposition 12. The induced map ρ = ρ |X : X 99K Y is a rational A1-fibration.

Proof. Since a general closed fiber Xb is a normal affine surface with an A1-fibration πb : Xb → Cb over
a certain irrational smooth curve Cb, it follows that there exists a unique maximal affine open subset Ub

of Cb such that π−1
b (Ub) ≃ Ub × A1 and such that the rational map jb : π−1

b (Ub) 99K Wb induced by j is

regular, inducing an isomorphism between π−1
b (Ub) and its image. Each step ϕi : Wi 99K Wi+1 consists of

either a flip whose flipping and flipped curves are contained in fibers of f i : Wi → B and f i+1 : Wi+1 → B

respectively, or a divisorial contraction whose exceptional divisor is contained in a fiber of f i : Wi → B, or a
divisorial contraction whose exceptional divisor intersects a general fiber of f i : Wi → B. Clearly, a general
closed fiber of f i : Wi → B is not affected by the first two types of birational maps. On the other hand, if
ϕi : Wi → Wi+1 is the contraction of a divisor Ei ⊂ Wi which dominates B, then a general fiber of ϕi |Ei

is a smooth proper rational curve. The intersection of Ei with a general closed fiber Wi,b of f i thus consists
of proper rational curves, and its intersection with the image of the maximal affine cylinder like open subset
π−1
b (Ub) of Xb is either empty or composed of affine rational curves. Since Ub is an irrational curve, it follows

that each irreducible component of Ei∩ (π−1
b (Ub)) is contained in a fiber of πb. This implies that there exists

an open subset Ub,0 of Ub with the property that for every i = 1, . . . , ℓ, the restriction of ϕi ◦ · · · ◦ ϕ1 ◦ j to

π−1
b (Ub,0) ⊂ Xb is an isomorphism onto its image in Wi,b. A general fiber of ρ : W ′ → Y over a closed point

y ∈ Y being a smooth proper rational curve, its intersection with π−1
h(y)(Uh(y),0) viewed as an open subset of

W ′
h(y), is thus either empty or equal to a fiber of πh(y). So by virtue of [9], there exists an open subset V of

X on which ρ restricts to an A1-fibration ρ |V : V → Y . �

Corollary 13. Let X be a normal complex affine threefold X equipped with a morphism f : X → B onto a
smooth curve B whose general closed fibers are irrational A1-ruled surfaces. Then X is birationaly equivalent
to the product of P1 with a family h0 : C0 → B0 of smooth projective curves of genus g ≥ 1 over an open
subset B0 ⊂ B.

Proof. By the previous Proposition, X has the structure of a rational A1-fibration ρ : X 99K Y over a 2-
dimensional normal proper B-scheme h : Y → B. In particular, X is birational to Y × P1. On the other
hand, for a general closed point b ∈ B, the curve Yb is birational to the base Cb of the unique A1-fibration
πb : Xb → Cb on the irrational affine surface Xb. Letting σ : Ỹ → Y be a desingularization of Y , there exists
an open subset B0 of B over which the composition h ◦ σ : Ỹ → Y restricts to a smooth family h0 : C0 → B0

of projective curves of a certain genus g ≥ 1. By construction, X is birational to C0 × P1. �

Remark 14. Example 10 above shows conversely that for every smooth family h : C → B of projective curves
of genus g ≥ 2, there exists a smooth A1-ruled affine threefold X birationaly equivalent to C × P1. Actually,
in the setting of the previous Corollary 13, if we assume further that a general fiber of f : X → B carries
an A1-fibration πb : Xb → Cb over a smooth curve Cb whose smooth projective model has genus g ≥ 2,
then there exists a uniquely determined family h : C → B of proper stable curves of genus g such that X is
birationaly equivalent to C × P1: indeed, the moduli stack Mg of stable curves of genus g ≥ 2 being proper
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and separated, the smooth family h0 : C0 → B0 extends in a unique way to a family h : C → B of stable
curves of genus g.

3.2. Factorial threefolds.

Proposition 15. Let X be a normal affine threefold with finite divisor class group Cl(X) and let f : X → B
be a morphism onto a smooth curve B whose general closed fibers are irrational A1-ruled surfaces. Then
there exists a factorisation f = h ◦ ρ : X → Y → B where ρ : X → Y is the algebraic quotient morphism of
an effective Ga,B-action on X. In particular, a general fiber of f admits an A1-fibration of affine type.

Proof. By virtue of Proposition 11, there exist an effective Ga,B-action on X such that for a general closed
point b ∈ B, the A1-fibration πb : Xb → Cb on Xb factors through the algebraic quotient ρb : Xb → Xb//Ga,b =
Spec(Γ(Xb,OXb

)Ga,b). Since X is a threefold, the ring of invariants Γ(X,OX)Ga,B is finitely generated [16].
The quotient morphism ρ : X → Y = Spec(Γ(X,OX)Ga,B ) is an A1-fibration, and since Y is a categorical
quotient in the category of algebraic varieties, the invariant morphism f : X → B factors through ρ. �

Corollary 16. Let f : A3 → B be a morphism onto a smooth curve B with irrational A1-ruled general fibers.
Then B is isomorphic to either P1 or A1 and there exists a factorization f = h ◦ ρ : A3 → A2 → B, where
ρ : A3 → A2 is the quotient morphism of an effective Ga,B-action on A3.

Proof. Since B is dominated by a general line in A3, it is necessarily isomorphic to P1 or A1. The second
assertion follows from Proposition 15 and the fact that the algebraic quotient of every nontrivial Ga-action
on A3 is isomorphic to A2 [13]. �

Example 17. In Corollary 16 above, the base curve B need not be affine. For instance, the morphism

f : A3 = Spec(C[x, y, z]) −→ P1, (x, y, z) 7→ [((xz − y2)x2 + 1 : (xz − y2)3]

defines a family whose general member is isomorphic to the product Cλ ×A1 where Cλ ⊂ A2 = Spec(C[xz −
y2, x]) is the affine elliptic curve with equation (xz− y2)3+λ((xz− y2)x2+1) = 0. The subring C[xz− y2, x]
of C[x, y, z] coincides with the ring of invariants of the Ga-action associated with the locally nilpotent C[x]-
derivation x∂y + 2y∂z and f is the composition of the quotient morphism ρ : A3 → A2 = A3//Ga =
Spec(C[u, v]), (x, y, z) 7→ (xz − y2, x) and the morphism h : A2 = Spec(C[u, v]) → P1, (u, v) 7→ [uv2 + 1 : u3].

Corollary 16 above implies in particular that a general fiber of a regular function f : A3 → A1 cannot
be an irrational surface equipped with an A1-fibration of complete type only. In contrast, regular functions
f : A3 → A1 whose general fibers are rational and equipped with A1-fibrations of complete type only do
exist, as illustrated by the following example.

Example 18. Let f = x3 − y3 + z(z + 1) ∈ C[x, y, z] and let f : A3 = Spec(C[x, y, z]) → A1 = Spec(C[λ])
be the corresponding morphism. The closure Sλ in P3 = Proj(C[x, y, z, t]) of a general fiber Sλ = f∗(λ) of f
is a smooth cubic surface which intersects the hyperplane H∞ = {t = 0} along the union Bλ of three lines
meeting at the Eckardt point p = [0 : 0 : 1 : 0]. Thus Sλ is rational and a direct computation reveals that
κ(Sλ) = −∞. So by virtue [14], Sλ admits an A1-fibration πλ : Sλ → Cλ over a smooth rational curve Cλ. If
Cλ was affine, then there would exist a non trivial Ga-action on Sλ having the general fibers of πλ as general
orbits. But it is straightforward to check that every automorphism of Sλ considered as a birational self-map
of Sλ is in fact a biregular automorphism of Sλ preserving the boundary Bλ. So the automorphism group
of Sλ injects into the group Aut(Sλ, Bλ) of automorphisms of the pair (Sλ, Bλ). The latter being a finite
group, we conclude that no such Ga-action exists, and hence that Sλ only admits A1-fibrations of complete
type. An A1-fibration πλ : Sλ → P1 can be obtained as follows: letting Bλ = L1 ∪ L2 ∪ L3, L1 is a member
of a 6-tuple of pairwise disjoint lines whose simultaneous contraction realizes Sλ as a blow-up σ : Sλ → P2

of P2 in such a way that σ(L2) and σ(L3) are respectively a smooth conic and its tangent line at the point
p = σ(L1). The birational transform πλ : Sλ 99K P1 on Sλ of the pencil generated by σ(L2) and 2σ(L3)
restricts to an A1-fibration πλ : Sλ → P1 with two degenerate fibers: an irreducible one, of multiplicity two,
consisting of the intersection with Sλ of the unique exceptional divisor of σ whose center is supported on
σ(L3)\{p}, and a smooth one consisting of the intersection with Sλ of the four exceptional divisors of σ with
centers supported on σ(L2) \ {p}.
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