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Active and Passive Particles: Modeling Beads in a Bacterial Bath

Guillaume Grégoire,! Hugues Chaté,! and Yuhai Tu?
! CEA — Service de Physique de I’Etat Condensé, Centre d’Etudes de Saclay, 91191 Gif-sur-Yvette, France
2IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA

A simple model for the motion of passive particles in a bath of active, self-propelled ones is
introduced. It is argued that this approach provides the correct framework within which to cast the
recent experimental results obtained by Wu and Libchaber for the diffusive properties of polystyrene
beads displaced by bacteria suspended in a two-dimensional fluid film. Our results suggest that
superdiffusive behavior should indeed be generically observed in the transition region marking the

onset of collective motion.

Recently, Wu and Libchaber (WL) reported on a
fascinating experiment in which bacteria move freely
within a two-dimensional fluid film seeded with passive
polystyrene beads [1]. They monitored the motion of
these beads as an indirect way to study the dynamics
of the bacteria as the beads are believed to be pushed
around by the bacteria. Indeed, estimating the mean-
square displacement of the beads from recorded trajec-
tories, WL found that the average bead velocity is sev-
eral orders of magnitude larger than thermal fluctuations,
confirming the action of bacteria on beads. WL discov-
ered further that fluctuations of the beads’ trajectory
are not purely diffusive, and that, instead, they follow
superdiffusion ((r?) ~ t® with 1.5 < a < 2) below some
crossover time and length scales t., £. beyond which nor-
mal diffusion (a = 1) is recovered. They interpret these
scales as characteristic of the structures (swirls, jets) that
emerge from the collective motion of the bacteria, and
use, to fit the experimental data, a Langevin equation
for the bead motion with a force term correlated in time
over the crossover scale t.. At a quantitative level, WL
found that t., 4., and the asymptotic diffusion constant
D = Llim;_, d(r?)/dt all increase linearly with the bac-
teria density p.

This experiment is characteristic of the general sit-
uation in which passive localized tracers are displaced
by the motion of active, self-propelled objects — an
individual-based version of the passive scalar problem
in hydrodynamics (see ref. [2] and references therein).
(Indeed, the collective dynamics of large populations of
active “boids” [3] was recently shown to be governed by
a specific “hydrodynamic” equation [4].) Here, we in-
troduce simple models for this general problem but our
main goal remains to obtain a qualitatively-faithful, ro-
bust, and coherent description of the WL experiment. As
a matter of fact, the interpretation proposed by Wu and
Libchaber to explain their results suffers from two main
problems: first, the Langevin framework predicts ballis-
tic behavior (¢ = 2) at short scales, at odds with the
nontrivial exponents recorded in the experiment. Sec-
ond, no attempt is made to explain how/why the typical
scales of the collective motion of the bacteria change with
their density.

Detailing the conclusions briefly exposed in [5], we

argue below that an appropriate theoretical framework
for the WL experiment is that provided by the “self-
propelled XY spin” or boid models studied recently [6,4]
complemented by a collection of passive beads. These
models allow to measure simultaneously both boid and
bead dynamics. We show first that under very general
assumptions, the beads reproduce the diffusive properties
of individual bacteria. We then argue that the variation
of crossover scales observed by WL corresponds to the
onset of long-range orientational order proven recently
to exist in minimal models for collective motion. In this
framework, crossover scales are expected to diverge at the
critical point and true anomalous diffusion at all scales
is then observed.

The paper is organized as follows: in Section I we re-
call current knowledge about the basic models for col-
lective motion and introduce one such model adapted to
the modeling of the bacterial bath of WL. We also discuss
how to implement the motion of passive beads within this
model. Section II is devoted to a presentation of the re-
sults obtained with our model for the diffusive properties
of both active boids and passive beads. Section III con-
tains conclusions, perspectives, and a general discussion
of the relevance of our modeling to the WL experiment.

I. A SIMPLE MODEL
A. Vicsek’s core model

The core of the systems studied below is the model
introduced by Vicsek et al [6] in which pointwise parti-
cles labeled by i (the boids) move synchronously at dis-
crete timesteps by a fixed distance vg along a direction
#;. This angle is calculated from the current velocities of
all boids j within an interaction range rg, reflecting the
only “force” at play, a tendency to align with neighboring
boids:

0 =arg | > 7| +néi, (1)
jrvi
where @ is the velocity vector of magnitude vy along

direction 6; and &' is a delta-correlated white noise



(& € [-m,7]). Fixing rog = 1, the time step dt = 1 and
choosing, without loss of generality, a value vy < rodt,
Vicsek et al studied the behavior of this simple model
in the two dimensional parameter space formed by the
noise strength 1 and p, the boid density. They found, at
large p and/or small 7, the existence of an ordered phase
characterized by:

V = <|<ﬁzt)z|>t > 05

i.e. a domain of parameter space in which the boids move
collectively. (We used the notation (.), for the average
over all the boids, and (.), for the average over time.)

This ordered phase was later studied analytically [4]
via a continuous model for the coarse-grained boid ve-
locity and density. The existence of a broken-symmetry,
collective motion state was proven, even in two space di-
mensions (the case of interest for WL’s experiment) and
its characteristic scaling exponents were calculated ex-
actly in this last case by renormalisation group analysis.

Vicsek et al devoted most of their effort to studying
the transition to the ordered phase [6]. They found nu-
merically a continuous transition characterized by scaling
laws and they tried to estimate the corresponding set of
critical exponents.
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FIG. 1. Variant of Vicsek’s core model with repulsive body

force between boids, with vo = 0.3, 8y = 2.5, Ry, = 0.127, and
n = 0.5. Variation of the average velocity amplitude V' with
boid density p in a square domain of linear size L = 128 with
periodic boundary conditions. Inset: same but with noise
implemented as in Eq. (4) (system of linear size L = 32.)

B. A variant

In order to introduce passive beads displaced by the
self-propelled boids, we need to give all these objects a
finite size (i.e. they cannot be point particles anymore).
One of the simplest ways to do so is to add a repulsive
body force between boids acting on a typical scale Ry,
thus interpreted as the “radius” of circular boids. Equa-
tion (1) is then replaced by

ot =arg |3 (348, 55) [ +mel, @

gri

where 3; is a parameter controlling the relative impor-
tance of the two “forces” and, for example,

B —1
B=-(1ren(E-2)) &

with r;; the distance between boids ¢ and j, and €&;; the
unit vector along the segment going from i to j.

Such a variant of Vicsek’s original core model is not
expected to show qualitatively different behavior. A first
check can be found in Fig. 1 which shows the variation of
V' as the boid density is increased across p*, the critical
value for collective motion.

We have also tested other types of noise term in the
model. In particular, considering the noise as the uncer-
tainty with which each boid “evaluates” the force exerted
on itself by neighboring boids leads to change Eq. (2) to:

01 = arg | Y (3 + B iy +née) 4

jri

where €¢ is a unit vector of random orientation. This
choice of noise typically makes the transition sharper (the
critical region is confined to a rather small window of pa-
rameter space) (inset of Fig. 1). We mostly considered,
in the following, the noise term as prescribed in Vicsek’s
original model, in part because, in the framework pro-
posed below for interpreting WL experiments, the critical
region appears to be rather spread out.
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FIG. 2. Two boids setting a bead in motion (interaction
rule A). The trajectories of two boids coming from the left
(open circles) and of the initially immobile bead (filled cir-
cles) are represented. Also shown are the actual size of the
objects at the time when the boids are about to leave the
bead.
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FIG. 3. Short-time trajectories of boids (thin lines) and beads (thick lines) below (a) (p = 2.0), at (b)(p = p* = 4.75) , and
above (c)(p = 8.0) the critical density p*. In each picture, 230 boid and 20 bead trajectories are shown , during 60 time steps
and they were recorded every three steps. System size L = 32, 8, = B, = 1.0, bead radius Rp = 0.381, interaction case A,

other parameters as in Fig. 1.

C. Passive beads

The beads of WL’s experiment can be modeled by cir-
cular objects of radius Rg which have no intrinsic velocity
nor inertia: they remain immobile when isolated. This is
in agreement with the experimental observation by WL
that bead’s motion is strongly damped by the ambient
viscous fluid [1].
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FIG. 4. Probability distribution function of bead veloci-
ties. The noisier curve is the pdf of the displacements over 3
timesteps. Inset: logarithm of the same pdfs revealing their
exponential tail. Boid density p = 2.5, other parameters as
in Fig. 3.

The simplest interaction of beads with boids and/or
other beads is hard-core repulsion. Such contacts should
happen when the current positions of neighboring objects
imply an overlap of the circles of radius Ry, or Rp charac-
terizing them. A bead of label ¢ with a neighboring object
(boid or bead) j of radius R; such that r;; < Rg + R;
will be displaced from ¢ to ¢t + 1 by a vector

Gij = pij (rij — (BB + R;j)) €; - (5)

Here we have introduced “reduced mass” u;; which con-
trols the relative mobility of the different particles and
which takes the value pupp = 0.5 for a collision between
two beads, and upp for a collision between a bead and
a boid. (For symmetry reasons, a similar displacement
will also be exerted on boids by their neighboring beads
whenever r;; < Ry, + Rp, with the corresponding reduced
mass pp = 1 — [1Bp.)

At a coarse-grained level, bead motion is affected by
two fluids : the highly-viscous, ambient physical fluid
and the “biological fluid” formed by bacteria. Besides
collision, an extra interaction between beads and bacte-
ria can be understood as an “entrainment” force exerted
on the beads by the local flow of boids. This can be de-
cribed by the “local bacteria velocity” felt by bead i. In
order to account for the fact that closer boids contribute
more to this local velocity, each boid’s contribution can
be weighted by the bead/boid overlap, leading to follow-
ing expression for the local bacteria velocity felt by the
bead i:

1 Tij
7oc = — § 1_$> T; 6
TN ( Rs+Ry) """ (©)

boids j
rij < R + Ry

where N; is the number of neighboring boids overlapping
with the bead <.

The bead motion is driven by the flow of bacteria, but
it is also damped by the viscous physical fluid. In the
overdamped limit, the velocity of the beads can be sim-
ply written as proportional to the weighted local mean

: Hloc.
velocity 7;°¢:

T = Bue (7)
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FIG. 5. Mean (a) and rms (b) bead velocity amplitude (not
to be confused with the order parameter V!) for case A (dia-
monds), case B (squares), and case C (circles). Boid density
p = 2.5, other parameters as in Fig. 3.

where, §j is a constant depending on the fluid viscos-
ity and the strength of the adhesion between bacteria and
the beads (or the friction between beads and the bactia
flow) which controls the relative importance of hard-core
repulsion and entrainment effect.

To summarize:
e A boid ¢ moves over a distance vy along the direction:

:

where 8, controls the relative influence of the collision
with beads.
e The position of bead i is updated, in one timestep, by
its velocity:

Gi= Y Befij +BrBC. 9)
boids, beads j
r;; < R + R;

D. Parameters

In this work, we have chosen, whenever possible, pa-
rameter values consistent with those of WL. For those
model parameters that can not be extracted directly from
the experiment, we have chosen numbers that are rea-
sonable. While further experiments are highly desirable
in determining these parameters, at a qualitative level,
most of the results we present below are insensitive to
the precise choice of these parameters.

Our two main parameters, like in Vicsek’s core model,
are the boid density p and the noise strength . However,
following the WL experiment, we vary mostly p, keeping

0§+1 = arg Z (17; + By fij) + Z BeGij | +m 'ff ) n constant. The bead density is always chosen very small
boids j beads j (e.g. of the order of 1% of p), so that these objects are
Tig <To rij < Ro + Ra indeed tracers with no influence on the collective modes
(8) of motion. Consequently, beads have a negligible effect
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FIG. 6. Typical behavior of (r?)/t vs logt just below threshold (p = 2.0, 2.50 and 3.0, from bottom up) for boids (dashed
lines) and beads (solid lines). (a) interaction case A, (b) interaction case B, (c) interaction case C. Other parameters as in

Fig. 3.

reduced mass ftBs entrainment ro| dt| vo| Re | RB | Bf| Bg| Br| 0 p size
A 0 yes 1.0| 1.0| 0.3| 0.127| 0.381| 2.5| 1.0| 1.0| 0.5 [0;10] | [32;256]
B 0.5 yes TABLE II. Parameters of the current simulations
C 0.5 no

TABLE I. Cases of bead-boid interactions considered



on boids (the second sum in (8)), and bead-bead inter-
actions (in the first sum of (9)) are rare.

To insure realistic, quasi-continuous trajectories of
boids (and beads), the default velocity vy has to be sub-
stantially smaller than the interaction range ry which is
set to 7o = 1 for simplicity. Velocity vy cannot however,
be taken too small, for reasons of numerical efficiency. In
the following, vg = 0.3.

The geometrical parameters Ry,, Rp reflect those of the
WL experiment: the bacteria are elongated cells roughly
1x 2-3 pm, whereas spherical beads of diameter 5-10 pm
were used. Here we chose, accordingly, Ry, = 0.127 and
Rp = 0.381.

Below, we present results on three cases corresponding
to various interaction rules (Table ). In case A, we take
upy = 0 (in agreement with the mass difference between
bacteria and beads in WL’s experiment), so that beads
are only displaced by the entrainment force. Case C is
the opposite case where the entrainment force is set to
zero and ppp = 0.5. Case B is intermediate, with both
forces present and pupp = 0.5 also.

Finally, the remaining coefficients tuning the rela-
tive importance of the various “forces” involved were
kept fixed at the following reasonable (order 1) values:
B = 2.5, g = 1.0, f = 1.0. (For a summary, see
Table )

FIG. 7. (%omparison of bzad effective diffusion time
T = Dg[v?,,, for interaction rule A (diamonds), B (squares),
and C (circles). Inset: ratio of the three bead diffusion times
over the boid diffusion time 7, = Dy/vo>. Parameters as in
Fig. 3.

E. Typical behavior

Figure 2 illustrates how beads are displaced by neigh-
boring boids. In this particular sequence extracted from
a typical run, two boids with correlated trajectories en-
counter an (immobile) bead and set it in motion until
they “flow” passed it. Clearly, the bead trajectory, at
this “microscopic” scale, already reflects boids motion.

On a larger scale, Fig. 3 shows short-time trajectories
of all boids for three different densities, below, at, and
above p*, the critical value for collective boid motion.
This representation allows for a clear visualization of the
onset of collective motion. In the critical region (Fig.3b),
one distinguishes mesoscopic scale structures and large
local density fluctuations. Also represented are the cor-
responding trajectories of the beads present in this sim-
ulation. One can check that they approximately follow
the neighboring boid motion.

Whereas the distribution of the amplitude of boid ve-
locities is somewhat meaningless in our model (all boids
move with velocity vp), the distribution of the amplitude
of instantaneous bead velocities is non-trivial.It is found
to be peaked at a value{|ug|) of the order of vg. Its tail
is roughly exponential — with, of course a finite cut-off
scale due to the existence of a maximum possible dis-
placement in one timestep (Fig. 4).

The mean and the rms values show different behavior
for the different interaction cases (fig. 5). For cases B and
C, these quantities increase with p. This is probably due
to the fact that the displacement due to collision (present
in these two cases since upp, = 0.5) is additive. At any
rate, all cases are consistent with WL measurements of
the bead rms velocity variations (30%).
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FIG. 8. Bead rms velocity (normalized by vg) vs inverse
bead diameter (normalized by boid radius) for interaction
case A. Inset: same but for case B (squares) and case C (cir-
cles) Boid density p = 2.5, other parameters as in Fig. 3.

II. DIFFUSION PROPERTIES OF BOIDS AND
BEADS

We now report on numerical investigations of bead
and boid diffusive properties using the simple model de-
scribed above. We essentially measured the order param-
eter V and the mean-square displacement (r?) as a func-
tion of time in the stationary regime following random
initial conditions. Below the collective motion onset, we
expect the asymptotic behavior of boids to show normal



diffusion (@ = 1), whereas ballistic behavior (o = 2)
should be observed in the ordered phase for p > p*.
Around the critical point, intermediate, superdiffusive
behavior crossing over to either normal diffusion (p < p*)
or ballistic motion ((p > p*) is observed.
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FIG. 9. Same as Fig. 8 but for the bead diffusion constant
Dg.

Fig. 6 shows typical results just below threshold.
A first observation, valid for all cases, is that boids
and beads exhibit identical diffusive properties up to
a shift in the asymptotic diffusion constant D =
ilimtHOO d(r?)/dt. Note that this shift is largely arbi-
trary since, for beads, Dp depends on the various con-
stants involved in the interaction rules. In fact, the varia-
tion of Dy and (|vg|) with p or 1 depends on the interac-
tion rules chosen —in particular, on the relative impor-
tance of the mobility during a collision. However, their
ratio, i.e. the diffusion time 7o = Dpg/{|ug|)? remains
roughly of the same order of magnitude (Fig. 7), irre-
spective of the bead-boid interaction rule chosen. How-

ever, the three curves diverge from one to another when
approaching the critical point. Case A is the bead/boid
interaction choice which makes boid and bead diffusive
behavior most similar (inset of Fig. 7), but, anyway, all
cases reveal the divergence of the diffusion constant near
the critical point.

A. Influence of bead radius

Wu and Libchaber report on experiments done with
beads of two different diameters, and they observed that
the bead diffusion constant D decreases with increasing
Rpg, in a manner compatible with the Stokes-Einstein re-
lation, i.e. D o 1/R. Here, our model allows to check
in more detail whether this relation holds. Figs. 8 and
9 show that both the diffusion constant D and the rms
velocity do vary like 1/R for the interaction rule A. This
confirms the relevance of a Stokes-Einstein-like law and
gives more weight to the remark made by WL about the
lack of equipartition of energy probably due to the role of
hydrodynamic interactions [1]. However, for cases B and
C, the above relationships are not verified, suggesting fur-
ther that the “best” modeling choice, i.e. the most con-
sistent with WL’s experiment, is the interaction rule A
(insets of Figs. 8 and 9).

B. Defining crossover scales

Keeping the bead radius Rp constant, we now report
on the behavior of our model when p, the density of boids,
approaches the critical value p*. In order to quantify the
variation of crossover scales seen in Fig. 6, the Ansatz
proposed by WL in their Langevin dynamics approach
cannot be used since it cannot account for a true superdif-
fusive behavior, but only for a crossover from ballistic to
diffusive motion.
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FIG. 10. Comparison of bead (diamonds) and boid (triangles) cross-over quantities for interaction rule A as the boid density

p is varied.
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FIG. 11. Same as Fig. 10 but for interaction rules B (squares) and C (circles).

Thus we introduce the following ad-hoc Ansatz for the
mean square displacement of both boids and beads:

4Dt

(r*)(t) ~ (OEETR

(10)
This equation does interpolate between a superdiffusive
behavior (a > 1) at short times and a standard diffu-
sive behavior at long times, the crossover time ¢, being
explicitly defined. All our data is very well fitted with
Eq.(10).

A crossover lengthscale £. can then be defined as the
mean displacement at time .. Using (10), one has

2 =2Dt, .

The recorded crossover time ¢. is identical for boids and
beads (Figs. 10a and 11a) whereas the crossover length
and diffusion constant are different but vary similarly.
In fact, the observed difference in the crossover length
L. disappears once /. is normalized by the mean veloc-
ity (i.e. wo for boids and (|v|) for beads) (Figs. 10b and
11b). Similarly, normalizing D by (|v|)?, yields diffusion
constants of the same order of magnitude for boids and
beads (Figs. 10c and 11c).

C. Discussion

In their experiment, WL found that the crossover
scales of the bead diffusive properties vary roughly lin-
early with the bacteria density. Within the framework
of our model (and all Vicsek-like models), however, the
crossover scales of both boid and bead behavior all di-
verge when approaching the critical boid density p*, leav-
ing pure superdiffusive behavior at threshold (Fig. 12).

We believe this discrepancy is only due to the fact that
WL effectively probed a domain of variation of bacteria
density rather far from the critical point. Indeed, the
maximal value of £, they report is of the order of the size

of their beads. Our data for the crossover scales, when
limited to such a range, can actually also be fitted rather
well by a linear dependence.

Similarly, WL’s observation that the rms velocity of
beads is independent of the bacteria density and their
subsequent linking of this to the observed proportion-
ality of ¢, and t. presumably only hold in the restricted
off-critical range of densities they scanned. The data pro-
vided by our model rather reveal, consistently with the
idea of a critical point at p = p*, an algebraic relationship
between t. and £, in the critical region (Fig. 12). Indeed,
as Fig. 13 shows, we observe ¢, ~ £X with x ~ 1.4 for
boids and beads, whatever the interaction rule chosen.
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FIG. 12. oPure superczliffusive behivior at thr6eshold as
recorded from the mean square displacement of boids.
L, =L, =256, p=2,n" =0.385, Bf = 2.5, R, = 0.127.
A transient of 2'7 timesteps was observed before averaging
during 45 loops of 3000 time steps for 1024 boids. The criti-
cal noise strength n* was given by the preliminary results of
an ongoing finite-size scaling analysis. A fit by a power-law
yields an exponent a ~ 1.65(5). The precise value of « in
the asymptotic limit as well as its universality are currently
under investigation [7].



III. CONCLUSION AND PERSPECTIVES

We have introduced a simple model for the motion of
passive beads in a noisy bath of active “boids” interact-
ing only locally. While our primary aim was to perform
an analysis similar to that of WL experiment, our ap-
proach is rather general and our results very robust. At
a qualitative level, they are largely independent of the
choice of parameters, precise form of interaction forces,
etc. Our approach also shows explicitly that the origin
of the crossover scales observed by WL from the bead
motion are identical to the typical scales of the collective
motion of bacteria/boids.

Ioglo(tc)
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FIG. 13. Log-log plot of the crossover time as a function
of the crossover length for boids (triangles) and beads with
interaction rules A (diamonds), B (squares), and C (circles).

The robustness of our model’s properties and the over-
all good agreement between our observations and those
of WL make us confident that the framework put for-
ward here is the relevant one to describe experiments of
that kind. In particular, our conclusions indicate that
true superdiffusive motion (and not simple ballistic mo-
tion) of both bacteria and passive bead tracers is present,
and that this should become more easily observable ex-
perimentally as the density of bacteria is increased. New

experiments in this direction are thus desirable, since the
observation of superdiffusive behavior over a large range
of scales would definitely rule out the possibility of a
simple crossover from a short scale behavior (due to in-
dividual bacterium motion) to normal diffusion.

At a quantitative level, no precise agreement can be
expected from the approach taken here. Indeed, many of
the bacteria bath properties are still unknown, and their
precise translation into features of models such as ours
remains impossible [8]. However, the vicinity of the (ex-
pected) threshold of long-range collective motion should
allow for quantitative comparison. Indeed, in the spirit
of critical phenomena studies, the scaling laws attached
to the critical point are expected to be universal. In this
respect, an experimental evaluation of the exponent «
and its comparison with its value as determined from an-
alytical or numerical studies would be most interesting.
Ongoing work aims at the determination of reliable esti-
mates for the set of critical exponents characterizing the
transition to collective motion [7].
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