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BOUNDS ON THE DEFICIT IN THE LOGARITHMIC SOBOLEV

INEQUALITY

S. G. BOBKOV, N. GOZLAN, C. ROBERTO AND P.-M. SAMSON

Abstract. The deficit in the logarithmic Sobolev inequality for the Gaussian measure is

considered and estimated by means of transport and information-theoretic distances.

1. Introduction

Let γ denote the standard Gaussian measure on the Euclidean space Rn, thus with density

dγ(x)

dx
=

1

(2π)n/2
e−|x|2/2

with respect to the Lebesgue measure. (Here and in the sequel |x| stands for the Euclidean
norm of a vector x ∈ Rn.) One of the basic results in the Gaussian Analysis is the celebrated
logarithmic Sobolev inequality

(1.1)

∫

f log f dγ −
∫

f dγ log

∫

f dγ ≤ 1

2

∫ |∇f |2
f

dγ,

holding true for all positive smooth functions f on Rn with gradient ∇f . In this explicit
form it was obtained in the work of L. Gross [G], initiating fruitful investigations around
logarithmic Sobolev inequalities and their applications in different fields. See e.g. a survey
by M. Ledoux [L1] and the books [L2,A] for a comprehensive account of such activities up to
the end of 90’s. One should mention that in an equivalent form – as a relation between the
Shannon entropy and the Fisher information, (1.1) goes back to the work by A. J. Stam [St],
see [A, Chapter 10].

The inequality (1.1) is homogeneous in f , so the restriction
∫

f dγ = 1 does not lose

generality. It is sharp in the sense that the equality is attained, namely for all f(x) = el(x)

with arbitrary affine functions l on Rn (in which case the measures µ = fγ are still Gaussian).
It is nevertheless of a certain interest to realize how large the difference between both sides
of (1.1) is. This problem has many interesting aspects. For example, as was shown by E.
Carlen in [C], which was perhaps a first address of the sharpness problem, for f = |u|2 with
a smooth complex-valued u such that

∫

|u|2 dγ = 1, (1.1) may be strengthened to
∫

|u|2 log |u|2 dγ +

∫

|Wu|2 log |Wu|2 dγ ≤ 2

∫

|∇u|2 dγ,

where W denotes the Wiener transform of u. That is, a certain non-trivial functional may
be added to the left-hand side of (1.1).
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One may naturally wonder how to bound from below the deficit in (1.1), that is, the
quantity

δ(f) =
1

2

∫ |∇f |2
f

dγ −
[
∫

f log f dγ −
∫

f dγ log

∫

f dγ

]

,

in terms of more explicit, like distribution-dependent characteristics of f showing its closeness
to the extremal functions el (when δ(f) is small). Recently, results of this type have been
obtained by A. Cianchi, N. Fusco, F. Maggi and A. Pratelli [C-F-M-P] in their study of the
closely related isoperimetric inequality for the Gaussian measure. The work by E. Mossel
and J. Neeman [M-N] deals with dimension-free bounds for the deficit in one functional form
of the Gaussian isoperimetric inequality appearing in [B]. See also the subsequent paper by
R. Eldan [E] where almost tight two-sided robustness bounds have been derived. In [F-M-
P1,Se] the authors deal with quantitative Brunn-Minkowski inequality (which is related to
the isoperimetric problem in Euclidean space), while bounds on the deficit in the Sobolev
inequalities can be found in e.g. [F-M-P2,D-T] and in the Gagliardo-Nirenberg-Sobolev in-
equality in [C-F] (see also the references therein for more on the literature).

As for (1.1), one may also want to involve distance-like quantities between the measures
µ = fγ and γ. This approach looks even more natural, when the logarithmic Sobolev
inequality is treated as the relation between classical information-theoretic distances as

(1.2) D(X|Z) ≤ 1

2
I(X|Z).

To clarify this inequality, let us recall standard notations and definitions. If random vectors
X and Z in Rn have distributions µ and ν with densities p and q, and µ is absolutely
continuous with respect to ν, the relative entropy of µ with respect to ν is defined by

D(X|Z) = D(µ|ν) =
∫

p(x) log
p(x)

q(x)
dx.

Moreover, if p and q are smooth, one defines the relative Fisher information

I(X|Z) = I(µ|ν) =
∫

∣

∣

∣

∇p(x)
p(x)

− ∇q(x)
q(x)

∣

∣

∣

2
p(x) dx.

Both quantities are non-negative, and although non-symmetric in (µ, ν), they may be viewed
as strong distances of µ to ν. This is already demonstrated by the well-known Pinsker
inequality [P], connecting D with the total variation norm:

D(µ|ν) ≥ 1

2
‖µ− ν‖2TV.

In the sequel, we mainly consider the particular case where Z is standard normal, so that
ν = γ in the above formulas. And in this case, as easy to see, for dµ = f dγ with

∫

f dγ = 1,
the logarithmic Sobolev inequality (1.1) turns exactly into (1.2).

The aim of this note is to develop several lower bounds on the deficit in this inequality,
1
2 I(X|Z) −D(X|Z), by involving also transport metrics such as the quadratic Kantorovich
distance (see e.g. [V])

W2(X,Z) =W2(µ, γ) = inf
π

(

∫∫

|x− z|2 dπ(x, z)
)1/2

(where the infimum runs over all probability measures on Rn×Rn with marginals µ and γ).
More generally, one may consider the optimal transport cost

T (X,Z) = T (µ, γ) = inf
π

∫∫

c(x− z) dπ(x, z)

for various “cost” functions c(x− z).
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The metric W2 is of weak type in the sense that it metrizes the weak topology in the space
of probability measures on Rn (under proper moment constraints). It may be connected with
the relative entropy by virtue of M. Talagrand’s transport-entropy inequality

(1.3) W2(X,Z)
2 ≤ 2D(X|Z),

cf. [T]. In view of (1.2), this also gives an apriori weaker transport-Fisher information in-
equality

(1.4) W2(X,Z) ≤
√

I(X|Z).
In formulations below, we use the non-negative convex function

∆(t) = t− log(1 + t), t > −1,

and denote by Z a random vector in Rn with the standard normal law.

Theorem 1.1. For any random vector X in Rn with a smooth density, such that I(X|Z)
is finite,

(1.5) I(X|Z)− 2D(X|Z) ≥ n∆
(I(X)

n
− 1
)

.

Moreover,

(1.6) I(X|Z) − 2D(X|Z) ≥
(
√

I(X|Z)−W2(X,Z)
)2

+ n∆

(

W2(X,Z)
√

I(X|Z)

(I(X)

n
− 1
)

)

.

As is common,

I(X) =

∫ |∇p(x)|2
p(x)

dx

stands for the usual (non-relative) Fisher information. Thus, (1.5)-(1.6) represent certain
sharpenings of the logarithmic Sobolev inequality. The lower bounds of the deficit in (1.5)
and (1.6) are not simply comparable. However, in the next section, we recall that (1.5) is a
self improvement of the logarithmic Sobolev inequality that obviously follows from (1.6).

An interesting feature of the bound (1.6) is that, by removing the last term in it, we arrive
at the Gaussian case in the so-called HWI inequality due to F. Otto and C. Villani [O-V],

(1.7) D(X|Z) ≤W2(X,Z)
√

I(X|Z)− 1

2
W 2

2 (X,Z).

As for (1.5), its main point is that, when E |X|2 ≤ n, then necessarily I(X) ≥ n, and
moreover, one can use the lower bound

1

n
I(X) − 1 =

1

n
I(X|Z)− 1

n
E |X|2 + 1 ≥ 1

n
I(X|Z).

Since ∆(t) is increasing for t ≥ 0, (1.5) is then simplified to

(1.8) I(X|Z)− 2D(X|Z) ≥ n∆
( 1

n
I(X|Z)

)

.

In fact, this estimate is rather elementary in that it surprisingly follows from the logarithmic
Sobolev inequality itself by virtue of rescaling (as will be explained later on). Here, let us
only stress that the right-hand side of (1.8) can further be bounded from below. For example,
by (1.2)-(1.3), we have

I(X|Z)− 2D(X|Z) ≥ n∆
( 2

n
D(X,Z)

)

≥ n∆
( 1

n
W 2

2 (X,Z)
)

.
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But, 1
n W

2
2 (X,Z) ≤ 1

n E |X − Z|2 ≤ 4, and using ∆(t) ∼ t2

2 for small t, the above yields a
simpler bound.

Corollary 1.2. For any random vector X in Rn with a smooth density and such that
E |X|2 ≤ n, we have

(1.9) I(X|Z)− 2D(X|Z) ≥ c

n
W 4

2 (X,Z),

up to an absolute constant c > 0.

Remark. Dimensional refinements of the HWI inequality (1.7) similar to (1.6) were
recently considered by several authors. For instance, F-Y. Wang obtained in [W] some
HWI type inequalities involving the dimension and the quadratic Kantorovich distance un-
der the assumption that the reference measure enjoys some curvature dimension condition
CD(−K,N) with K ≥ 0 and N ≥ 0 (see [B-E] for the definition). See also the recent paper
[E-K-S] for dimensional variants of the HWI inequality in an abstract metric space framework.
The standard Gaussian measure does not enter directly the framework of [W] (or [E-K-S]),
but we believe that it might be possible to use similar semigroup arguments to derive (1.6).
In the same spirit, D. Bakry, F. Bolley and I. Gentil [B-B-G] used semigroup techniques to
prove a dimensional reinforcement of Talagrand’s transport-entropy inequality.

Returning to (1.9), we note that, after a certain recentering of X, one may give some
refinement over this bound, especially when D(X|Z) is small. Given a random vector X in
Rn with finite absolute moment, define the recentered random vector X̄ = (X̄1, . . . , X̄n) by
putting X̄1 = X1 −EX1 and

X̄k = Xk −E (Xk|X1, . . . ,Xk−1), k ≥ 2,

where we use standard notations for the conditional expectations.

Theorem 1.3. For any random vector X in Rn with a smooth density, such that I(X|Z)
is finite, the deficit in (1.2) satisfies

(1.10)
1

2
I(X|Z)−D(X|Z) ≥ c

T 2(X̄, Z)

D(X̄ |Z) .

Here the optimal transport cost T corresponds to the cost function ∆(|x− z|), c is a positive
absolute constant and one uses the convention 0/0 = 0 in the right hand side.

In particular, in dimension one, if a random vector X has mean zero, we get that

(1.11)
1

2
I(X|Z) −D(X|Z) ≥ c

T 2(X,Z)

D(X|Z) .

The bound (1.10) allows one to recognize the cases of equality in (1.2) – this is only possible
when the random vector X is a translation of the standard random vector Z (an observation
of E. Carlen [C] who used a different proof). The argument is sketched in Appendix C.

It is worthwhile noting that the transport cost T of Theorem 1.3 already appeared in the
literature, cf. e.g. [B-G-L] or [B-K]. In particular, it was shown in [B-G-L] that this transport
cost can be used to give an alternative representation of the Poincaré inequality. In fact, it
may be connected with the classical Kantorovich transport distance W1 based on the cost
function c(x, z) = |x− z|. More precisely, due to the convexity of ∆, there are simple bounds

W1(X,Z) ≥ T (X,Z) ≥ ∆(W1(X,Z)) ∼ min{W1(X,Z),W
2
1 (X,Z)}.
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Hence, if D(X̄ |Z) ≤ 1, then according to (1.3), W 2
1 (X,Z) ≤ W 2

2 (X,Z) ≤ 2, and (1.10) is
simplified to

(1.12)
1

2
I(X|Z)−D(X|Z) ≥ c′

W 4
1 (X̄, Z)

D(X̄|Z) ,

for some other absolute constant c′.
In connection with such bounds, let us mention a recent preprint by E. Indrei and D.

Marcon [I-M], which we learned about while the current work was in progress. For a C2-
smooth function V on Rn, let us denote by V ′′(x) the matrix of second partial derivatives of
V at the point x. We use comparison of symmetric matrices in the usual matrix sense and
denote by In the identity n× n matrix.

It is proved in [I-M] (Theorem 1.1 and Corollary 1.2) that, if a random vector X on Rn

has a smooth density p = e−V satisfying ε In ≤ V ′′ ≤M In (0 < ε < M), then

(1.13)
1

2
I(X|Z)−D(X|Z) ≥ cW 2

2 (X −EX,Z)

with some constants c = c(ε,M). In certain cases it is somewhat stronger than (1.11). We
will show that a slight adaptation of our proof of (1.11) leads to a bound similar to (1.13).

Theorem 1.4. Let X be a random vector in Rn with a smooth density p = e−V with
respect to Lebesgue measure such that V ′′ ≥ ε In, for some ε > 0. Then, the deficit in (1.2)
satisfies

(1.14)
1

2
I(X|Z) −D(X|Z) ≥ c min(1, ε)W 2

2 (X̄, Z),

for some absolute constant c.

Note that Theorem 1.4 holds under less restrictive assumptions on p than the result from
[I-M]. In particular, in dimension 1, we see that the constant c in (1.13) can be taken inde-
pendent on M . In higher dimensions however, it is not clear how to compare W2(X̄, Z) and
W2(X −EX,Z) in general. One favorable case is, for instance, when the distribution of X is
unconditional (i.e., when its density p satisfies p(x) = p(ε1x1, . . . , εnxn), for all x ∈ Rn and
all εi = ±1). In this case, EX = 0 and X̄ = X, and thus (1.14) reduces to (1.13) with a
constant c independent on M .

Let us mention that in Theorem 1.3 of [I-M], the assumption V ′′ ≤ M In can be relaxed
into an integrability condition of the form

∫

‖V ′′‖r dx ≤ M , for some r > 1, but only at the
expense of a constant c depending on the dimension n and of an exponent greater than 2 in
the right-hand side of (1.13).

Finally, let us conclude this introduction by showing optimality of the bounds (1.11), (1.12),
(1.14) for mean zero Gaussian random vectors with variance close to 1. An easy calculation
shows that, if Z is a standard Gaussian random vector in Rn, then for any σ > 0,

D(σZ|Z) = n

2

(

(σ2 − 1)− 2 log σ
)

, I(σZ|Z) = nσ2
( 1

σ2
− 1
)2
,

so that

1

2
I(X|Z)−D(X|Z) =

n

2

( 1

σ2
− 1 + 2 log σ

)

∼ n(σ − 1)2, as σ → 1.

On the other hand,

W 2
2 (σZ,Z) = n(σ − 1)2, W1(σZ,Z) = |σ − 1|E |Z| ≃ |σ − 1|

√
n,
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and thus the three quantities W 2
2 (σZ,Z), T 2(σZ,Z)/D(σZ|Z) andW 4

1 (σZ,Z)/D(σZ|Z) are
all of the same order n(σ − 1)2, when σ goes to 1.

The paper is organized in the following way. In Section 2 we recall Stam’s formulation of
the logarithmic Sobolev inequality in the form of an “isoperimetric inequality for entropies”
and discuss the involved improved variants of (1.1). Theorem 1.1 is proved in Section 3.
In Section 4 we consider sharpened transport-entropy inequalities in dimension one, which
are used to derive bounds on the deficit like those in (1.11)-(1.14). For general dimensions
Theorems 1.3 and 1.4 are proved in Section 5. For the reader’s convenience and so as to get a
more self-contained exposition, we move to Appendices several known results and arguments.

2. Self-improvement of the logarithmic Sobolev inequality

To start with, let us return to the history and remind the reader Stam’s information-
theoretic formulation of the logarithmic Sobolev inequality. As a base for the derivation, one
may take (1.2) and rewrite it in terms of the Fisher information I(X) and the (Shannon)
entropy

h(X) = −
∫

p(x) log p(x) dx,

where X is a random vector in Rn with density p. Here the integral is well-defined, as long
as X has finite second moment. Introduce also the entropy power

N(X) = exp{2h(X)/n},
which is a homogeneous functional of order 2. The basic connections between the relative
and non-relative information quantities are given by

D(X|Z) = h(Z)− h(X), I(X|Z) = I(X) − I(Z),

where Z has a normal distribution, and provided that E |X|2 = E |Z|2.
More generally, assuming that Z is standard normal and E |X|2 < ∞, the first above

equality should be replaced with

D(X|Z) = −h(X) +E
(n

2
log(2π) +

|X|2
2

)

,

while, as was mentioned before, under mild regularity assumptions on p,

I(X|Z) = I(X) +E |X|2 − 2n.

Inserting these expressions into the inequality (1.2), the second moment is cancelled, and
(1.2) becomes

I(X) + 2h(X) ≥ 2n + n log(2π).

However, this inequality is not homogeneous in X. So, one may apply it to λX in place of
X with arbitrary λ > 0 and then optimize. The function

v(λ) = I(λX) + 2h(λX) =
I(X)

λ2
+ n log λ2 + 2h(X)

is minimized for λ2 = I(X)/n, and at this point the inequality becomes:

Theorem 2.1 ([St]). If a random vector X in Rn has a smooth density and finite second
moment, then

(2.1) I(X)
N(X)

2πe
≥ n.
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This relation was first obtained by Stam and is sometimes referred to as the isoperimetric
inequality for entropies, cf. e.g. [D-C-T]. Stam’s original argument is based on the general
entropy power inequality

(2.2) N(X + Y ) ≥ N(X) +N(Y ),

which holds for all independent random vectors X and Y in Rn with finite second moments
(so that the involved entropies do exist, cf. also [Bl], [Li]). Then, (2.1) can be obtained by
taking Y =

√
t Z with Z having a standard normal law and combining (2.2) with the de

Bruijn identity

(2.3)
d

dt
h(X +

√
t Z) =

1

2
I(X +

√
t Z) (t > 0).

Note that in the derivation (1.2) ⇒ (2.1) the argument may easily be reversed, so these
inequalities are in fact equivalent (as noticed by E. Carlen [C]). On the other hand, the
isoperimetric inequality for entropies can be viewed as a certain sharpening of (1.1)-(1.2).
Indeed, let us rewrite (2.1) explicitly as

(2.4)

∫

p(x) log p(x) dx ≤ n

2
log
( 1

2πen

∫ |∇p(x)|2
p(x)

dx
)

.

It is also called an optimal Euclidean logarithmic Sobolev inequality; cf. [B-L] for a de-
tail discussion including deep connections with dimensional lower estimates on heat kernel

measures. In terms of the density f(x) =
√
2πex

2/2p(x) of X with respect to γ we have
∫

p(x) log p(x) dx =
n

2
log

1

2π
− 1

2

∫

|x|2f(x) dγ(x) +
∫

f log f dγ,

while
∫ |∇p(x)|2

p(x)
dx =

∫ |∇f(x)|2
f(x)

dγ(x)−
∫

|x|2f(x) dγ(x) + 2n.

Inserting these two equalities in (2.4), we arrive at the following reformulation of Theorem
2.1.

Corollary 2.2. For any positive smooth function f on Rn such that
∫

f dγ = 1, putting

b = 1
n

∫

|x|2f(x) dγ(x), we have

(2.5)

∫

f log f dγ ≤ n

2
log
( 1

n

∫ |∇f |2
f

dγ + (2− b)
)

+
n

2
(b− 1),

which is exactly (1.5). In particular, if b ≤ 1,

(2.6)

∫

f log f dγ ≤ n

2
log
( 1

n

∫ |∇f |2
f

dγ + 1
)

.

An application of log t ≤ t − 1 on the right-hand side of (2.5) returns us to the original
logarithmic Sobolev inequality (1.1). It is in this sense that Inequality (2.5) is stronger,
although it was derived from (1.1). The point of self-improvement is that the log-value of

I =

∫ |∇f |2
f

dγ
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may be much smaller than the integral itself. This can be used, for example, in bounding the
deficit δ(f) in (1.1). Indeed, when b ≤ 1, (2.6) yields

2δ(f) ≥ I − n log
( 1

n
I + 1

)

.

That is, using again the function ∆(t) = t− log(t+ 1), we have

2δ(f) ≥ n∆
( 1

n

∫ |∇f |2
f

dγ
)

.

But this is exactly the information-theoretic bound (1.8), mentioned in Section 1 as a direct
consequence of (1.5).

As the function ∆ naturally appears in many related inequalities, let us collect together a
few elementary bounds that will be needed in the sequel.

Lemma 2.3. We have:

a) ∆(ct) ≥ min(c, c2)∆(t), whenever c, t ≥ 0;

b) ∆(t) ≥ 1
2 t

2, for all −1 < t ≤ 0;

c) ∆(t) ≥ ∆(a)
a2

t2, for all 0 ≤ t ≤ a (a > 0);

d) (1− log 2) min{t, t2} ≤ ∆(t) ≤ t, for all t ≥ 0.

Moreover, for any random variable ξ ≥ 0,

(1− log 2) min{Eξ, (Eξ)2} ≤ E∆(ξ) ≤ Eξ.

Proof. a) In case 0 ≤ c ≤ 1, the required inequality follows from the representation

∆(ct) =

∫ ct

0
∆′(s) ds =

∫ ct

0

s

1 + s
ds = c2

∫ t

0

u

1 + cu
du.

In case c ≥ 1, it becomes log(1 + ct) ≤ c log(1 + t), which is obvious.
b) This bound immediately follows from the Taylor expansion for the function − log(1−s).
c) It is easy to check that the function ∆(

√
x) is concave in x ≥ 0. Hence, the optimal

value of the constant c in ∆(t) ≥ ct2 on the interval [0, a] corresponds to the endpoint t = a.
d) For t ≥ 1, the first inequality becomes ct ≤ t − log(1 + t), where c = 1 − log 2. Both

sides are equal at t = 1, and we have inequality for the derivatives at this point. Hence, it
holds for all t ≥ 1. For the interval 0 ≤ t ≤ 1, the inequality ∆(t) ≥ ct2 is given in c).

Finally, an application of Jensen’s inequality with the convex function ∆ together with
∆(ξ) ≤ ξ leads to the last bounds of the lemma. �

3. HWI inequality and its sharpening

We now turn to the remarkable HWI inequality of F. Otto and C. Villani and state it in
full generality. Assume that the probability measure ν on Rn has density

dν(x)

dx
= e−V (x)

with a twice continuously differentiable V : Rn → R.
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Theorem 3.1 ([O-V]). Assume that V ′′(x) ≥ κ In for all x ∈ Rn with some κ ∈ R. Then,
for any probability measure µ on Rn with finite second moment,

(3.1) D(µ|ν) ≤W2(µ|ν)
√

I(µ|ν)− κ

2
W 2

2 (µ, ν).

This inequality connects together all three important distances: the relative entropy (which
sometimes is denoted by H), the relative Fisher information I, and the quadratic transport
distance W2. It may equivalently be written as

(3.2) D(µ|ν) ≤ 1

2ε
I(µ|ν) + ε− κ

2
W 2

2 (µ, ν)

with an arbitrary ε > 0. Taking here ε = κ, one gets

(3.3) D(µ|ν) ≤ 1

2κ
I(µ|ν).

If ν = γ, we arrive in (3.3) at the logarithmic Sobolev inequality (1.1) for the Gaussian
measure, and thus the HWI inequality represents its certain refinement. In particular, (3.1)
may potentially be used in the study of the deficit in (1.1), as is pointed in Theorem 1.1.

In the proof of the latter, we will use two results. The following lemma, reversing the
transport-entropy inequality, may be found in the survey by Raginsky and Sason [R-S],
Lemma 15. It is due to Y. Wu [Wu] who used it to prove a weak version of the Gaussian
HWI inequality (without the curvature term −1

2W
2
2 (X,Z) appearing in (1.7)). The proof of

Lemma 3.2 is reproduced in Appendix A.
For a random vector X in Rn with finite second moment, put

Xt = X +
√
t Z (t ≥ 0),

where Z is a standard normal random vector in Rn, independent of X.

Lemma 3.2. ([Wu]) Given random vectors X and Y in Rn with finite second moments,
for all t > 0,

D(Xt|Yt) ≤
1

2t
W 2

2 (X,Y ).

We will also need a convexity property of the Fisher information in the form of the Fisher
information inequality. As a full analog of the entropy power inequality (2.2), it was appar-
ently first mentioned by Stam [St].

Lemma 3.3. Given independent random vectors X and Y in Rn with smooth densities,

(3.4)
1

I(X + Y )
≥ 1

I(X)
+

1

I(Y )
.

Proof of Theorem 1.1. Let Z be standard normal, and let the distribution of X not be
a translation of γ (in which case both sides of (1.5) and of (1.6) are vanishing).

We recall that, if Y is a normal random vector with mean zero and covariance matrix σ2 In,
then

D(X|Y ) = h(Y )− h(X) +
1

2σ2
(

E |X|2 −E |Y |2
)

.
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In particular,

D(X|Z) = h(Z)− h(X) +
1

2

(

E |X|2 −E |Z|2
)

,

where E |Z|2 = n. Using de-Bruijn’s identity (2.3), d
dt h(Xt) =

1
2 I(Xt), we therefore obtain

that, for all t > 0,

D(Xt|Zt) = h(Zt)− h(Xt) +
1

2(1 + t)

(

E |Xt|2 −E |Zt|2
)

= h(Zt)− h(Xt) +
1

2(1 + t)

(

E |X|2 −E |Z|2
)

= (h(Z)− h(X)) +
1

2

∫ t

0
(I(Zτ )− I(Xτ )) dτ +

1

2(1 + t)

(

E |X|2 −E |Z|2
)

= D(X|Z) + 1

2

∫ t

0
(I(Zτ )− I(Xτ )) dτ −

t

2(1 + t)

(

E |X|2 −E |Z|2
)

.

Equivalently,

(3.5) D(X|Z) = D(Xt|Zt) +
1

2

∫ t

0
(I(Xτ )− I(Zτ )) dτ +

t

2(1 + t)

(

E |X|2 −E |Z|2
)

.

In order to estimate from above the last integral, we apply Lemma 3.3 to the couple (X,
√
τ Z),

which gives

I(Xτ ) ≤
1

1
I(X) +

1
I(
√
τ Z)

=
nI(X)

n+ τI(X)
.

Inserting also I(Zτ ) =
n

1+τ , we get
∫ t

0
(I(Xτ )− I(Zτ )) dτ ≤

∫ t

0

(

nI(X)

n+ τI(X)
− n

1 + τ

)

dτ

=
n

2
log

n+ tI(X)

n(1 + t)
.

Thus, from (3.5),

D(X|Z) ≤ D(Xt|Zt) +
n

2
log

n+ tI(X)

n(1 + t)
+

t

2(1 + t)

(

E |X|2 − n
)

.

Furthermore, an application of Lemma 3.2 together with the identity

E |X|2 − n = I(X|Z)− I(X) + n

yields

(3.6) D(X|Z) ≤ 1

2t
W 2

2 (X,Z) +
n

2
log

n+ tI(X)

n(1 + t)
+

t

2(1 + t)
(I(X|Z) − I(X) + n) .

As t goes to infinity in (3.6), we get in the limit

D(X|Z) ≤ 1

2
I(X|Z)− n

2
∆
(I(X)

n
− 1
)

,

which is exactly the required inequality (1.5) of Theorem 1.1.
As for (1.6), let us restate (3.6) as the property that the deficit I(X|Z) − 2D(X|Z) is

bounded from below by

(3.7) I(X|Z)− 1

t
W 2

2 (X,Z)− n log
n+ tI(X)

n(1 + t)
− t

1 + t
(I(X|Z)− I(X) + n) .
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Assuming that X is not normal, we end the proof by choosing the value

(3.8) t =
W2(X,Z)

√

I(X|Z)−W2(X,Z)
,

which is well-defined and positive. Indeed, by the assumption that I(X|Z) is finite,W2(X,Z)
is finite as well (according to the inequality (1.4), for example). Moreover, the case where
√

I(X|Z) = W2(X,Z) is impossible, since then 2D(X|Z) = I(X|Z). But the latter is only
possible, when the distribution of X represents a translation of γ, by the result of E. Carlen
on the equality cases in (1.1) (cf. also Appendix C).

Putting for short W = W2(X,Z), I = I(X|Z), I0 = I(X), we finally note that the
expression (3.7) with the value of t specified in (3.8) turns into

I −W (
√
I −W )− n log

1 + W√
I−W

I0
n

√
I√

I−W

− W√
I
(I − I0 + n)

= (
√
I −W )2 − n log

(

1 +
W√
I

(I0
n

− 1
))

+ n
W√
I

(I0
n

− 1
)

= (
√
I −W )2 + n∆

(W√
I

(I0
n

− 1
))

.

�

4. Sharpened transport-entropy inequalities on the line

Nowadays, Talagrand’s transport-entropy inequality (1.2),

(4.1)
1

2
W 2

2 (µ, γ) ≤ D(µ|γ),

has many proofs (cf. e.g. [B-G]). In the one dimensional case it admits the following refine-
ment, which is due to F. Barthe and A. Kolesnikov.

Theorem 4.1 ([B-K]). For any probability measure µ on the real line with finite second
moment, having the mean or median at the origin,

(4.2)
1

2
W 2

2 (µ, γ) +
1

4
T ′(µ, γ) ≤ D(µ|γ),

where the optimal transport cost T ′ is based on the cost function c′(x− z) = ∆
( |x−z|√

2π

)

.

It is also shown in [B-K] that the constant 1
4 may be replaced with 1 under the median

assumption. Anyhow, the deficit in (4.1) can be bounded in terms of the transport distance
T which represents a slight weakening ofW2 (since the function ∆(t) = t− log(t+1) is almost
quadratic near zero).

In [B-K], the reinforced transport inequality above was only stated for probability measures
with median at 0, but the argument can be easily adapted to the mean zero case. For the
sake of completeness, the proof of Theorem 4.1 is recalled in Appendix B. In order to work
with the usual cost function c(x− z) = ∆(|x− z|), the inequality (4.2) will be modified to

(4.3)
1

2
W 2

2 (µ, γ) +
1

8π
T (µ, γ) ≤ D(µ|γ)

under the assumption that µ has mean zero. (Here we use the elementary inequality ∆(ct) ≥
c2∆(t), for 0 ≤ c ≤ 1, t ≥ 0, cf. Lemma 2.3.)
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As a natural complement to Theorem 4.1, it will be also shown in Appendix B that,
under an additional log-concavity assumption on µ, the transport cost T in the inequalities
(4.2)-(4.3) may be replaced with W 2

2 . That is, the constant 1
2 in (4.1) may be increased.

Theorem 4.2. Suppose that the probability measure µ on the real line has a twice contin-
uously differentiable density dµ

dx (x) = e−v(x) such that, for a given ε > 0,

(4.4) v′′(x) ≥ ε, x ∈ R.

If µ has mean at the origin, then with some absolute constant c > 0 we have

(4.5)
(1

2
+ cmin{1,

√
ε }
)

W 2
2 (µ, γ) ≤ D(µ|γ).

Here, one may take c = 1− log 2.
Let us now explain how these refinements can be used in the problem of bounding the

deficit in the one dimensional logarithmic Sobolev inequality. Returning to (4.3), we are
going to combine this bound with the HWI inequality (3.1). Putting

W =W2(µ, γ), D = D(µ|γ), I = I(µ|γ),
we rewrite (3.1) as

I − 2D ≥ (
√
I −W )2.

On the other hand, applying the logarithmic Sobolev inequality I ≥ 2D, (4.3) yields I ≥
W 2 + 1

4π T , where T = T (µ, γ). Hence,

I − 2D ≥
(

√

W 2 +
1

4π
T −W

)2

=W 2

(

√

1 +
T

4πW 2
− 1

)2

.

Here, by the very definition of the transport distance, one has T ≤ W 2, so ε = T
4πW 2 ≤ 1

4π .

This implies that
√
1 + ε−1 ≥ cε with c = 4π

(

√

1 + 1
4π−1

)

. Thus, up to a positive numerical

constant,

(4.6) D + c
T 2

W 2
≤ 1

2
I.

In order to get a more flexible formulation, denote by µt the shift of the measure µ,

µt(A) = µ(A− t), A ⊂ R (Borel),

which is the distribution of the random variable X + t (with fixed t ∈ R), when X has the
distribution µ. As easy to verify,

D(µt|γ) = D(µ|γ) + t2

2
+ tEX,

1

2
I(µt|γ) =

1

2
I(µ|γ) + t2

2
+ tEX.

Hence, the deficit

δ(µ) =
1

2
I(µ|γ)−D(µ|γ)

in the logarithmic Sobolev inequality (1.2) is translation invariant: δ(µt) = δ(µ). Applying
(4.6) to µt with t = −

∫

x dµ(x), so that µt would have mean zero, therefore yields:



BOUNDS ON THE DEFICIT IN THE LOGARITHMIC SOBOLEV INEQUALITY 13

Corollary 4.3. For any non-Gaussian probability measure µ on the real line with finite
second moment, up to an absolute constant c > 0,

(4.7) D(µ|γ) + c
T 2(µ−t, γ)

W 2
2 (µ−t, γ)

≤ 1

2
I(µ|γ),

where the optimal transport cost T is based on the cost function ∆(|x − z|), and where t =
∫

x dµ(x). In particular,

(4.8) D(µ|γ) + c

2

T 2(µ−t, γ)

D(µ−t|γ)
≤ 1

2
I(µ|γ).

Here the second inequality follows from the first one by using W 2
2 ≤ 2D. It will be used in

the next section to perform tensorisation for a multidimensional extension. Note that (4.8)
may be derived directly from (4.3) with similar arguments. Indeed, one can write

I − 2D ≥ (
√
I −W )2 ≥ (

√
2D −W )2

=
(2D −W 2)2

(
√
2D +W )2

≥ (2D −W 2)2

(2
√
2D)2

≥ T 2

128π2D2
,

thus proving (4.8) with constant c = 1/(128π2).
Let us now turn to Theorem 4.2 with its additional hypothesis (4.4). Note that the

property v′′ ≥ 0 describes the so-called log-concave probability distributions on the real line
(with C2-smooth densities), so (4.4) represents its certain quantitative strengthening. It is
also equivalent to the property that X has a log-concave density with respect to the Gaussian
measure with mean zero and variance ε.

Arguing as before, from (4.5) we have

I − 2D ≥W 2
(

√

1 + c min{1,
√
ε} − 1

)2
.

Hence, we obtain:

Corollary 4.4. Let µ be a probability measure on the real line with mean zero, and
satisfying (4.4) with some ε > 0. Then, up to an absolute constant c > 0,

(4.9) D(µ|γ) + c min{1, ε}W 2
2 (µ, γ) ≤

1

2
I(µ|γ),

5. Proof of Theorems 1.3 and 1.4

As the next step, it is natural to try to tensorize the inequality (4.8) so that to extend it
to the multidimensional case.

If x = (x1, . . . , xn) ∈ Rn, denote by x1:i the subvector (x1, . . . , xi), i = 1, . . . , n. Given
a probability measure µ on Rn, denote by µ1 its projection to the first coordinate, i.e.,
µ1(A) = µ(A ×Rn−1) for Borel sets A ⊂ R. For i = 2, . . . , n, let µi(dxi|x1:i−1) denote the
conditional distribution of the i-th coordinate under µ knowing the first i − 1 coordinates
x1, . . . , xi−1. Under mild regularity assumptions on µ, all these conditional measures are
well-defined, and we have a general formula for the “full expectation”

(5.1)

∫

h(x) dµ(x) =

∫

h(x1, . . . , xn)µn(dxn|x1:n−1) . . . µ2(dx2|x1)µ1(dx1),
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for any bounded measurable function h on Rn. For example, it suffices to require that µ has
a smooth positive density, which is polynomially decaying at infinity. Then we will say that
µ is regular. In many inequalities, the regularity assumption is only technical for purposes of
the proof, and may easily be omitted in the resulting formulations.

The distance functionals D, I, and T satisfy the following tensorisation relations with
respect to product measures similarly to (5.1). To emphasize the dimension, we denote by
γn the standard Gaussian measure on Rn.

Lemma 5.1. For any regular probability measure µ on Rn with finite second moment,

D(µ|γn) = D(µ1|γ1) +
n
∑

i=2

∫

D(µi( · |x1:i−1) |γ1) dµ(x),

I(µ|γn) ≥ I(µ1|γ1) +
n
∑

i=2

∫

I(µi( · |x1:i−1) |γ1) dµ(x),

T (µ, γn) ≤ T (µ1, γ1) +

n
∑

i=2

∫

T (µi( · |x1:i−1), γ1) dµ(x).

Note that this statement remains to hold also for other product references measures νn on
Rn in place of γn (with necessary regularity assumptions for the case of Fisher information).

Applying the first two inequalities, we see that the deficit δ satisfies a similar property,

(5.2) δ(µ) ≥ δ(µ1) +

n
∑

i=2

∫

δ(µi( · |x1:i−1)) dµ(x).

Proof of Lemma 5.1. The equality for the relative entropy is a straightforward calcula-
tion. We refer to Appendix A of [G-L] for a (general) tensorisation inequality for transport
costs. Below, we sketch the proof of the inequality involving Fisher information.

Let µ be a regular probability measure on Rn admitting a smooth density f with re-
spect to γn. Note that the first marginal µ̃ of µ on the first n − 1 coordinates has den-
sity f̃(x1:n−1) =

∫

f(x1:n−1, xn) γ(dxn) and that µn( · |x1:n−1) has density f(xn|x1:n−1) =

f(x1:n−1, xn)/f̃(x1:n−1). We have

I(µ|γn) =

n−1
∑

i=1

∫

(∂xi
f)2

f
(x) γn(dx) +

∫

(∂xn
f)2

f
(x) γn(dx)

=

n−1
∑

i=1

∫
(
∫

(∂xi
f)2

f
(x1:n−1, xn) γ1(dxn)

)

γn−1(dx1:n−1)

+

∫

I(µn( · |x1:n−1)|γ1) µ̃(dx1:n−1)

≥
n−1
∑

i=1

∫

(∂xi
f̃)2

f̃
(x1:n−1) γn−1(dx1:n−1) +

∫

I(µn( · |x1:n−1)|γ1) µ̃(dx1:n−1)

= I(µ̃|γn−1) +

∫

I(µn( · |x1:n−1)|γ1) dµ(x),

where the inequality holds by an application of Jensen’s inequality with the function ψ(u, v) =
u2/v which is convex on the upper half-planeR×(0,∞). The proof is completed by induction.

�
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Proof of Theorem 1.3. Let us apply the one dimensional result (4.8) with constant
c = 1/(128π2) in (5.2) to the measures µ1 and µi( · |x1:i−1). Put t1 =

∫

x1 µ1(dx1),

ti(x) = ti(x1, . . . , xi−1) =

∫

xi µi(dxi|x1:i−1), x = (x1, . . . , xn) ∈ Rn,

and denote by µ̃i( · |x1:i−1) the corresponding shift of µi( · |x1:i−1) as in Corollary 4.3:
µ̃i( · |x1:i−1) = µi( · |x1:i−1)−ti . Then we have

256π2δ(µ) ≥ T 2(µ̃1, γ1)

D(µ̃1|γ1)
+

n
∑

i=2

∫ T 2(µ̃i( · |x1:i−1), γ1)

D(µ̃i( · |x1:i−1)|γ1)
dµ(x).

By Jensen’s inequality with the convex function ψ(u, v) = u2/v (u ∈ R, v ≥ 0),

256π2δ(µ) ≥ T 2(µ̃1, γ1)

D(µ̃1|γ1)
+

n
∑

i=2

( ∫

T (µ̃i( · |x1:i−1), γ1) dµ(x)
)2

∫

D(µ̃i( · |x1:i−1)|γ1) dµ(x)

≥
(

T (µ̃1, γ1) +
∑n

i=2

∫

T (µ̃i( · |x1:i−1), γ1) dµ(x)
)2

D(µ̃1|γ1) +
∑n

i=2

∫

D(µ̃i( · |x1:i−1)|γ1) dµ(x)
,

where the last bound comes from the inequality

n
∑

i=1

ψ(ui, vi) ≥ ψ
(

n
∑

i=1

ui,

n
∑

i=1

vi

)

,

which is due to the convexity of ψ and its 1-homogeneity. Note that the first inequality could
also be proved by using Cauchy-Schwarz inequality.

Now consider the map T : Rn → Rn defined for all x ∈ Rn by

T (x) =
(

x1 − t1, x2 − t2(x1), . . . , xn − tn(x1, x2, . . . , xn−1)
)

.

By definition, T pushes forward µ onto µ̄. The map T is invertible and its inverse U =
(u1, . . . , un) satisfies

u1(x) = x1 + t1,

u2(x) = x2 + t2(u1(x)),

...

ui(x) = xi + ti(u1(x), . . . , ui−1(x)),

...

un(x) = xn + tn(u1(x), . . . , un−1(x)).

It is not difficult to check that µ̄1 = µ̃1 and for all i ≥ 2, µ̄i( · |x1:i−1) = µ̃i( · |u1(x), . . . , uk−1(x)).
Therefore, since U pushes forward µ̄ onto µ,

T (µ̃1, γ1) +
n
∑

i=2

∫

T (µ̃i( · |x1:i−1), γ1) dµ(x)

= T (µ̄1, γ1) +

n
∑

i=2

∫

T (µ̃i( · |u1(x), . . . , ui−1(x)), γ1) dµ̄(x)

= T (µ̄1, γ1) +

n
∑

i=2

∫

T (µ̄i( · |x1:i−1), γ1) dµ̄(x) ≥ T (µ̄, γn),
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where we made use of Lemma 5.1 on the last step. The same with equality sign holds true
for the D-functional. As a result, in terms of the recentered measure µ̄, we arrive at the
following bound:

(5.3) D(µ|γn) +
1

256π2
T 2(µ̄, γn)

D(µ̄|γn)
≤ 1

2
I(µ|γn).

Thus, we have established in (5.3) the desired inequality (1.10) with constant c = 1
256π2 . �

Remark 5.2. In order to relate the transport distance T to W1, one may apply Lemma
2.3. Following the very definition of the transport distances, it implies that

(1− log 2) min{W1(µ, ν),W
2
1 (µ, ν)} ≤ T (µ, ν) ≤ W1(µ, ν),

for all probability measures µ and ν on Rn.

The proof of Theorem 1.4 will make use of the classical Prékopa-Leindler theorem, which
we state below.

Theorem 5.3. ([Pr1, Pr2], [Le]) For a number t ∈ (0, 1), assume that measurable functions
f, g, h : Rd → R satisfy

h((1− t)x+ ty) ≤ (1− t)f(x) + tg(y), for all x, y ∈ Rd.

Then
∫

e−h(z) dz ≥
(
∫

e−f(x) dx

)1−t(∫

e−g(y) dy

)t

.

Proof of Theorem 1.4. It is similar to the proof of Theorem 1.3. The main point is
that, if µ has a smooth density f = e−V with respect to Lebesgue measure, with a V such
that V ′′ ≥ ε In for some ε > 0, then the first marginal µ1 has a density of the form e−v1 with
v′′1 ≥ ε. Moreover, for each i = 2, . . . , n and all x ∈ Rn, the one dimensional conditional

probability µi( · |x1:i−1) has a density e−vi(xi|x1:i−1) with
(

∂2/∂x2i
)

vi(xi|x1:i−1) ≥ ε. Indeed,
by definition of conditional probabilities,

vi(xi|x1:i−1) = − log

(
∫

e−V (x1:i,yi+1:n) dyi+1 · · · dyn
)

+w(x1:i−1),

where w(x1:i−1) = log
(∫

e−V (x1:i−1,yi:n) dyidyi+1 · · · dyn
)

does not depend on xi. Since V ′′ ≥
ε In, for any i = 2, . . . , n and any x ∈ Rn, the function

(yi, yi+1, . . . , yn) 7→ V (x1:i−1, yi, . . . , yn)−
ε

2
y2i

is convex. Thus defining, for t ∈ (0, 1), x ∈ Rn and ai, bi ∈ R, the functions

f(yi+1, . . . , yn) = V (x1:i−1, ai, yi+1:n)−
ε

2
a2i ,

g(yi+1, . . . , yn) = V (x1:i−1, bi, yi+1:n)−
ε

2
b2i ,

h(yi+1, . . . , yn) = V (x1:i−1, (1− t)ai + tbi, yi+1:n)−
ε

2
((1− t)ai + tbi)

2 ,

one sees that

h((1 − t)yi+1:n + tzi+1:n) ≤ (1− t)f(yi+1:n) + tg(zi+1:n), for all y, z ∈ Rn.
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Therefore, applying Theorem 5.3 to the triple (f, g, h), one gets easily that

vi((1− t)ai + tbi|x1:i−1) ≤ (1− t)vi(ai|x1:i−1) + tvi(bi|x1:i−1)−
ε

2
t(1− t)(ai − bi)

2.

Since vi is smooth, this inequality is equivalent to (∂/∂xi)
2 vi(xi|x1:i−1) ≥ ε. A similar con-

clusion holds for v1. Therefore, µ1 and the conditional probabilities µi( · |x1:i−1) verify the
assumption of Corollary 4.4. Thus, applying the tensorisation formula (5.2), we get

δ(µ) ≥ cmin{1, ε}
(

W 2
2 (µ̃1, γ1) +

n
∑

i=2

W 2
2 (µ̃i( · |x1:i−1), γ1)

)

,

where, as before, µ̃i( · |x1:i−1) is the shift of µi( · |x1:i−1) by its mean. Reasoning as in the
proof of Theorem 1.3, we see that the quantity inside the brackets is bounded from below by
W 2

2 (µ̄, γn). �

6. Appendix A: The reversed transport-entropy inequality

Here we include a simple proof of the general inequality of Lemma 3.2,

D(Xt|Yt) ≤
1

2t
W 2

2 (X,Y ), t > 0,

where X and Y are random vectors in Rn with finite second moments.
We denote by pU the density of a random vector U and by pU |V=v the conditional density

of U knowing the value of a random vector V = v. Note that the regularized random vectors
Xt = X +

√
t Z have smooth densities.

By the chain rule formula for the relative entropy, one has

D(X,Y,Xt|X,Y, Yt) = D(Xt|Yt) +
∫

D(pX,Y |Xt=v|pX,Y |Yt=v) pXt
(v) dv,

and therefore

D(X,Y,Xt|X,Y, Yt) ≥ D(Xt|Yt).
On the other hand, we also have

D(X,Y,Xt|X,Y, Yt) =
∫∫

D(pXt|(X,Y )=(x,y)|pYt|(X,Y )=(x,y)) pX,Y (x, y) dxdy.

Now observe that pXt|(X,Y )=(x,y) is the density of a normal law with mean x and covariance
matrix tIn, and similarly for pYt|(X,Y )=(x,y). But

D(x+
√
tZ | y +

√
t Z) =

|x− y|2
2t

,

so

D(X,Y,Xt|X,Y, Yt) =
1

2t

∫∫

|x− y|2pX,Y (x, y) dxdy =
1

2t
W 2

2 (X,Y ),

where the last equality follows by an optimal choice for the coupling density of X and Y .

7. Appendix B: Reinforced transport-entropy inequalities

In this section, we explain how to derive Theorem 4.1 in the form (4.3).

Proof of Theorem 4.1. To derive the inequality (4.3) for probability measures with
mean zero, we follow an argument of [B-K]. Let µ be a probability measure on R such that
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D(µ|γ) is finite and consider the monotone rearrangement map T transporting γ onto µ. It
is defined by T (x) = F−1

µ ◦ Fγ(x), where Fµ(x) = µ(−∞, x] and Fγ(x) = γ(−∞, x] are the

corresponding distribution functions, and F−1
µ (t) = inf{x ∈ R : Fµ(x) ≥ t} is the generalized

inverse of Fµ (defined for 0 < t < 1). It is well known that T pushes forward γ on µ and
achieves the minimal value in the optimal transport problem:

W 2
2 (µ, γ) =

∫

(T (x)− x)2 dγ(x).

The starting point is the following inequality going back to Talagrand’s paper [T] (see
equation (2.5) of [T]):

D(µ|γ) ≥ 1

2
W 2

2 (µ, γ) +

∫

(

T ′(x)− 1− log T ′(x))
)

dγ(x)

≥ 1

2
W 2

2 (µ, γ) +

∫

∆(|T ′(x)− 1|
)

dγ(x),(7.1)

where the second inequality comes from the fact that ∆(x) ≥ ∆(|x|) for all x > −1. On the
other hand, γ is known to satisfy the Cheeger-type analytic inequality

(7.2) λ

∫

|f −m(f)| dγ ≤
∫

|f ′| dγ

with optimal constant λ =
√

2
π (see e.g Theorem 1.3 of [B-H]). Here, f : R → R may be an

arbitrary locally Lipschitz function with Radon-Nikodym derivative f ′, and m(f) denotes a
median of f under γ. According to Theorem 3.1 of [B-H], (7.2) can be generalized as

(7.3)

∫

L(f −m(f)) dγ ≤
∫

L(cLf
′/λ) dγ

with an arbitrary even convex function L : R → [0,∞), such that L(0) = 0, L(t) > 0 for
t > 0, and

cL = sup
t>0

tL′(t)
L(t)

<∞,

where L′(t) may be understood as the right derivative at t.
We apply (7.3) with L(t) = ∆(|t|) = |t| − log(1 + |t|) in which case cL = 2, so that

(7.4)

∫

∆(|f −m(f)|) dγ ≤
∫

∆(2 |f ′|/λ) dγ.

It will be convenient to replace here the median with the mean γ(f) =
∫

f dγ. First observe
that, by Jensen’s inequality, (7.4) yields

(7.5) ∆(|γ(f)−m(f)|) ≤
∫

∆(2 |f ′|/λ) dγ.

Hence, using once more the convexity of ∆ together with (7.4)-(7.5) for the function 2f , we
get

∫

∆(|f − γ(f)|) dγ ≤ 1

2

∫

∆
(

2 |f −m(f)|
)

dγ +
1

2
∆
(

2 |γ(f)−m(f)|
)

≤
∫

∆(4 |f ′|/λ) dγ.

Equivalently,
∫

∆(|f ′|) dγ ≥
∫

∆
(λ

4
|f − γ(f)|

)

dγ.
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To further simplify, one may use the lower bound a) of Lemma 2.3 which yields
∫

∆(|f ′|) dγ ≥
(λ

4

)2
∫

∆(|f − γ(f)|) dγ.

It remains to apply the latter with f(x) = T (x)−x when estimating the last integral in (7.1).
Since µ and γ have mean zero, this gives

D(µ|γ) ≥ 1

2
W 2

2 (µ, γ) +
1

8π

∫

∆(T (x)− x
)

dγ(x),

and the last integral is certainly greater than (and actually equals to) T (µ, γ). �

Proof of Theorem 4.2. Let us return to the inequality (7.1), i.e.,

(7.6) D(µ|γ) ≥ 1

2
W 2

2 (µ, γ) +

∫

∆(T ′(x)− 1
)

dγ(x).

The basic assumption (4.4) ensures that T has a Lipschitz norm ≤ 1√
ε
, so T ′(x) ≤ 1√

ε
. Using

in (7.6) the lower quadratic bounds on ∆ given in b) and c) of Lemma 2.3, we obtain that

(7.7) D(µ|γ) ≥ 1

2
W 2

2 (µ, γ) + c(ε)

∫

(T ′(x)− 1)2 dγ(x),

where

c(ε) =
1

2
, for ε ≥ 1, c(ε) =

∆( 1√
ε
− 1)

( 1√
ε
− 1)2

, for 0 < ε < 1.

On the other hand, applying the Poincaré-type inequality for the Gaussian measure

Varγ(f) ≤
∫

f ′2 dγ

with f(x) = T (x)− x, together with the assumption that
∫

x dµ(x) =
∫

T (x) dγ(x) = 0, the
last integral in (7.7) can be bounded from below by

∫

(T (x)− x)2 dγ(x) =W 2
2 (µ, γ).

It remains to use, for 0 < ε < 1, the bound ∆(a) ≥ (1 − log 2) min{a, a2}. The inequality
(4.5) is proved. �

8. Appendix C: Equality cases in the logarithmic Sobolev inequality for the
standard Gaussian measure

In this last section, we show how Theorem 1.3 can be used to recover the following result
by E. Carlen [C].

Theorem 8.1. ([C]) Let µ be a probability measure on Rn such that D(µ|γ) < ∞. We
have

D(µ|γ) = 1

2
I(µ|γ),

if and only if µ is a translation of γ.

In what follows, we denote by Sn the set of permutations of {1, . . . , n}. If µ is a probability
measure on Rn, we denote by µσ its image under the permutation map

(x1, . . . , xn) 7→ (xσ(1), . . . , xσ(n)).
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If µ has density f with respect to the standard n-dimensional Gaussian measure γ, then the
density of µσ with respect to γ is given by

fσ(x1, . . . , xn) = f(xσ−1(1), . . . , xσ−1(n)).

Obviously,
I(µσ|γ) = I(µ|γ) and D(µσ|γ) = D(µ|γ).

Hence, we have the following automatic improvement of Theorem 1.3.

Theorem 8.2. Let X be a random vector in Rn with law µ. Then,

D(µ|γ) + cmax
σ∈Sn

T 2(µσ, γ)

D(µσ|γ)
≤ 1

2
I(µ|γ),

where µσ is the law of the random vector Y σ defined by

Y σ
i = Xσ(i) −E(Xσ(i)|Xσ(1), . . . ,Xσ(i−1)).

Proof of Theorem 8.1. To avoid complicated notations, we will restrict ourselves to the
dimension n = 2. We may assume that µ has a smooth density p with respect to the Lebesgue
measure such that D(µ|γ) = 1

2 I(µ|γ) < ∞. Necessarily, µ has a finite second moment, and
moreover, µσ = γ, for all σ ∈ S2, i.e., for σ = id = (12) and σ = (21).

For a random vector X with law µ, put m1 = EX1, m2 = EX2, a(X1) = E (X2|X1) and
b(X2) = E (X1|X2). The probability measure γ = µid represents the image of µ under the
map (x1, x2) 7→ (x1 −m1, x2 − a(x1)). It then easily follows that

p(x1, x2) =
1

2π
exp

(

−1

2
(x1 −m1)

2 − 1

2
(x2 − a(x1))

2

)

for almost all (x1, x2) ∈ R2. Since also γ = µ(2,1), the same reasoning yields

p(x1, x2) =
1

2π
exp

(

−1

2
(x2 −m2)

2 − 1

2
(x1 − b(x2))

2

)

,

for almost all (x1, x2) ∈ R2. Therefore, for almost all (x1, x2) ∈ R2, it holds

(x1 −m1)
2 + (x2 − a(x1))

2 = (x2 −m2)
2 + (x1 − b(x2))

2.

Let us denote by A the set of all couples (x1, x2) for which there is equality, and for x1 ∈ R,
let Ax1

= {x2 ∈ R : (x1, x2) ∈ A} denote the corresponding section of A. By Fubini’s
theorem,

0 = |R2 \ A| =
∫ ∞

−∞
|R \ Ax1

| dx1,

where | · | stands for the Lebesgue measure of a set in the corresponding dimension. Hence,
for almost all x1, the set R \ Ax1

is of Lebesgue measure 0. For any such x1,

2x2(m2 − a(x1)) + a(x1)
2 −m2

2 + (x1 −m1)
2 ≥ 0, ∀x2 ∈ Ax1

.

Thus, a(x1) = m2 (otherwise letting x2 → ±∞ would lead to a contradiction). This proves
that a = m2 almost everywhere, and therefore, the random vector (X1 −EX1,X2 −EX2) is
standard Gaussian. But this means that µ is a translation of γ. �
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[B-E] Bakry, D., Émery, M. Diffusions hypercontractives. Seminaire de probabilites, XIX, 1983/84,
177–206, Lecture Notes in Math., 1123, Springer, Berlin, 1985.

[B-L] Bakry, D., Ledoux, M. A logarithmic Sobolev form of the Li-Yau parabolic inequality. Rev.
Mat. Iberoam. 22 (2006), no. 2, 683-702.

[B-K] Barthe, F., Kolesnikov, A. V. Mass transport and variants of the logarithmic Sobolev inequality.
J. Geom. Anal. 18 (2008), no. 4, 921-979.

[Bl] Blachman, N. M. The convolution inequality for entropy powers. IEEE Trans. Inform. Theory
11 (1965), 267–271.

[B] Bobkov, S. G. An isoperimetric inequality on the discrete cube, and an elementary proof of the
isoperimetric inequality in Gauss space. Ann. Probab. 25 (1997), no. 1, 206–214.

[B-G-L] Bobkov, S. G., Gentil, I., Ledoux, M. Hypercontractivity of Hamilton-Jacobi equations. J.
Math. Pures Appl. (9) 80 (2001), no. 7, 669–696.

[B-G] Bobkov, S. G., Gotze, F. Exponential integrability and transportation cost related to logarith-
mic Sobolev inequalities. J. Funct. Anal. 163 (1999), no. 1, 1–28.
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Université Paris Ouest Nanterre la Défense, MODAL’X, EA 3454, 200 avenue de la République
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