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Pancake Flipping Is Hard✩

Laurent Bulteau, Guillaume Fertin, Irena Rusu

Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241,
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

Abstract

Pancake Flipping is the problem of sorting a stack of pancakes of different sizes (that is, a permutation),
when the only allowed operation is to insert a spatula anywhere in the stack and to flip the pancakes above
it (that is, to perform a prefix reversal). In the burnt variant, one side of each pancake is marked as burnt,
and it is required to finish with all pancakes having the burnt side down. Computing the optimal scenario
for any stack of pancakes and determining the worst-case stack for any stack size have been challenges for
over more than three decades. Beyond being an intriguing combinatorial problem in itself, it also yields
applications, e.g. in parallel computing and computational biology. In this paper, we show that the Pancake
Flipping problem, in its original (unburnt) variant, is NP-hard, thus answering the long-standing question
of its computational complexity.
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1. Introduction

The pancake problem was stated in [10] as follows:

The chef in our place is sloppy, and when he prepares a stack of pancakes they come
out all different sizes. Therefore, when I deliver them to a customer, on the way to
the table I rearrange them (so that the smallest winds up on top, and so on, down to
the largest at the bottom) by grabbing several from the top and flipping them over,
repeating this (varying the number I flip) as many times as necessary. If there are n

pancakes, what is the maximum number of flips (as a function of n) that I will ever
have to use to rearrange them?

Stacks of pancakes are represented by permutations, and a flip consists in reversing a prefix of any length.
The previous puzzle yields two entangled problems:

• Designing an algorithm that sorts any permutation with a minimum number of flips (this optimization
problem is called MIN-SBPR, for Sorting By Prefix Reversals).

• Computing f(n), the maximum number of flips required to sort a permutation of size n (the diameter
of the so-called pancake network).

Gates and Papadimitriou [12] introduced the burnt variant of the problem: the pancakes are two-sided,
and an additional constraint requires the pancakes to end with the unburnt side up. The diameter of the
corresponding burnt pancake network is denoted g(n). A number of studies [7, 8, 9, 12, 15, 16, 17] have
aimed at determining more precisely the values of f(n) and g(n), with the following results:

✩A preliminary version of this article appeared in the proceedings of the 37th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2012) [6]
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• f(n) and g(n) are known exactly for n ≤ 19 and n ≤ 17, respectively [8].

• 15n/14 ≤ f(n) ≤ 18n/11 +O(1) [16, 7].

• ⌊(3n+ 3)/2⌋ ≤ g(n) ≤ 2n− 6 [8] (upper bound for n ≥ 16).

Considering MIN-SBPR, 2-approximation algorithms have been designed, both for the burnt and unburnt
variants [9, 11]. Moreover, Labarre and Cibulka [17] have characterized a subclass of signed permutations,
called simple permutations, that can be sorted in polynomial time.

The pancake problems have various motivations. For instance, the pancake network, having both a small
degree and diameter, is of interest in parallel computing [1, 19, 18]. A more distant motivation concerns a
variant of the problem, called Sorting By Reversals [2, 3], which has applications in comparative genomics.
In Sorting By Reversals, any subsequence can be flipped at any step (not only prefixes), and reversals are
possible elementary modifications that can affect a genome during evolution. The Sorting By Reversals
problem is now well-known, with a polynomial-time exact algorithm [13, 14] for the signed case, and a
1.375-approximation [4] for the APX-hard unsigned case [5]. Although prefix reversals are less realistic, any
improvement in this setting may have some impact on the more general Sorting By Reversals problem.

In this paper, we prove that the MIN-SBPR problem is NP-hard (in its unburnt variant), thus answering
a question which has remained open for several decades. We in fact prove a stronger result: it is known
that the number of breakpoints of a permutation (that is, the number of pairs of consecutive elements that
are not consecutive in the identity) is a lower bound on the number of flips necessary to sort a permutation.
We show that deciding whether this bound is tight is already NP-hard.

2. Notations

We denote by Ja ; bK the interval {a, a + 1, . . . , b} (for b < a, we have Ja ; bK = ∅). Let n be an integer.
Input sequences are permutations of J1 ; nK, that is we consider only sequences where all elements are
unsigned, and there cannot be duplicates. When there is no ambiguity, we use the same notation for a
sequence and the set of elements it contains. We use upper case letters for sets and sequences, and lower
case letters for elements.

Consider a sequence S of length n, S =
〈

x1, x2, . . . , xn

〉

. Element x1 is said to be the head element of S.
Sequence S has a breakpoint at position r, 1 ≤ r < n if xr /∈ {xr+1−1, xr+1+1}, and a breakpoint at position
n if xn 6= n. We write db(S) the number of breakpoints of S. Note that having x1 6= 1 does not directly
count as a breakpoint, and that db(S) ≤ n for any sequence of length n. For any p ≤ q ∈ N, we write Ip

q

the sequence
〈

p, p+1, p+2, . . . , q
〉

; I1
n is the identity. For a sequence of any length S =

〈

x1, x2, . . . , xk

〉

,

we write ⋆S the sequence obtained by reversing S: ⋆S =
〈

xk, xk−1, . . . , x1

〉

. Given an integer p, we write

p+ S =
〈

p+ x1, p+ x2, . . . , p+ xk

〉

.
The flip of length r is the operation that consists in reversing the r first elements of the sequence. It

transforms

S =
〈

x1, x2, . . . , xr, xr+1, . . . , xn

〉

into S′ =
〈

xr, xr−1, . . . , x1, xr+1, . . . , xn

〉

.

Note that the flip of length 1 does not modify S, and the flip of length n transforms S into ⋆S. Moreover,
since a flip of length r cannot add or remove breakpoints other than in position r, we have the following
easy property.

Property 1. Given a sequence S′ obtained from a sequence S by performing one flip, we have db(S
′) −

db(S) ∈ {−1, 0, 1}.

A flip from S to S′ is said to be efficient if db(S
′) = db(S)− 1, and we reserve the notation S → S′ for

such flips. A sequence of size n, different from the identity, is a deadlock if it yields no efficient flip, and we
write S → ⊥. By convention, we place a specific separator

•

∣

∣ in a sequence at the positions corresponding to
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〈

5, 2, 3, 1
•

∣

∣ 4
•

∣

∣

〉

ր

〈

1, 3, 2, 5, 4
〉

→ ⊥

→
〈

4, 1
•

∣

∣ 3, 2
•

∣

∣ 5
〉

→
〈

2, 3
•

∣

∣ 1, 4, 5
〉

→
〈

3, 2, 1
•

∣

∣ 4, 5
〉

→
〈

1, 2, 3, 4, 5
〉

ց 〈

1, 4, 3, 2, 5
〉

→ ⊥
〈

5, 2, 3, 4, 1
•

∣

∣

〉

→
〈

1, 4, 3, 2, 5
〉

→ ⊥

Figure 1: Examples of efficient flips. Sequence
〈

5, 2, 3, 1, 4
〉

is efficiently sortable (in four flips), but
〈

5, 2, 3, 4, 1
〉

is not.

possible efficient flips: there are at most two of them, and at least one if the sequence is neither a deadlock
nor the identity. A path is a series of flips, it is efficient if each flip it contains is efficient. A sequence S is
efficiently sortable if there exists an efficient path from S to the identity (equivalently, if it can be sorted in
db(S) flips). See for example Figure 1.

Let S be a sequence different from the identity, and T be a set of sequences. We write S =⇒ T if both
following conditions are satisfied:

1. for each T ∈ T, there exists an efficient path from S to T .

2. for each efficient path from S to the identity, there exists a sequence T ∈ T such that the path goes
through T .

If T consists of a single element (T = {T}), we may write S =⇒ T instead of S =⇒ {T}. Note that
condition 1. is trivial if T = ∅, and condition 2. is trivial if there is no efficient path from S to I1

n. Given a
sequence S, there can be several different sets T such that S =⇒ T. However, two are especially relevant:

Property 2. Given any sequence S 6= I1
n,

S =⇒ I1
n ⇔ S is efficiently sortable.

S =⇒ ∅ ⇔ S is not efficiently sortable.

Proof. For S =⇒ I1
n: condition 1. is true iff there exists an efficient path from S to the identity, that is S

is efficiently sortable. Condition 2. is always true.
For S =⇒ ∅: condition 1. is always true. If there exists at least one efficient path from S to I1

n, then,
since there exists no sequence T ∈ ∅, condition 2. cannot be true. Hence Condition 2. is false when there
exists an efficient path from S to the identity and true otherwise, so it is equivalent to the fact that S is not
efficiently sortable.

The following property is easily deduced from the definition.

Property 3. If S =⇒ {S1, S2}, S1 =⇒ T1 and S2 =⇒ T2, then S =⇒ T1 ∪ T2.

3. Reduction from 3-SAT

The reduction uses a number of gadget sequences in order to simulate boolean variables and clauses with
subsequences. They are organized in two levels (where level-1 gadgets are directly defined by sequences of
integers, and level-2 gadgets are defined using a pattern of level-1 gadgets). For each defined gadget, we
derive a property characterizing the efficient paths that can be followed if some part of the gadget appears
at the head of a sequence.

We have not aimed at providing the smallest possible gadgets (the overall reduction for a formula
containing l variables and k clauses creates a stack of 31l + 98k elements with 16l + 50k breakpoints), and
we preferred straightforward proofs and easy-to-combine gadgets over short sequences. A rough analysis
shows that the final stack size could easily be reduced to 22l + 71k, with the same number of breakpoints.
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3.1. Level-1 gadgets

3.1.1. Dock

The dock gadget is the simplest we define. Its only goal is to store sequences of the kind ⋆Ip+1
q (with

p < q) out of the head of the sequence, without “disturbing” any other part.

Definition 1. Given two integers p and q with p < q, the dock for ⋆Ip+1
q is the sequence Dock(p, q) = D,

where
D =

〈

p− 1, p, q + 1, q + 2
〉

.

It has the following property:

Property 4. Let p and q be any integers with p < q, D = Dock(p, q), and X and Y be any sequences. We
have

〈

⋆Ip+1
q , X, D, Y

〉

=⇒
〈

X, Ip−1
q+2 , Y

〉

Proof. An efficient path from
〈

⋆Ip+1
q , X, D, Y

〉

to
〈

X, Ip−1
q+2 , Y

〉

is given below.

〈

⋆Ip+1
q , X, D, Y

〉

=
〈

q, q − 1, . . . , p+ 2, p+ 1, X, p− 1, p
•

∣

∣ q + 1, q + 2, Y
〉

→
〈

p, p− 1, ⋆X
•

∣

∣ p+ 1, p+ 2, . . . , q − 1, q, q + 1, q + 2, Y
〉

→
〈

X, p− 1, p, p+ 1, p+ 2, . . . , q − 1, q, q + 1, q + 2, Y
〉

=
〈

X, Ip−1
q+2 , Y

〉

For each sequence in the path, we apply the only possible efficient flip, hence every efficient path between
〈

⋆Ip+1
q , X, D, Y

〉

and I1
n (if such a path exists) begins with these two flips, and goes through

〈

X, Ip−1
q+2 , Y

〉

.

3.1.2. Lock

A lock gadget contains three parts: a sequence which is the lock itself, a key element that “opens” the
lock, and a test element that checks whether the lock is open.

Definition 2. For any integer p, Lock(p) is defined by Lock(p) = (key, test, L), where

key = p+ 10 test = p+ 7
L = p+

〈

1, 2, 9, 8, 5, 6, 4, 3, 11, 12
〉

Given a lock (key, test, L) = Lock(p), we write

Lo = p+
〈

1, 2, 3, 4, 6, 5, 8, 9, 10, 11, 12
〉

.

Sequences L and Lo represent the lock when it is closed and open, respectively. If a sequence containing
a closed lock has key as its head element, then efficient flips put the lock in open position. If it has test as
its head element, then it is a deadlock if and only if the lock is closed.

Property 5. Let p be any integer, (key, test, L) = Lock(p), and X and Y be any sequences. We have

a.
〈

key, X, L, Y
〉

=⇒
〈

X, Lo, Y
〉

b.
〈

test, X, Lo, Y
〉

=⇒
〈

X, Ip+1
p+12, Y

〉

c.
〈

test, X, L, Y
〉

→ ⊥
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Proof. The possible efficient paths from (a.)
〈

key, X, L, Y
〉

, (b.)
〈

test, X, Lo, Y
〉

and (c.)
〈

test, X, L, Y
〉

are the following. Note that for readability reasons, the proof is given for p = 0; it can obviously be extended
to any value of p (each element would then be increased by p).

a.
〈

key, X, L, Y
〉

=
〈

10, X, 1, 2
•

∣

∣ 9, 8, 5, 6, 4, 3
•

∣

∣ 11, 12, Y
〉

S1
ւ ց

S2 (where sequences S1 and S2 are described below)

S1 =
〈

2, 1, ⋆X, 10, 9, 8, 5, 6, 4, 3, 11, 12, Y
〉

→ ⊥

S2 =
〈

3, 4, 6, 5, 8, 9
•

∣

∣ 2, 1, ⋆X, 10, 11, 12, Y
〉

→
〈

9, 8, 5, 6, 4, 3, 2, 1, ⋆X
•

∣

∣ 10, 11, 12, Y
〉

→
〈

X, 1, 2, 3, 4, 6, 5, 8, 9, 10, 11, 12, Y
〉

=
〈

X, Lo, Y
〉

b.
〈

test, X, Lo, Y
〉

=
〈

7, X, 1, 2, 3, 4
•

∣

∣ 6, 5
•

∣

∣ 8, 9, 10, 11, 12, Y
〉

S3
ւ ց

S4

S3 =
〈

4, 3, 2, 1, ⋆X, 7, 6, 5, 8, 9, 10, 11, 12, Y
〉

→ ⊥

S4 =
〈

5, 6
•

∣

∣ 4, 3, 2, 1, ⋆X, 7, 8, 9, 10, 11, 12, Y
〉

→
〈

6, 5, 4, 3, 2, 1, ⋆X
•

∣

∣ 7, 8, 9, 10, 11, 12, Y
〉

→
〈

X, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, Y
〉

=
〈

X, I1
12, Y

〉

c.
〈

test, X, L, Y
〉

=
〈

7, X, 1, 2, 9, 8, 5, 6, 4, 3, 11, 12, Y
〉

→ ⊥

We use locks to emulate literals of a boolean formula: variables “hold the keys”, and in a first time open
the locks corresponding to true literals. Each clause holds three test elements, corresponding to its three
literals, and the clause is true if the lock is open for at least one of the test elements.

3.1.3. Hook

A hook gadget contains four parts: two sequences used as delimiters, a take element that takes the
interval between the delimiters and places it in head, and a put element that does the reverse operation.
Thus, the sequence between the delimiters can be stored anywhere until it is called by take, and then can
be stored back using put.

Definition 3. For any integer p, Hook(p) is defined by Hook(p) = (take, put, G,H), where

take = p+ 10 put = p+ 7

G = p+
〈

3, 4
〉

H = p+
〈

12, 11, 6, 5, 9, 8, 2, 1
〉

.

Given a hook (take, put, G,H) = Hook(p), we write

G′ = p+
〈

12, 11, 6, 5, 4, 3
〉

H ′ = p+
〈

10, 9, 8, 2, 1
〉

G′′ = p+
〈

3, 4, 5, 6, 7
〉

H ′′ = p+
〈

12, 11, 10, 9, 8, 2, 1
〉

.
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Property 6. Let p be an integer, (take, put, G,H) = Hook(p), and X, Y and Z be any sequences. We have

a.
〈

take, X, G, Y, H, Z
〉

=⇒
〈

Y, G′, ⋆X, H ′, Z
〉

b.
〈

put, X, G′, ⋆Y, H ′, Z
〉

=⇒
〈

Y, G′′, X, H ′′, Z
〉

c.
〈

G′′, X, H ′′, Y
〉

=⇒
〈

X, ⋆Ip+1
p+12, Y

〉

Proof. The possible efficient paths from (a.)
〈

take, X, G, Y, H, Z
〉

, (b.)
〈

put, X, G′, ⋆Y, H ′, Z
〉

and

(c.)
〈

G′′, X, H ′′, Y
〉

are the following (for p = 0).

a.
〈

take, X, G, Y, H, Z
〉

=
〈

10, X, 3, 4, Y, 12, 11, 6, 5
•

∣

∣ 9, 8, 2, 1, Z
〉

→
〈

5, 6, 11, 12, ⋆Y
•

∣

∣ 4, 3, ⋆X, 10, 9, 8, 2, 1, Z
〉

→
〈

Y, 12, 11, 6, 5, 4, 3, ⋆X, 10, 9, 8, 2, 1, Z
〉

=
〈

Y, G′, ⋆X, H ′, Z
〉

b.
〈

put, X, G′, ⋆Y, H ′, Z
〉

=
〈

7, X, 12, 11
•

∣

∣ 6, 5, 4, 3, ⋆Y, 10, 9, 8, 2, 1, Z
〉

→
〈

11, 12, ⋆X, 7, 6, 5, 4, 3, ⋆Y
•

∣

∣ 10, 9, 8, 2, 1, Z
〉

→
〈

Y, 3, 4, 5, 6, 7, X, 12, 11, 10, 9, 8, 2, 1, Z
〉

=
〈

Y, G′′, X, H ′′, Z
〉

c.
〈

G′′, X, H ′′, Y
〉

=
〈

3, 4, 5, 6, 7, X, 12, 11, 10, 9, 8
•

∣

∣ 2, 1, Y
〉

→
〈

8, 9, 10, 11, 12, ⋆X
•

∣

∣ 7, 6, 5, 4, 3, 2, 1, Y
〉

→
〈

X, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, Y
〉

=
〈

X, ⋆I1
12, Y

〉

3.1.4. Fork

A fork gadget implements choices. It contains two parts delimiting a sequence X. Any efficient path
encountering a fork gadget follows one of two tracks, where either X or ⋆X appears at the head of the
sequence at some point. Sequence X would typically contain a series of triggers for various gadgets (key,
take, etc.), so that X and ⋆X differ in the order in which the gadgets are triggered.

Definition 4. For any integer p, Fork(p) is defined by Fork(p) = (E,F ), where

E = p+
〈

11, 8, 7, 3
〉

F = p+
〈

10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1
〉

.

Given a fork (E,F ) = Fork(p), we write

F 1 = p+
〈

10, 9, 6, 7, 8, 11, 12, 13, 14, 15, 5, 4, 3, 2, 1
〉

F 2 = p+
〈

3, 7, 8, 11, 10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1
〉

Property 7. Let p be an integer, (E,F ) = Fork(p), and X, Y be any sequences. We have

a.
〈

E, X, F, Y
〉

=⇒
{〈

X, F 1, Y
〉

,
〈

⋆X, F 2, Y
〉}

b.
〈

F 1, Y
〉

=⇒
〈

⋆Ip+1
p+15, Y

〉

c.
〈

F 2, Y
〉

=⇒
〈

⋆Ip+1
p+15, Y

〉
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Proof. The possible efficient paths from (a.)
〈

E, X, F, Y
〉

, (b.)
〈

F 1, Y
〉

and (c.)
〈

F 2, Y
〉

are the following
(for p = 0).

a.
〈

E, X, F, Y
〉

=
〈

11, 8, 7, 3, X
•

∣

∣ 10, 9, 6
•

∣

∣ 12, 13, 4, 5, 15, 14, 2, 1, Y
〉

S1
ւ ց

S2

S1 =
〈

⋆X, 3, 7, 8, 11, 10, 9, 6, 12, 13, 4, 5, 15, 14, 2, 1, Y
〉

=
〈

⋆X, F 2, Y
〉

S2 =
〈

6, 9, 10, ⋆X, 3
•

∣

∣ 7, 8, 11, 12, 13, 4, 5, 15, 14, 2, 1, Y
〉

→
〈

3, X, 10, 9, 6, 7, 8, 11, 12, 13
•

∣

∣ 4, 5, 15, 14
•

∣

∣ 2, 1, Y
〉

S3
ւ ց

S4

S3 =
〈

13, 12, 11, 8, 7, 6, 9, 10, ⋆X, 3, 4, 5, 15, 14, 2, 1, Y
〉

→ ⊥

S4 =
〈

14, 15, 5, 4
•

∣

∣ 13, 12, 11, 8, 7, 6, 9, 10, ⋆X, 3, 2, 1, Y
〉

→
〈

4, 5, 15, 14, 13, 12, 11, 8, 7, 6, 9, 10, ⋆X
•

∣

∣ 3, 2, 1, Y
〉

→
〈

X, 10, 9, 6, 7, 8, 11, 12, 13, 14, 15, 5, 4, 3, 2, 1, Y
〉

=
〈

X, F 1, Y
〉

b.
〈

F 1, Y
〉

=
〈

10, 9, 6, 7, 8
•

∣

∣ 11, 12, 13, 14, 15, 5, 4, 3, 2, 1, Y
〉

→
〈

8, 7, 6
•

∣

∣ 9, 10, 11, 12, 13, 14, 15, 5, 4, 3, 2, 1, Y
〉

→
〈

6, 7, 8, 9, 10, 11, 12, 13, 14, 15
•

∣

∣ 5, 4, 3, 2, 1, Y
〉

→
〈

15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, Y
〉

=
〈

⋆I1
15, Y

〉

c.
〈

F 2, Y
〉

=
〈

3, 7, 8, 11, 10, 9, 6, 12, 13
•

∣

∣ 4, 5, 15, 14
•

∣

∣ 2, 1, Y
〉

S5
ւ ց

S6

S5 =
〈

13, 12, 6, 9, 10, 11, 8, 7, 3, 4, 5, 15, 14, 2, 1, Y
〉

→ ⊥

S6 =
〈

14, 15, 5, 4
•

∣

∣ 13, 12, 6, 9, 10, 11, 8, 7, 3, 2, 1, Y
〉

→
〈

4, 5, 15, 14, 13, 12, 6, 9, 10, 11, 8, 7
•

∣

∣ 3, 2, 1, Y
〉

→
〈

7, 8, 11, 10, 9
•

∣

∣ 6, 12, 13, 14, 15, 5, 4, 3, 2, 1, Y
〉

→
〈

9, 10, 11
•

∣

∣ 8, 7, 6, 12, 13, 14, 15, 5, 4, 3, 2, 1, Y
〉

→
〈

11, 10, 9, 8, 7, 6
•

∣

∣ 12, 13, 14, 15, 5, 4, 3, 2, 1, Y
〉

→
〈

6, 7, 8, 9, 10, 11, 12, 13, 14, 15
•

∣

∣ 5, 4, 3, 2, 1, Y
〉

→
〈

15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, Y
〉

=
〈

⋆I1
15, Y

〉

3.2. Level-2 gadgets

In this section, we define new gadgets based on the four level-1 gadgets. From now on, each property
proof uses exclusively properties from smaller gadgets. In order to help the reader follow the ever-present
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references, we use the following notations. Bold font is used to emphasise the “active” parts of the gadget
currently having an element at the head of the sequence. For each relation S =⇒ T , we give the relevant
reference below (e.g. S

4.
=⇒ T if it is obtained from Property 4). Finally, a summary of all gadget properties

(either level-1 or -2) is given in Figure 2.

3.2.1. Literals

The following gadget is used only once in the reduction. It contains the locks corresponding to all literals
of the formula.

Definition 5. Let p and m be two integers, Literals(p,m) is defined by

Literals(p,m) = (key1, . . . , keym, test1, . . . , testm,Λ)

where ∀i ∈ J1 ; mK , (keyi, testi, Li) = Lock(p+ 12(i− 1))

Λ =
〈

L1, L2, . . . , Lm

〉

Let O and I be two disjoint subsets of J1 ; mK. We use ΛO
I for the sequence obtained from Λ by replacing

Li by Lo
i for all i ∈ O and by Ip+12i−11

p+12i for all i ∈ I.

Elements of O correspond to open locks in ΛO
I , while elements of I correspond to open locks which have

moreover been tested. Note that Λ∅
∅ = Λ, and that Λ∅

J1 ;mK = Ip+1
p+12m.

Property 8. Let p and m be two integers, (key1, . . . , keym, test1, . . . , testm,Λ) = Literals(p,m), O and I be
two disjoint subsets of J1 ; mK, and X be any sequence. We have

a. ∀i ∈ J1 ; mK −O − I,
〈

keyi, X, ΛO
I

〉

=⇒
〈

X, Λ
O∪{i}
I

〉

b. ∀i ∈ O,
〈

testi, X, ΛO
I

〉

=⇒
〈

X, Λ
O−{i}
I∪{i}

〉

c. ∀i ∈ J1 ; mK −O,
〈

testi, X, ΛO
I

〉

→ ⊥

Proof. The proof follows from Property 5.
a. Let i ∈ J1 ; mK −O − I. Then ΛO

I can be written ΛO
I =

〈

A, Li, B
〉

. Hence

〈

keyi, X, ΛO
I

〉

=
〈

keyi, X, A, Li, B
〉

5.a
=⇒

〈

X, A, Lo
i , B

〉

=
〈

X, Λ
O∪{i}
I

〉

b. Let i ∈ O. Then ΛO
I can be written ΛO

I =
〈

A, Lo
i , B

〉

. Hence

〈

testi, X, ΛO
I

〉

=
〈

testi, X, A, Lo
i , B

〉

5.b
=⇒

〈

X, A, Ip+12i−11
p+12i , B

〉

=
〈

X, Λ
O−{i}
I∪{i}

〉

c. Let i ∈ J1 ; mK − O. If i ∈ I, then testi ∈ Ip+12i−11
p+12i ⊂ ΛO

I , and
〈

testi, X, ΛO
I

〉

is not a valid

sequence (it contains a duplicate). Otherwise, i ∈ J1 ; mK−O− I, and ΛO
I can be written ΛO

I =
〈

A, Li, B
〉

.
Hence

〈

testi, X, ΛO
I

〉

=
〈

testi, X, A, Li, B
〉

5.c
→ ⊥
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Dock gadget
〈

⋆
I

p+1
q , X, D, Y

〉

4.
=⇒

〈

X, Ip−1
q+2 , Y

〉

Lock gadget
〈

key, X, L, Y
〉

5.a
=⇒

〈

X, Lo, Y
〉

〈

test, X, Lo, Y
〉

5.b
=⇒

〈

X, Ip+1
p+12, Y

〉

〈

test, X, L, Y
〉

5.c
→ ⊥

Hook gadget
〈

take, X, G, Y, H, Z
〉

6.a
=⇒

〈

Y, G′, ⋆X, H ′, Z
〉

〈

put, X, G′, ⋆Y, H ′, Z
〉

6.b
=⇒

〈

Y, G′′, X, H ′′, Z
〉

〈

G′′, X, H ′′, Y
〉

6.c
=⇒

〈

X, ⋆Ip+1
p+12, Y

〉

Fork gadget
〈

E, X, F , Y
〉

7.a
=⇒

{〈

X, F 1, Y
〉

〈

⋆X, F 2, Y
〉

}

〈

F 1, Y
〉

7.b
=⇒

〈

⋆Ip+1
p+15, Y

〉

〈

F 2, Y
〉

7.c
=⇒

〈

⋆Ip+1
p+15, Y

〉

Literals gadget

∀i /∈ O ∪ I,
〈

keyi, X, ΛO
I

〉

8.a
=⇒

〈

X, Λ
O∪{i}
I

〉

∀i ∈ O,
〈

testi, X, ΛO
I

〉

8.b
=⇒

〈

X, Λ
O−{i}
I∪{i}

〉

∀i /∈ O,
〈

testi, X, ΛO
I

〉

8.c
→ ⊥

Variable gadget
〈

ν, X, V , Y, ΛO
I

〉

9.a
=⇒

{〈

X, V 1, Y, ΛO∪P
I

〉

〈

X, V 2, Y, ΛO∪N
I

〉

}

〈

V 1, X, D, Y, ΛO
I

〉

9.b
=⇒

〈

X, Ip+1
p+31, Y, Λ

O∪N
I

〉

〈

V 2, X, D, Y, ΛO
I

〉

9.c
=⇒

〈

X, Ip+1
p+31, Y, Λ

O∪P
I

〉

Clause gadget

〈

γ, X, Γ, Y, ΛO
I

〉

10.
=⇒















〈

X, Γ1, Y, Λ
O−{a}
I∪{a}

〉

iff a ∈ O
〈

X, Γ2, Y, Λ
O−{b}
I∪{b}

〉

iff b ∈ O
〈

X, Γ3, Y, Λ
O−{c}
I∪{c}

〉

iff c ∈ O















〈

Γ1, Y, ∆, Z, ΛO
I

〉

11.a
=⇒

〈

Y, Ip+1
p+62, Z, Λ

O−{b,c}
I∪{b,c}

〉

〈

Γ2, Y, ∆, Z, ΛO
I

〉

11.b
=⇒

〈

Y, Ip+1
p+62, Z, Λ

O−{a,c}
I∪{a,c}

〉

〈

Γ3, Y, ∆, Z, ΛO
I

〉

11.c
=⇒

〈

Y, Ip+1
p+62, Z, Λ

O−{a,b}
I∪{a,b}

〉

Figure 2: Compilation of all gadget properties. As a general rule, X, Y , Z can be any sequences, O and I any disjoint subsets
of J1 ; mK. See respective definitions and properties for specific constraints and notations
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V

S2

S1 keyp1
. . . keypq

keyn1
. . . keyn′

q V2

V1 keyn1
. . . keyn′

q

keyp1
. . . keypq

I

keyn1
. . . keyn′

q

keyp1
. . . keypq

Figure 3: Initially, a variable gadget contains mainly the sequence V . Property 9a proves that two paths are possible, leading
to sequences containing either V 1 or V 2. Along the first (resp. second) path, the locks with indices in P (resp. N) are opened.
By Property 9b (resp. c), there exists a path transforming V 1 (resp. V 2) into the identity over Jp+ 1 ; p+ 31K, which opens
the remaining locks.

3.2.2. Variable

In the following two sections, we assume that pΛ and m are two fixed integers, and we define the
gadget (key1, . . . , keym, test1, . . . , testm,Λ) = Literals(pΛ,m). Thus, we can use elements keyi and testi for
i ∈ J1 ; mK, and sequences ΛO

I for any disjoint subsets O and I of J1 ; mK.
We now define a gadget simulating a boolean variable xi. It holds two series of key elements: the ones

with indices in P (resp. N) open the locks corresponding to literals of the form xi (resp. ¬xi). When the
triggering element, ν, is brought to the head, a choice has to be made between P and N , and the locks
associated with the chosen set (and only them) are opened.

Definition 6. Let P,N be two disjoint subsets of J1 ; mK (P = {p1, p2, . . . , pq}, N = {n1, n2, . . . , nq′}) and
p be an integer, Variable(P,N, p) is defined by

Variable(P,N, p) = (ν, V,D)

where (take, put, G,H) = Hook(p+ 2), (E,F ) = Fork(p+ 14),

in ν = take
V =

〈

G, E, keyp1
, . . . , keypq

, put, keyn1
, . . . , keynq′

, F, H
〉

D = Dock(p+ 2, p+ 29)

Given a variable gadget (ν, V,D) = Variable(P,N, p), we write

V 1 =
〈

G′′, keyn1
, . . . , keynq′

, F 1, H ′′
〉

V 2 =
〈

G′′, keypq
, . . . , keyp1

, F 2, H ′′
〉

where G′′, H ′′, F 1, F 2, come from the definitions of Hook (Definition 3) and Fork (Definition 4).

The following property determines the possible behavior of a variable gadget. It is illustrated by Figure 3.

Property 9. Let P , N be two disjoint subsets of J1 ; mK, p be an integer, X and Y be two sequences, O,
I be two disjoint subsets of J1 ; mK, and (ν, V,D) = Variable(P,N, p). For sub-property (a.) we require that
(P ∪N) ∩ (O ∪ I) = ∅, for (b.) that N ∩ (O ∪ I) = ∅, and for (c.) that P ∩ (O ∪ I) = ∅ (these conditions
are in fact necessarily satisfied by construction since all sequences considered are permutations). We have

a.
〈

ν, X, V, Y, ΛO
I

〉

=⇒

{

〈

X, V 1, Y, ΛO∪P
I

〉

,
〈

X, V 2, Y, ΛO∪N
I

〉

}

b.
〈

V 1, X, D, Y, ΛO
I

〉

=⇒
〈

X, Ip+1
p+31, Y, Λ

O∪N
I

〉

c.
〈

V 2, X, D, Y, ΛO
I

〉

=⇒
〈

X, Ip+1
p+31, Y, Λ

O∪P
I

〉
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Proof.

a.
〈

ν, X, V, Y, ΛO
I

〉

=
〈

take, X, G, E, keyp1
, . . . , keypq

, put, keyn1
, . . . , keynq′

, F, H, Y, ΛO
I

〉

6.a
=⇒

〈

E, keyp1
, . . . , keypq

, put, keyn1
, . . . , keynq′

, F , G′, ⋆X, H ′, Y, ΛO
I

〉

7.a
=⇒ {S1, S2}

First, S1 =
〈

keyp1
, keyp2

, . . . , keypq
, put, keyn1

, . . . , keynq′
, F 1, G′, ⋆X, H ′, Y, ΛO

I

〉

8.a
=⇒

〈

keyp2
, . . . , keypq

, put, keyn1
, . . . , keynq′

, F 1, G′, ⋆X, H ′, Y, Λ
O∪{p1}
I

〉

...

8.a
=⇒

〈

put, keyn1
, . . . , keynq′

, F 1, G′, ⋆X, H ′, Y, ΛO∪P
I

〉

6.b
=⇒

〈

X, G′′, keyn1
, . . . , keynq′

, F 1, H ′′, Y, ΛO∪P
I

〉

=
〈

X, V 1, Y, ΛO∪P
I

〉

Second, S2 =
〈

keyn
q′
, keynq′−1

, . . . , keyn1
, put, keypq

, . . . , keyp1
, F 2, G′, ⋆X, H ′, Y, ΛO

I

〉

8.a
=⇒

〈

keyn
q′

−1
, . . . , keyn1

, put, keypq
, . . . , keyp1

, F 2, G′, ⋆X, H ′, Y, Λ
O∪{n

q′}

I

〉

...

8.a
=⇒

〈

put, keypq
, . . . , keyp1

, F 2, G′, ⋆X, H ′, Y, ΛO∪N
I

〉

6.b
=⇒

〈

X, G′′, keypq
, . . . , keyp1

, F 2, H ′′, Y, ΛO∪N
I

〉

=
〈

X, V 2, Y, ΛO∪N
I

〉

b.
〈

V 1, X, D, Y, ΛO
I

〉

=
〈

G′′, keyn1
, . . . , keynq′

, F 1, H ′′, X, D, Y, ΛO
I

〉

6.c
=⇒

〈

keyn1
, keyn2

, . . . , keynq′
, F 1, ⋆Ip+3

p+14, X, D, Y, ΛO
I

〉

8.a
=⇒

〈

keyn2
, . . . , keynq′

, F 1, ⋆Ip+3
p+14, X, D, Y, Λ

O∪{n1}
I

〉

...

8.a
=⇒

〈

F 1, ⋆Ip+3
p+14, X, D, Y, ΛO∪N

I

〉

7.b
=⇒

〈

⋆
I

p+15

p+29 ,
⋆
I

p+3

p+14, X, D, Y, ΛO∪N
I

〉

4.
=⇒

〈

X, Ip+1
p+31, Y, Λ

O∪N
I

〉

c.
〈

V 2, X, D, Y, ΛO
I

〉

=
〈

G′′, keypq
, . . . , keyp1

, F 2, H ′′, X, D, Y, ΛO
I

〉

6.c
=⇒

〈

keypq
, keypq−1

, . . . , keyp1
, F 2, ⋆Ip+3

p+14, X, D, Y, ΛO
I

〉

8.a
=⇒

〈

keypq−1
, . . . , keyp1

, F 2, ⋆Ip+3
p+14, X, D, Y, Λ

O∪{pq}
I

〉

...

8.a
=⇒

〈

F 2, ⋆Ip+3
p+14, X, D, Y, ΛO∪P

I

〉

7.c
=⇒

〈

⋆
I

p+15

p+29 ,
⋆
I

p+3

p+14, X, D, Y, ΛO∪P
I

〉

4.
=⇒

〈

X, Ip+1
p+31, Y, Λ

O∪P
I

〉
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Γ

S0

S3

S1

S2

Γ1

Γ2

Γ3

S4

S5

I

testc

testa

testb

S4

S5

testb

testa

testa

testb

testb

testa

testc

Figure 4: Initially, a clause gadget contains mainly the sequence Γ. Property 10 proves that three paths may be possible,
leading to sequences containing either Γ1, Γ2 or Γ3. Because of the test elements, each path requires one lock to be open
(either a, b or c). By Property 11a (resp. b, c), there exists a path transforming Γ1 (resp. Γ2, Γ3) into the identity over
Jp+ 1 ; p+ 62K, provided the remaining locks are open.

3.2.3. Clause

The following gadget simulates a 3-clause in a boolean formula. It holds the test elements for three locks,
corresponding to three literals. When the triggering element, γ, is at the head of a sequence, three distinct
efficient paths may be followed. In each such path, one of the three locks is tested: in other words, any
efficient path leading to the identity requires one of the locks to be open.

Definition 7. Let a, b, c ∈ J1 ; mK be pairwise distinct integers and p be an integer, Clause(a, b, c, p) is
defined by

Clause(a, b, c, p) = (γ,Γ,∆)

where (E1, F1) = Fork(p+ 2), (take1, put1, G1, H1) = Hook(p+ 21),
(E2, F2) = Fork(p+ 45), (take2, put2, G2, H2) = Hook(p+ 33),

in γ = take1
Γ =

〈

G1, E1, take2, put1, testc, F1, G2, E2, testa, put2, testb, F2, H2, H1

〉

∆ =
〈

Dock(p+ 2, p+ 17), Dock(p+ 21, p+ 60)
〉

Given a clause gadget (γ,Γ,∆) = Clause(a, b, c, p), we write

Γ1 =
〈

G′′
1 , testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , H

′′
1

〉

Γ2 =
〈

G′′
1 , testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , H

′′
1

〉

Γ3 =
〈

G′′
1 , take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, H

′′
1

〉

The following two properties determine the possible behavior of a clause gadget. They are illustrated by
Figure 4. The main point is that, starting from a sequence

〈

γ, X, Γ, Y, ΛO
I

〉

, there is one efficient path for
each true literal in the clause (ie. each literal with index in O).

Property 10. Let X and Y be any sequences, and O, I be two disjoint subsets of J1 ; mK. We have

〈

γ, X, Γ, Y, ΛO
I

〉

=⇒ T,

12



where T contains from 0 to 3 sequences, and is defined by:
〈

X, Γ1, Y, Λ
O−{a}
I∪{a}

〉

∈ T iff a ∈ O
〈

X, Γ2, Y, Λ
O−{b}
I∪{b}

〉

∈ T iff b ∈ O
〈

X, Γ3, Y, Λ
O−{c}
I∪{c}

〉

∈ T iff c ∈ O

Proof.
〈

γ, X, Γ, Y, ΛO
I

〉

=
〈

take1, X, G1, E1, take2, put1, testc, F1, G2, E2, testa, put2, testb, F2, H2, H1, Y, Λ
O
I

〉

6.a
=⇒

〈

E1, take2, put1, testc, F1, G2, E2, testa, put2, testb, F2, H2, G
′
1,

⋆X, H ′
1, Y, Λ

O
I

〉

7.a
=⇒ {S0, S3}

S0 =
〈

take2, put1, testc, F
1
1 , G2, E2, testa, put2, testb, F2, H2, G

′
1,

⋆X, H ′
1, Y, Λ

O
I

〉

6.a
=⇒

〈

E2, testa, put2, testb, F2, G
′
2,

⋆F 1
1 , testc, put1, H

′
2, G

′
1,

⋆X, H ′
1, Y, Λ

O
I

〉

7.a
=⇒ {S1, S2}

S1 =
〈

testa, put2, testb, F
1
2 , G

′
2,

⋆F 1
1 , testc, put1, H

′
2, G

′
1,

⋆X, H ′
1, Y, Λ

O
I

〉

if a /∈ O then S1
8.c
→ ⊥

if a ∈ O then

S1
8.b
=⇒

〈

put2, testb, F
1
2 , G

′
2
, ⋆F 1

1 , testc, put1, H
′
2
, G′

1,
⋆X, H ′

1, Y, Λ
O−{a}
I∪{a}

〉

6.b
=⇒

〈

put1, testc, F
1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , G

′
1
, ⋆X, H ′

1
, Y, Λ

O−{a}
I∪{a}

〉

6.b
=⇒

〈

X, G′′
1 , testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , H

′′
1 , Y, Λ

O−{a}
I∪{a}

〉

=
〈

X, Γ1, Y, Λ
O−{a}
I∪{a}

〉

S2 =
〈

testb, put2, testa, F
2
2 , G

′
2,

⋆F 1
1 , testc, put1, H

′
2, G

′
1,

⋆X, H ′
1, Y, Λ

O
I

〉

if b /∈ O then S2
8.c
→ ⊥

if b ∈ O then

S2
8.b
=⇒

〈

put2, testa, F
2
2 , G

′
2
, ⋆F 1

1 , testc, put1, H
′
2
, G′

1,
⋆X, H ′

1, Y, Λ
O−{b}
I∪{b}

〉

6.b
=⇒

〈

put1, testc, F
1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , G

′
1
, ⋆X, H ′

1
, Y, Λ

O−{b}
I∪{b}

〉

6.b
=⇒

〈

X, G′′
1 , testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , H

′′
1 , Y, Λ

O−{b}
I∪{b}

〉

=
〈

X, Γ2, Y, Λ
O−{b}
I∪{b}

〉

S3 =
〈

testc, put1, take2, F
2
1 , G2, E2, testa, put2, testb, F2, H2, G

′
1,

⋆X, H ′
1, Y, Λ

O
I

〉

if c /∈ O then S3
8.c
→ ⊥

if c ∈ O then

S3
8.b
=⇒

〈

put1, take2, F
2
1 , G2, E2, testa, put2, testb, F2, H2, G

′
1
, ⋆X, H ′

1
, Y, Λ

O−{c}
I∪{c}

〉

6.b
=⇒

〈

X, G′′
1 , take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, H

′′
1 , Y, Λ

O−{c}
I∪{c}

〉

=
〈

X, Γ3, Y, Λ
O−{c}
I∪{c}

〉
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Property 11. Let Y and Z be any sequences, and O, I be two disjoint subsets of J1 ; mK. We have

a. If b, c ∈ O, then
〈

Γ1, Y, ∆, Z, ΛO
I

〉

=⇒
〈

Y, Ip+1
p+62, Z, Λ

O−{b,c}
I∪{b,c}

〉

b. If a, c ∈ O, then
〈

Γ2, Y, ∆, Z, ΛO
I

〉

=⇒
〈

Y, Ip+1
p+62, Z, Λ

O−{a,c}
I∪{a,c}

〉

c. If a, b ∈ O, then
〈

Γ3, Y, ∆, Z, ΛO
I

〉

=⇒
〈

Y, Ip+1
p+62, Z, Λ

O−{a,b}
I∪{a,b}

〉

Proof.

a.
〈

Γ1, Y, ∆, Z, ΛO
I

〉

=
〈

G′′
1
, testc, F

1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 , H

′′
1
, Y, D1, D2, Z, Λ

O
I

〉

6.c
=⇒

〈

testc, F
1
1 , G

′′
2 , testb, F

1
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O
I

〉

8.b
=⇒

〈

F 1
1
, G′′

2 , testb, F
1
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{c}
I∪{c}

〉

7.b
=⇒

〈

⋆
I

p+3

p+17, G
′′
2 , testb, F

1
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{c}
I∪{c}

〉

4.
=⇒

〈

G′′
2
, testb, F

1
2 , H

′′
2
, ⋆Ip+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{c}
I∪{c}

〉

6.c
=⇒

〈

testb, F
1
2 ,

⋆Ip+34
p+45 ,

⋆Ip+22
p+33 , Y, I

p+1
p+19, D2, Z, Λ

O−{c}
I∪{c}

〉

8.b
=⇒

〈

F 1
2
, ⋆Ip+34

p+45 ,
⋆Ip+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{b,c}
I∪{b,c}

〉

7.b
=⇒

〈

⋆
I

p+46

p+60 ,
⋆
I

p+34

p+45 ,
⋆
I

p+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{b,c}
I∪{b,c}

〉

4.
=⇒

〈

Y, Ip+1
p+19, I

p+20
p+62 , Z, Λ

O−{b,c}
I∪{b,c}

〉

=
〈

Y, Ip+1
p+62, Z, Λ

O−{b,c}
I∪{b,c}

〉

b.
〈

Γ2, Y, ∆, Z, ΛO
I

〉

=
〈

G′′
1
, testc, F

1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 , H

′′
1
, Y, D1, D2, Z, Λ

O
I

〉

6.c
=⇒

〈

testc, F
1
1 , G

′′
2 , testa, F

2
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O
I

〉

8.b
=⇒

〈

F 1
1
, G′′

2 , testa, F
2
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{c}
I∪{c}

〉

7.b
=⇒

〈

⋆
I

p+3

p+17, G
′′
2 , testa, F

2
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{c}
I∪{c}

〉

4.
=⇒

〈

G′′
2
, testa, F

2
2 , H

′′
2
, ⋆Ip+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{c}
I∪{c}

〉

6.c
=⇒

〈

testa, F
2
2 ,

⋆Ip+34
p+45 ,

⋆Ip+22
p+33 , Y, I

p+1
p+19, D2, Z, Λ

O−{c}
I∪{c}

〉

8.b
=⇒

〈

F 2
2
, ⋆Ip+34

p+45 ,
⋆Ip+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{a,c}
I∪{a,c}

〉

7.c
=⇒

〈

⋆
I

p+46

p+60 ,
⋆
I

p+34

p+45 ,
⋆
I

p+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{a,c}
I∪{a,c}

〉

4.
=⇒

〈

Y, Ip+1
p+19, I

p+20
p+62 , Z, Λ

O−{a,c}
I∪{a,c}

〉

=
〈

Y, Ip+1
p+62, Z, Λ

O−{a,c}
I∪{a,c}

〉

c.
〈

Γ3, Y, ∆, Z, ΛO
I

〉

=
〈

G′′
1
, take2, F

2
1 , G2, E2, testa, put2, testb, F2, H2, H

′′
1
, Y, D1, D2, Z, Λ

O
I

〉

6.c
=⇒

〈

take2, F
2
1 , G2, E2, testa, put2, testb, F2, H2,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O
I

〉

6.a
=⇒

〈

E2, testa, put2, testb, F2, G
′
2,

⋆F 2
1 , H

′
2,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O
I

〉

7.a
=⇒ {S4, S5}
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S4 =
〈

testa, put2, testb, F
1
2 , G

′
2,

⋆F 2
1 , H

′
2,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O
I

〉

8.b
=⇒

〈

put2, testb, F
1
2 , G

′
2
, ⋆F 2

1 , H
′
2
, ⋆Ip+22

p+33 , Y, D1, D2, Z, Λ
O−{a}
I∪{a}

〉

6.b
=⇒

〈

F 2
1
, G′′

2 , testb, F
1
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉

7.c
=⇒

〈

⋆
I

p+3

p+17, G
′′
2 , testb, F

1
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉

4.
=⇒

〈

G′′
2
, testb, F

1
2 , H

′′
2
, ⋆Ip+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{a}
I∪{a}

〉

6.c
=⇒

〈

testb, F
1
2 ,

⋆Ip+34
p+45 ,

⋆Ip+22
p+33 , Y, I

p+1
p+19, D2, Z, Λ

O−{a}
I∪{a}

〉

8.b
=⇒

〈

F 1
2
, ⋆Ip+34

p+45 ,
⋆Ip+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{a,b}
I∪{a,b}

〉

7.b
=⇒

〈

⋆
I

p+46

p+60 ,
⋆
I

p+34

p+45 ,
⋆
I

p+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{a,b}
I∪{a,b}

〉

4.
=⇒

〈

Y, Ip+1
p+19, I

p+20
p+62 , Z, Λ

O−{a,b}
I∪{a,b}

〉

=
〈

Y, Ip+1
p+62, Z, Λ

O−{a,b}
I∪{a,b}

〉

S5 =
〈

testb, put2, testa, F
2
2 , G

′
2,

⋆F 2
1 , H

′
2,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O
I

〉

8.b
=⇒

〈

put2, testa, F
2
2 , G

′
2
, ⋆F 2

1 , H
′
2
, ⋆Ip+22

p+33 , Y, D1, D2, Z, Λ
O−{a}
I∪{a}

〉

6.b
=⇒

〈

F 2
1
, G′′

2 , testa, F
2
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉

7.c
=⇒

〈

⋆
I

p+3

p+17, G
′′
2 , testa, F

2
2 , H

′′
2 ,

⋆Ip+22
p+33 , Y, D1, D2, Z, Λ

O−{a}
I∪{a}

〉

4.
=⇒

〈

G′′
2
, testa, F

2
2 , H

′′
2
, ⋆Ip+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{a}
I∪{a}

〉

6.c
=⇒

〈

testa, F
2
2 ,

⋆Ip+34
p+45 ,

⋆Ip+22
p+33 , Y, I

p+1
p+19, D2, Z, Λ

O−{a}
I∪{a}

〉

8.b
=⇒

〈

F 2
2
, ⋆Ip+34

p+45 ,
⋆Ip+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{a,b}
I∪{a,b}

〉

7.c
=⇒

〈

⋆
I

p+46

p+60 ,
⋆
I

p+34

p+45 ,
⋆
I

p+22

p+33 , Y, I
p+1
p+19, D2, Z, Λ

O−{a,b}
I∪{a,b}

〉

4.
=⇒

〈

Y, Ip+1
p+19, I

p+20
p+62 , Z, Λ

O−{a,b}
I∪{a,b}

〉

=
〈

Y, Ip+1
p+62, Z, Λ

O−{a,b}
I∪{a,b}

〉

3.3. Reduction

Let φ be a boolean formula over l variables in conjunctive normal form, such that each clause contains
exactly three literals. Let k be the number of clauses, let m = 3k be the total number of literals, and let
{λ1, . . . , λm} be the set of literals. Let n = 31l + 62k + 12m (thus, n = 31l + 98k).
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Definition 8. We define the sequence Sφ as the permutation of J1 ; nK obtained by:

(key1, . . . , keym, test1, . . . , testm,Λ) = Literals(31l + 62k,m)

∀i ∈ J1 ; lK , Pi = {j ∈ J1 ; mK | λj = xi}
Ni = {j ∈ J1 ; mK | λj = ¬xi}
(νi, Vi, Di) = Variable(Pi, Ni, 31(i− 1)),

∀i ∈ J1 ; kK , (ai, bi, ci) = indices such that the i-th clause of φ is λai
∨ λbi ∨ λci

(γi,Γi,∆i) = Clause(ai, bi, ci, 31l + 62(i− 1))

Sφ =
〈

ν1, . . . , νl, γ1, . . . , γk, V1, . . . , Vl,Γ1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,Λ
∅
∅

〉

Two things should be noted in this definition. First, elements keyi and testi are used in the clause and
variable gadgets, although they are not explicitly stated in the parameters (cf. Definitions 6 and 7). Second,
one could assume that literals are sorted in the formula (φ = (λ1 ∨ λ2 ∨ λ3) ∧ . . . ), so that ai = 3i − 2,
bi = 3i− 1 and ci = 3i, but it is not necessary since these values are not used in the following.

We now aim at proving Theorem 1 (p. 21), which states that Sφ is efficiently sortable if and only if the
formula φ is satisfiable. Several preliminary lemmas are necessary, and the overall process is illustrated in
Figure 5.

3.3.1. Variable assignment

Definition 9. Let r ∈ J0 ; lK. An r-assignment is a partition P = (T, F ) of J1 ; rK. An l-assignment is
called a full assignment. Using notations from Definition 8, we define the sequence Sφ[P] by:

For all i ∈ J1 ; rK , V ′
i =

{

V 1
i if i ∈ T

V 2
i if i ∈ F

O =
⋃

i∈T

Pi ∪
⋃

i∈F

Ni

Sφ[P] =
〈

νr+1, . . . , νl, γ1, . . . , γk, V
′
1 , . . . , V

′
r , Vr+1, . . . , Vl,

Γ1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,Λ
O
∅

〉

Property 12. Let r ∈ J0 ; lK with r < l, P = (T, F ) be any r-assignment, P1 = (T ∪ {r + 1}, F ) and
P2 = (T, F ∪ {r + 1}). Then

Sφ[P] =⇒ {Sφ[P1], Sφ[P2]}

Proof. This is a direct application of Property 9.a on variable (νr+1, Vr+1, Dr+1), using sequences:

X =
〈

νr+2, . . . , νl, γ1, . . . , γk, V
′
1 , . . . , V

′
r

〉

Y =
〈

Vr+2, . . . , Vl,Γ1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k

〉

With the following lemma, we ensure that any sequence of efficient flips from Sφ begins with a full
assignment of the boolean variables, and every possible assignment can be reached using only efficient flips.

Lemma 1.
Sφ =⇒ {Sφ[P] | P full assignment}

Proof. We prove Sφ =⇒ {Sφ[P] | P r − assignment} by induction for all r ∈ J0 ; lK, and the lemma is
deduced from the case r = l.
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Sφ =
〈

ν1, . . . , νl, γ1, . . . , γk, V1, . . . , Vl,Γ1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,Λ
∅
∅

〉

ν1 V ′
1

ν2 V ′
2

νl V ′
l

γ1 Γ′
1

γ2 Γ′
2

γk Γ′
k

I

Open loks in P1

V1 7→ V ′
1 = V 1

1

Open loks in N1

V1 7→ V ′
1 = V 2

1

Open remainingloks in P1 ∪N1

D1 7→ I... ... ... ...
Open loks in Pl

Vl 7→ V ′
l = V 1

l

Open loks in Nl

Vl 7→ V ′
l = V 2

l

Open remainingloks in Pl ∪Nl

Dl 7→ ITest lok a1
Γ1 7→ Γ′

1 = Γ1
1

Test lok b1
Γ1 7→ Γ′

1 = Γ2
1

Test lok c1
Γ1 7→ Γ′

1 = Γ3
1

Test remainingloks in {a1, b1, c1}
∆1 7→ I... ... ... ...

Test lok ak
Γk 7→ Γ′

k = Γ1
k

Test lok bk
Γk 7→ Γ′

k = Γ2
k

Test lok ck
Γk 7→ Γ′

k = Γ3
k

Test remainingloks in {ak, bk, ck}
∆k 7→ I

Figure 5: Description of an efficient sorting of Sφ (Definition 8). Circular nodes correspond to landmarks, that is, head elements
or sequences especially relevant. We start with the head element of Sφ: ν1. From each landmark, one, two or three paths are
possible before reaching the next landmark, each path having its own effects, stated in rectangles, on the sequence. Possible
effects are: transforming a subsequence of Sφ (symbol 7→), opening a lock, testing a lock (such a path requires the lock to
be open); indices are removed from identity sequences (I) for readability. The top-left quarter, from ν1 to νl, is studied in
Section 3.3.1; the bottom-left quarter, from γ1 to γk, is studied in Section 3.3.2; and the right half, from V ′

1
to Γ′

k
, is studied

in Section 3.3.3.
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There is only one 0-assignment, which is P0 = (∅, ∅), and Sφ = Sφ[P0]. Consider now any r < l. We use
notations P1 and P2 from Property 12. Then any (r + 1)-assignment can be written P1 or P2, where P is
some r-assignment. We have

Sφ =⇒ {Sφ[P] | P r-assignment} by induction hypothesis

Sφ =⇒ {Sφ[P1], Sφ[P2] | P r-assignment} by Property 12

= {Sφ[P
′] | P ′ (r + 1)-assignment}

3.3.2. Going through clauses

Now that each variable is assigned a boolean value, we need to verify with each clause that this assignment
satisfies the formula φ. This is done by selecting, for each clause, a literal which is true, and testing the
corresponding lock. As in Definition 8, for any i ∈ J1 ; kK we write (ai, bi, ci) the indices such that the i-th
clause of φ is λai

∨ λbi ∨ λci (thus, ai, bi, ci ∈ J1 ; mK).

Definition 10. Let t ∈ J0 ; kK and P be a full assignment. A t-selection σ is a subset of J1 ; mK such that

• |σ| = t

• for each i ∈ J1 ; tK, |{ai, bi, ci} ∩ σ| = 1

A t-selection σ and a full assignment P = (T, F ) are compatible, if, for every i ∈ σ, literal λi is true
according to assignment P (that is, λi = xj and j ∈ T , or λi = ¬xj and j ∈ F ).

A k-selection is called a full selection. Given a t-selection σ and a full assignment P = (T, F ) which are
compatible, we define the sequence Sφ[P, σ] by:

For all i ∈ J1 ; lK , V ′
i =

{

V 1
i if i ∈ T

V 2
i if i ∈ F

For all i ∈ J1 ; tK , Γ′
i =











Γ1
i if ai ∈ σ

Γ2
i if bi ∈ σ

Γ3
i if ci ∈ σ

O =
⋃

i∈T

Pi ∪
⋃

i∈F

Ni − σ

I = σ

Sφ[P, σ] =
〈

γt+1, . . . , γk, V
′
1 , . . . , V

′
l ,Γ

′
1, . . . ,Γ

′
t,Γt+1, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,Λ

O
I

〉

We now aim at proving Lemma 2, which ensures that after the truth assignment, every efficient path
starting from Sφ needs to select a literal in each clause, under the constraint that the selection is compatible
with the assignment. We will use the following two properties.

Property 13. Let P be a full assignment and t ∈ J0 ; kK, t < k. Let σ′ be a (t + 1)-selection compatible
with P, then there exists a t-selection σ compatible with P such that σ ⊂ σ′.

Proof. It is obtained by σ = σ′ − {at+1, bt+1, ct+1}. It is trivially a t-selection included in σ, and it is
compatible with P (all selected literals in σ are also selected in σ′, and thus are true according to P).

Property 14. Let t ∈ J0 ; kK, t < k, P be a full assignment, and σ be a t-selection compatible with P.

Sφ[P, σ] =⇒ {Sφ[P, σ′] | σ′ (t+ 1)-selection compatible with P;σ ⊂ σ′}

Note that the right-hand side can be the empty set, in which case Sφ[P, σ] =⇒ ∅.
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Proof. First note that there are 3 (t + 1)-selections σ′ such that σ ⊂ σ′, and they are σ′
1 = σ ∪ {at+1},

σ′
2 = σ∪{bt+1}, and σ′

3 = σ∪{ct+1}. Since σ is compatible with P, σ′
1 is compatible with P iff literal λat+1

is true in P (and similarly with couples (σ′
2, λbt+1

) and (σ′
3, λct+1

)). We now define sequences X and Y and
sets I and O such that Sφ[P, σ] =

〈

γt+1, X, Γt+1, Y, Λ
O
I

〉

, that is:

X =
〈

γt+2, . . . , γk, V
′
1 , . . . , V

′
l ,Γ

′
1, . . . ,Γ

′
t

〉

Y =
〈

Γt+2, . . . ,Γk, D1, . . . , Dl,∆1, . . . ,∆k,
〉

O =
⋃

i∈T

Pi ∪
⋃

i∈F

Ni − σ

I = σ

Using Property 10 on clause gadget (γt+1,Γt+1,∆t+1), we obtain:

Sφ[P, σ] =⇒ T

where T is defined by:

〈

X, Γ1
t+1, Y, Λ

O−{at+1}
I∪{at+1}

〉

∈ T iff at+1 ∈ O
〈

X, Γ2
t+1, Y, Λ

O−{bt+1}
I∪{bt+1}

〉

∈ T iff bt+1 ∈ O
〈

X, Γ3
t+1, Y, Λ

O−{ct+1}
I∪{ct+1}

〉

∈ T iff ct+1 ∈ O

Note that at+1 /∈ σ, hence at+1 ∈ O iff ∃i ∈ T s.t. at+1 ∈ Pi or ∃i ∈ F s.t. at+1 ∈ Ni. Equivalently,
at+1 ∈ O iff λat+1

is a positive occurrence of a variable assigned True in P, or a negative occurrence of a
variable assigned False in P. Finally, at+1 ∈ O iff σ′

1 is compatible with P. Likewise, bt+1 ∈ O iff σ′
2 is

compatible with P, and ct+1 ∈ O iff σ′
3 is compatible with P.

Sφ[P, σ′
1] =

〈

X, Γ1
t+1, Y, Λ

O−{at+1}
I∪{at+1}

〉

∈ T iff σ′
1 is compatible with P

Sφ[P, σ′
2] =

〈

X, Γ2
t+1, Y, Λ

O−{bt+1}
I∪{bt+1}

〉

∈ T iff σ′
2 is compatible with P

Sφ[P, σ′
3] =

〈

X, Γ3
t+1, Y, Λ

O−{ct+1}
I∪{at+1}

〉

∈ T iff σ′
3 is compatible with P

Thus T is indeed the set of sequences Sφ[P, σ′] where σ′ is a (t + 1)-selection which contains σ and is
compatible with P: the property is proved.

Lemma 2. Let P be a full assignment. Then

Sφ[P] =⇒ {Sφ[P, σ] | σ full selection compatible with P}

Proof. The proof follows the same pattern as the one of Lemma 1, that is, we prove

Sφ[P] =⇒ {Sφ[P, σ] | σ t-selection compatible with P}

by induction for all t ∈ J0 ; kK, and the lemma is deduced from the case t = k.
There is only one 0-selection, which is σ0 = ∅, it is compatible with P, and Sφ[P] = Sφ[P, σ0]. Consider

now any t < k. We have

Sφ[P] =⇒ {Sφ[P, σ] | σ t-selection compatible with P} (by induction hypothesis)

Sφ[P] =⇒ {Sφ[P, σ′] | σ′ (t+ 1)-selection compatible with P and

∃σ t-selection compatible with P, σ ⊂ σ′} by Property 14

= {Sφ[P, σ′] | σ′ (t+ 1)-selection compatible with P} by Property 13
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3.3.3. Beyond clauses

Lemma 3. Let P be a full assignment and σ be a full selection, such that P and σ are compatible (provided
such a pair exists for φ). Then

Sφ[P, σ] =⇒ I1
n

Proof. Write P = (T, F ). Since σ is a full selection, Sφ[P, σ] can be written (see Definition 10):

For all i ∈ J1 ; lK , V ′
i =

{

V 1
i if i ∈ T

V 2
i if i ∈ F

For all i ∈ J1 ; kK , Γ′
i =











Γ1
i if ai ∈ σ

Γ2
i if bi ∈ σ

Γ3
i if ci ∈ σ

O =
⋃

i∈T

Pi ∪
⋃

i∈F

Ni − σ

I = σ

Sφ[P, σ] =
〈

V ′
1 , . . . , V

′
l ,Γ

′
1, . . . ,Γ

′
k, D1, . . . , Dl,∆1, . . . ,∆k,Λ

O
I

〉

We extend the definition of set O to Or, for any r ∈ J0 ; lK, as follows:

Or =
⋃

0<i≤r

(Pi ∪Ni) ∪
⋃

i∈T

Pi ∪
⋃

i∈F

Ni − σ

Note that O0 = O, and that Ol = J1 ; mK − σ.

Sφ[P, σ] =
〈

V ′
1
, . . . , V ′

l ,Γ
′
1, . . . ,Γ

′
k,D1, . . . , Dl,∆1, . . . ,∆k,Λ

O0

I

〉

9.b/c
=⇒

〈

V ′
2
, . . . , V ′

l ,Γ
′
1, . . . ,Γ

′
k, I

1
31,D2 . . . , Dl,∆1, . . . ,∆k,Λ

O1

I

〉

9.b/c
=⇒

〈

V ′
3
, . . . , V ′

l ,Γ
′
1, . . . ,Γ

′
k, I

1
31, I

32
62 ,D3 . . . , Dl,∆1, . . . ,∆k,Λ

O2

I

〉

· · ·

9.b/c
=⇒

〈

Γ′
1, . . . ,Γ

′
k,I

1
31
,I32

62
, . . . ,I

31l−30

31l ,∆1, . . . ,∆k,Λ
Ol

I

〉

=
〈

Γ′
1, . . . ,Γ

′
k, I

1
31l,∆1, . . . ,∆k,Λ

Ol

I

〉

Finally, for the last part, we use a similar procedure, with the following sets, for t ∈ J0 ; kK:

O′
t = J1 ; mK −



σ ∪
⋃

0<i≤t

{ai, bi, ci}





I ′t = σ ∪
⋃

0<i≤t

{ai, bi, ci}

Note that O′
0 = Ol, I

′
0 = I, O′

k = ∅, I ′k = J1 ; mK, and more importantly, for i > t, assuming that ai ∈ σ
(cases bi ∈ σ and ci ∈ σ are similar), then ai ∈ I ′t, bi ∈ O′

t and ci ∈ O′
t. Hence we can successively apply

Property 11 (either .a, .b or .c) on each clause gadgets.
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〈

Γ′
1
, . . . ,Γ′

k, I
1
31l,∆1, . . . ,∆k,Λ

O′

0

I′

0

〉

11.
=⇒

〈

Γ′
2
, . . . ,Γ′

k, I
1
31l, I

31l+1
31l+62,∆2, . . . ,∆k,Λ

O′

1

I′

1

〉

11.
=⇒

〈

Γ′
3
, . . . ,Γ′

k, I
1
31l, I

31l+1
31l+62, I

31l+63
31l+124,∆3, . . . ,∆k,Λ

O′

2

I′

2

〉

· · ·

11.
=⇒

〈

I1
31l,I

31l+1

31l+62,I
31l+63

31l+124, . . . ,I
31l+62k−61

31l+62k ,Λ
O′

k

I′

k

〉

=
〈

I1
31l, I

31l+1
31l+62k,Λ

∅
J1 ;mK

〉

=
〈

I1
31l, I

31l+1
31l+62k, I

31l+62k+1
31l+62k+12m

〉

= I1
n

Theorem 1.
Sφ =⇒ I1

n iff φ is satisfiable.

Proof. Assume first that Sφ =⇒ I1
n. By Lemma 1, since

Sφ =⇒ {Sφ[P] | P full assignment} ,

there exists a full assignment P = (T, F ) such that some path from Sφ to the identity uses Sφ[P]. Note that
Sφ[P] =⇒ I1

n. Now, by Lemma 2, since

Sφ[P] =⇒ {Sφ[P, σ] | σ full selection compatible with P} ,

there exists a full selection σ, compatible with P, such that some path from Sφ[P] to the identity uses
Sφ[P, σ]. Consider the truth assignment xi := True ⇔ i ∈ T . Then each clause of φ contains at least one
literal that is true (the literal whose index is in σ), and thus φ is satisfiable.

Assume now that φ is satisfiable: consider any truth assignment making φ true, write T the set of indices
such that xi = True, and F = J1 ; lK − T . Write also σ a set containing, for each clause of φ, the index of
one literal being true under this assignment. Then σ is a full selection, compatible with the full assignment
P = (T, F ). By Lemmas 1, 2 and 3 respectively, there exist efficient paths Sφ =⇒ Sφ[P], Sφ[P] =⇒ Sφ[P, σ]
and Sφ[P, σ] =⇒ I1

n. Thus sequence Sφ is efficiently sortable.

Using Theorem 1, we can now prove the main result of the paper.

Theorem 2. The following problems are NP-hard:

• Sorting By Prefix Reversals (MIN-SBPR)

• Deciding, given a sequence S, whether S can be sorted in db(S) flips

Proof. By reduction from 3-SAT. Given any formula φ, create Sφ (see Definition 8, the construction requires a
linear time). By Theorem 1, the minimum number of flips necessary to sort Sφ is db(Sφ) iff φ is satisfiable.

4. Conclusion

In this paper, we have shown that the Pancake Flipping problem is NP-hard, thus answering a long-
standing open question. We have also provided a stronger result, namely, deciding whether a permutation
can be sorted with no more than one flip per breakpoint is also NP-hard. However, the approximability of
MIN-SBPR is still open: it can be seen that sequence Sφ can be sorted in db(Sφ) + 2 flips, whatever the
formula φ, hence this construction does not prove the APX-hardness of the problem.

Among related important problems, the last one having an open complexity is now the burnt variant
of the Pancake Flipping problem. An interesting insight into this problem is given in a recent work from
Labarre and Cibulka [17], where the authors characterize a subclass of permutations that can be sorted in
polynomial time, using the breakpoint graph [2, 3]. Another development consists in trying to improve the
approximation ratio of 2 for the Pancake Flipping problem, both in its burnt and unburnt versions.
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