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bLASIM, UMR 5579 CNRS / UCBL, Domaine Scientifique de la Doua, Université Claude Bernard Lyon 1, 69622 Villeurbanne cedex, France

Abstract

A classical Molecular Dynamics code has been developed to simulate dense plasmas i.e. neutral systems of interacting

ions and electrons. Our goal is to design a tool that relies on a reduced set of microscopic mechanisms in order to

obtain solutions of complex time dependent n-body problems and to allow an efficient description of the plasma

states between classical high temperature systems to strongly coupled plasmas. Our present objective is an attempt

to explore the behavior of such a classical approach for typical conditions of warm dense matter. We calculate the

dynamic structure factor in warm dense beryllium by means of our molecular dynamics simulations. The results are

then compared with those obtained within the framework of the random phase approximation (RPA).
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1. Introduction

The purpose of this work is to investigate the dynamical properties of electrons in warm dense plasmas using clas-

sical molecular dynamics techniques. In dense plasmas, electron dynamics is revealed in X-ray Thomson scattering

experiments developed to diagnose electron temperature and density, see Ref. [1] and references therein. Schemat-

ically, a monochromatic incident X-rays, which can penetrate dense and/or compressed matter, couples to electron

density fluctuations and the scattered spectrum shows a central peak surrounded by wings mainly related to the free

electron dynamics characteristics. If the length scale of the electron density fluctuations measured in the scattering

experiment is larger or shorter than the screening length of the interaction potential of the electrons, the collective or

individual behavior of the electrons will be accessed, respectively. Using Thomson scattering as a diagnostic requires

a proper theoretical treatment of the dynamic structure factor (DSF) for the interpretation of spectra. There is still

ongoing research for cases where the warm dense matter (WDM) occurs, which is a complicated state of matter: elec-

tron degeneracy and strong ion-ion coupling mean that neither classical plasma nor solid matter formulations that use

the usual approximations satisfactorily apply. In this context, simulation is a reasonable way to predict the scattering

spectra.

As other approaches to complexity, e.g., quantum molecular dynamics (QMD), classical molecular dynamics

(MD) for two component plasmas (TCP) has to be developed within a framework of constraints and approximations

either grounded in theoretical formulations or for the sake of computational feasibility. TCP-MD proposed in this

work [2, 3], does not make use of the Born-Oppenheimer approximation and relies on a minimum set of microscopic

mechanisms implemented into a numerical code designed to obtain numerical solutions of complex time-dependent

N-body problems.

The advantage of MD is to allow an efficient description of the transition between classical high temperature

systems and strongly coupled plasmas. Conditions at which quantum effects would prevail are not neatly defined.

Bellow we choose to explore the transition between classical and partially degenerate plasmas by comparing TCP-

MD results with those provided by other numerical and theoretical methods. For this purpose it is necessary to use the
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same simulation model over the whole density range. For TCP-MD, all the particles considered are point particles,

thus the main constraint is the need to choose potentials that avoid the short range collapse of ion-electron pairs.

The first advantage of this choice is taken to introduce known ad hoc quantum characteristics of isolated ions, e.g.,

the ionization energy or the diffusive properties of an ion for colliding electrons. The second advantage is that one

gains the ability to describe the ion-electron coupling accounting for mixtures of ions undergoing changes of their

ionization stages. Note that the coupling of electrons with radiation is ignored. Within this classical scheme the

energy of electrons is continuous. The lowest energy of an electron depends on all the charges including the closest

ion. The notion of discrete energy for the ionic excited states is here replaced by its continuous equivalent. Depending

on its total energy and its nearest neighbor ion, an electron is either trapped or free.

One postulates that molecular dynamics of a neutral system of ions and electrons with soft potentials, has stable

solutions. Ignoring possible numerical drifts, stable here means that inside the simulation cell, temperature and

potential energy fluctuate around averages. The way to drive the system into such a state, i.e., to reach a suitable

phase space trajectory, is in itself a major problem. The simplest method is to initiate the system into a unequilibrated

state then use an empirical procedure that constrains its evolution to approach an equilibrium state. The possibility of

using such a procedure takes advantage of TCP-MD, which is designed to follow the evolution of a system of ions

and electrons out of equilibrium.

Below the following points will be discussed: First, the simulation model based on approximate charge-charge

potentials together with a three-body collisional ionization/recombination mechanism is presented. Second, the tech-

nique used to obtain the collective behavior of the free electrons from the TCP-MD is described. Finally, the model

and techniques are illustrated for the case of warm dense beryllium.

2. Two component plasma molecular dynamics simulations.

Classical molecular dynamics for two component plasmas, i.e., for mixture of interacting ions and electrons has

proven useful, see for example [4, 5, 6]. It complements QMD to span the whole domain of dense plasmas, from solid

to high energy matter. The specificity of the present model relies on the choice of the charge-charge potentials and

a mechanism of ionization/recombination allowing one to model systems with ions in variable ionization states. The

MD simulations reported below are standard in the sense that a finite number of particles is considered in a cubic cell.

The velocity-Verlet algorithm is used to propagate the dynamics. The time step has to be chosen to be sufficiently

small enough to allow a proper description of electron motion. This requirement leads to a technical difficulty since

the total simulated time necessary to obtain relevant statistics is governed by the mobility of ions of the system.

Here we apply periodic boundary conditions to the cubic simulation cell together with the minimal image convention

convention to simulate an infinite system. In the following, several useful statistical data are sampled when the system

is considered in a stationary state.

2.1. Soft potentials

The ion-ion and electron-electron interactions are taken to be

V12(r) = Z1Z2e2e−r/λ/r (1)

where Z1Z2 is positive. For practical purposes, the Coulomb interactions have been screened at a distance λ ≃ L/2, of

the order of the cubic cell size L. This screening is compatible with the usual periodic boundary conditions in the MD

simulation and given that the interactions between charges introduce a physical screening at much shorter distances, it

does not affect any of the properties considered in this work. This point has been checked numerically by increasing

the box size. The electron-electron potential does not account for degeneracy. The choice of a repulsive potential that

excludes short distance location of particles of the same sign is required to guarantee the exchange of the mechanical

energy between positive and negative charges. The electron dynamics investigated is not that of a jellium model [7, 8]

and, thus, has to account for the ion potential wells.

In contrast, electron-ion interactions are attractive and therefore configurations involving electron-ion distances of

the order of the de Broglie wavelength or shorter have to be considered. At such distances, the Coulomb interaction

must be regularized. A standard regularized potential is as follow, [9]

Vie(r) = −Zie
2(1 − e−r/δ)e−r/λ/r (2)
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where δ is the short range regularization parameter. Regularization provides well-defined classical physics for opposite

sign charge systems, and allows application of the N-body methods of classical statistical mechanics.

A great deal of work on plasmas has been performed with the help of pseudo potentials, [10, 9, 11]. Owing to

the temperature and density domain considered in the present work, the choice of a potential is guided by the study

of the evolution of ion charge populations. For this purpose, δ depends on the instantaneous ionization state in order

to fit the ionization energies of the various ion stages. This choice would not be suitable for electron temperatures

much higher than the highest ionization energy, leading to a plasma of fully ionized ions and electrons. In a potential

given by Eq.2 the minimum energy of an electron located at the same position as an ion of charge Z is Ze2/δ. In what

follows, the kinetic energy required to overcome this minimum potential energy, i.e. Ze2/δ, will be considered as the

ionization energy for an electron trapped by an ion of charge Z. In this model, the zero temperature limit is defined

as a state where each ion has a unit charge and possesses a single electron located at the bottom of its potential well

without relative velocity with respect to the ion.

Other parameters of interest are the average charge-charge distance, r0 = (3/4πn)1/3, defined in terms of the charge

density n, the electron thermal velocity v0 = (kBTe/me)1/2, the ion coupling constant Γ =
< Z >2 e2

r0kBT
where <> is an

ensemble average, the thermal de Broglie wavelengthΛe = h/(2πmekBTe)1/2, the Debye length λD = (kBTe/4πnee2)1/2

and the electron degeneracy parameterΘe =
2mekBTe

~2
(3π2ne)−2/3. Molecular dynamics simulations of two component

plasmas (TCP-MD) are carried out using N electrons and N/Zi ions. The chosen simulation protocol implies that the

electronic density is a fluctuating quantity.

2.2. Collisional ionization recombination protocol in classical MD

Usual collisional models [12] for ionization/recombination in plasmas assume that electrons follow well-defined

trajectories given by their impact parameter and their velocity. Averages are performed to calculate the ionization and

recombination rates and the resulting equilibrium ion charge distributions. This approximation cannot be considered

as relevant for dense plasmas for which the notion of binary electron-ion collision becomes inappropriate. On average,

for a neutral plasma there are Zi electrons per ion and both the trajectory and the energy of an electron are nonlinear

functions of all surrounding charges. In an attempt to describe multi-collisional processes in dense plasmas, we

recently developed more suitable concepts practical to MD simulations. The notion of a shell has been introduced

to characterize the near plasma environment of ions. The shell belonging to a particular ion is composed of its

two nearest neighbor electrons, denoted first nearest (FNe) and second nearest (S Ne) electron. During a time step

[ti, ti + δt], depending on the local configuration space of the plasma (mutual nearest neighbors criterion between the

ion and its FNe) and on the total energy of the two neighbour electrons, the shell is labeled hot, cold or inactive. The

electron total energy criterion takes into account the whole complexity of the potential energy surface around the ion

including the ionization energy lowering at a local level due to the surrounding charges.

A hot shell around one ion starts a ionization process of this ion while for a cold shell a recombination of the

FNe electron occurs. This means that during the time step [ti, ti + δt], an electron appears or disappears and the ion

charge increases or decreases by one unit. After this instantaneous event all the involved particles continue evolving

according to dynamics of the simulation. In this way an electron appearing at the same place as the ion at the time

of an ionization process, is progressively accelerated by its surrounding environment, increasing during this time its

potential energy. Another discontinuous event applied to the same ion is prohibited for the time it takes for an electron

to cross a distance equal to the de Broglie wavelength. This delay is intended to account for time uncertainty of the

ionization process beginning. The recombination process follows the same scheme, i.e., an instantaneous event where

an electron disappears and the ion charge decreases by one. The kinetic energy loss of the recombining electron is

transferred to the S Ne. Then, the process is completed by an energy redistribution among the remaining charges

within the normal simulation process. The actual ionization or recombination of an ion lasts until a new ionization or

a recombination becomes allowed.

Two remarks have to be made: First, the particular forms of the chosen interaction potentials do not allow the

conservation of the total energy during the collisional ionization/recombination process. This leads to non-negligible

energy drift during the equilibration step of the simulation, when all thermodynamic properties, as well as the mean

ion charge, are far from equilibrium. During this initial step the system is driven toward equilibrium using a thermostat

and is not supposed to be used for any measurements. Once the system has reached an equilibrium state, the ionization

3



and recombination rates become equals and the effect of the process reduces to small residual energy fluctuations. At

the same time, the happening of the process become far less frequent than it was in the equilibration step. Second,

this imperfect mechanism allows an efficient evolution of the initial non equilibrated ion - electron system towards

equilibrium.

2.3. Statistical data

In order to extract statistical information from the simulated system a few distributions and time-dependent func-

tions are calculated. These data allow one to check the system behavior as well.

The pair correlation functions carry information about the system structure, i.e., the way charges are statistically

located with respect to the other ions. These functions are often interpreted in terms of screening mechanisms as an

ionic system built with screened forces between ions can have a similar structure than the one obtained from TCP

simulation. Hereafter, the ionic pair correlation functions are compared to those provided by finite-temperature den-

sity functional theory molecular dynamics (FT-DFT-MD) simulations [13] and by screened Coulomb one component

plasma (Yukawa OCP) simulations. FT-DFT-MD simulations, or ab initio simulations, aim to describe fully inter-

acting quantum systems. They include ionic correlations as well as the quantum behavior for the electrons. In the

Yukawa model, only the ions are explicitly considered, and the electrons are treated as a polarizable background. The

Yukawa potential is then given by:

Vii(r) =
Z2

i
e2

r
e−κr (3)

To describe the partially degenerate electrons in WDM, the inverse screening length κ should be calculated by

κ2 = (4e2me/π~
3)
∫

dp fe(p) with fe(p) the Fermi distribution. With this definition, the Thomas-Fermi screening

length is given by λT F =

√

kBTF

6πnee2
with TF =

~
2(3π2ne)2/3

2kBme

. In the following, the two limiting cases corresponding

to the classical Debye-Hückel law and Thomas-Fermi screening are presented.
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Figure 1: Ion-ion pair distribution functions in warm dense beryllium at (a): ρ0 = 1.85 g/cm−3 and Te = Ti = 12 eV and (b): ρ0 = 5.5 g/cm−3 and

Te = Ti = 13 eV. The ion charge states (for the Yukawa OCP simulation) are Z = 2.17 and Z = 2.24 for (a) and (b), respectively.

It can be seen in Fig.1 that our model reproduces rather well the interparticle spacing and the maximum in the

distribution. The Yukawa model, which treats the electrons within linear response, underestimates ion-ion repulsion

at small distances. It can be also noticed that our model reproduces qualitatively the results obtained with “FT-DFT-

MD”. The remaining differences, which appear to be of the same order as the differences between the two OCP

models, could be attributed to the fact that we neglect any electron degeneracy effects.
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The velocity distribution functions of each kind of particles in a pure classical TCP without ionization/recombination

protocol is Maxwellian. In this work, the electron velocity distribution function is non-Maxwellian as ionization/recombination

generates excited electrons with non-thermal velocities. When the electronic temperature decreases, it would be nec-

essary to take into account the Pauli exclusion principle that gives rise to a Fermi-Dirac distribution instead of a

Maxwell-Boltzmann one. This is not done here and the consequences will be commented on in Sec. 3. The elec-

tron energy distribution function is plotted in Fig.2. The distribution function of negative energies is associated with

trapped or free slow electrons. Associated to the knowledge of total number of electrons in the simulation box, this

function allows us to estimate the density of free electrons in our simulations. Moreover, the formation of the negative

wing helps to follow the evolution of the TCP system towards stability.
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Figure 2: Electron energy distribution for a beryllium plasma at ρ0 = 1.85 g/cm−3 and Te = Ti = 12 eV.

Considering a binary system reduced to a single electron bounded in the potential well of an ion i of charge Zi,

the minimum electron potential energy is the ionization energy parameter Ei of the model. If a second ion j of charge

Z j is added to this system, provided the inter-ion distance is small enough, the energy barrier seen by the electron to

escape the potential of ion i will be significantly lowered in the direction of ion j. Similar reasoning holds if one adds

an electron instead of an ion to the binary system, and this leads to a lowering of the potential well seen by the bound

electron in the opposite direction of the additional electron. In this way, the model naturally describes the ionization

energy as a function of the local configuration of charges, which statistically results in an ionization potential lowering.

The dynamic behavior of the free electrons can be investigated through the density-density dynamic structure

factor (DSF). It is given by:

S (~k, ω) =
1

2πN

∫ +∞

−∞

eiωt < ρ(~k, t)ρ(−~k, 0) > dt (4)

ρ(~k, t) =

N
∑

i=1

ei~k·~ri(t) (5)

The DSF is related to the dielectric function ǫ(~k, ω) via the fluctuation-dissipation theorem (FDT):

S (~k, ω) =
~k2 Im ǫ−1(~k, ω)

n4π2e2[1 − e−β~ω]
(6)

This function does not possess any symmetry and satisfies the detailed balance relation, S (−~k,−ω) = e−β~ωS (~k, ω).

In classical MD simulations, identifying the Heisenberg operator ~ri(t) with the position of the ith particle, we get:

R(~k, ω) =
k2

n4π2e2βω
Im ǫ−1(~k, ω) (7)
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Figure 3: R Function for different values of the scattering parameter and for the same conditions as Fig.2.

This function reveals the electron density fluctuations on a length scale given by λscat = 2π/k with k = |~k|.

The dimensionless scattering parameter, α = 1/kλs which compares λscat with the screening length λs is defined

to characterize the scattering regime. At α > 1, in the collective scattering regime, the density fluctuations at a

scale larger than the screening length are probed, while at α < 1, in the non-collective scattering regime, the density

fluctuations of individual electrons are resolved. Depending on the scattering regime, the scattered spectra show

Compton or plasmon features that are related to individual or collective charge properties, respectively.

As an example, we have plotted in Fig. 3, the R function corresponding to the density fluctuation of the free electrons

in a Be plasma at ρ0 = 1.85 g/cm−3 and Te = Ti = 12 eV. It can be seen that the behavior of the R function

versus α reproduces correctly the description given in ref. [14]. For α > 1 the function presents two symmetric well

pronounced maxima and as α decreases, the dip between the two maxima is progressively filled to reach a Gaussian

shape at α = 0.

The DSF, S (~k, ω), (see Fig. 4) is related to the R function by:

S (~k, ω) =
~βω

1 − e−~βω
R(~k, ω) (8)

which approximates Eq. 6 assuming that the main quantum effects are due to the detailed balance.

The DSF as the basic input for the Thomson scattering cross-section is directly related to the spectrally resolved x-ray

Thomson scattering measurements [1] which are widely used as diagnostics to infer dense plasma parameters such

as electronic density and temperature. A more detailed analysis of our results is provided in Sec. 3 for conditions

corresponding to two recent experiments performed on beryllium [15, 16].

3. Application to beryllium

For a few years, the behavior of warm dense beryllium has been an issue of interest from both a theoretical and

experimental point of view [15, 16, 17, 18, 19, 20, 13]. The recent possibility to carry out comparisons with different

approaches motivates our interest to develop a pure classical investigation based on classical MD. TCP MD provides

straightforward access to electron dynamics and the possibility to observe free electron plasmons for the interpreta-

tion of Thomson scattering experiments. Two WDM conditions have been investigated so far, labeled in literature

as the un-compressed and compressed beryllium with the density and temperature conditions; ρ0 = 1.85 g/cm−3 and

Te = Ti = 12 eV and ρ0 = 5.5 g/cm−3 and Te = Ti = 13 eV, respectively. The comparisons rely on the dynamic

structure factor of free electrons S ee(~k, ω).

Warm dense matter conditions result in a de Broglie wavelength of the order of the average distance between particles.

This often motivates the implementation of a regularized electron-electron potential intended to represent electron-

electron exchange in numerical simulations. With our ionization/recombination protocol, this model leads to unphys-

ical results. With a large regularization length all the electrons become uncoupled. The strong ion-electron coupling
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Figure 4: Structure factor, S , for different values of the scattering parameter and for the same conditions as Fig.2.

is no longer in competition with the electron-electron coupling for those electrons falling into the ion potential wells.

Charge coupling insures the mechanism of energy exchange between particles and leads to plasma simulations that

reach equilibration to a stable state.

3.1. Un-compressed beryllium

Here, the TCP MD results are presented for plasma conditions corresponding to those of the first observation

of plasmons in solid-density plasmas [15]. The mass density is ρ0 = 1.85 g/cm−3 and the temperature is set to 12

eV in accordance with the theoretical best-fit of the experimental data provided by authors. The experiment was

designed to observe collective x-ray forward scattering spectra at an average scattering angle of θ = 40◦ with the

probe wavelength λ0 = 0.42 nm. In the nonrelativistic limit and for small momentum transfers, the wave vector ~k is

related to the scattering angle through:

k = |~k| =
4π

λ0

sin(θ/2) (9)

where λ0 is the wavelength of the incident wave. For MD simulations performed in a cubic box of side L, due to

periodic boundary conditions, ~k must satisfy:

kx,y,z = nx,y,z
2π

L
(10)

where nx,y,z is an integer number. In this work, the DSF has been calculated for different values of k in order to span

the values of α = 1
kλD

from 0.2 to 3.88, from non collective to collective scattering regimes. The smallest value of k

reachable in our simulation is determined by the highest number of simulated particles N (constraining L through the

plasma mean density N/L3) allowing one to keep the simulations performed to a reasonable time.

According to these constraints, TCP-MD simulations have been performed with 220 atoms of beryllium. We

started the simulations with an electronic density corresponding to a mean charge Zb = 2. After an equilibration step

controlled by imposing a temperature of 12 eV, we ensure that an equilibrium state has been reached by checking the

stationarity of the total energy and charge distributions. The equilibrium state is reached for ne = 2.68 × 1023cm−3

and Zb = 2.17. This corresponds to charge coupling parameters Γe = 1.25 and Γi = 4.53 for electrons and ions

respectively, and a degeneracy parameter Θe = 0.79. These values, Γi,e > 1 and Θe < 1 indicate that the plasma

statistical data should show strong correlation and degeneracy effects. The free electron DSF obtained by TCP-MD

is plotted in Fig.5(a) and (b) for α = 3.88 and α = 0.65 respectively. They are compared with those obtained in the

same way by OCP MD simulations in which only interacting electrons are considered and with the random phase

approximation (RPA) calculations in which the dielectric function is calculated for a one component plasma of free
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Figure 5: Dynamic structure factor for (a): α = 3.88 and (b): α = 0.65 plotted for ne = 2.68 × 1023cm−3 and Te = 12 eV.

electrons without interactions [21]. As the TCP-MD simulations are classical simulations, the RPA results in the

classical limit are also plotted for comparisons. The DSF plotted in Fig.5(a) corresponds to free electron density

fluctuations in the collective scattering regime and is mainly affected by correlations and collective effects. It can be

seen that the plasmon peak obtained by TCP-MD is much wider and shifted to slightly lower frequencies than those

obtained by RPA. At this value of α, degeneracy effects are negligible (the differences between RPA and RPA in the

classical limit results are small). The main differences between the RPA calculations and MD simulations concern

interactions between charges which results in a broadening and shift toward the low frequencies of the plasmon

peak. These effects concern the electron-electron interactions (compare RPA results with interacting electron OCP

simulation) and are strongly enhanced accounting for ion-electron interactions (TCP-MD results). Similar results

have already been obtained previously in Ref. [13].

In contrast, for α = 0.65, the DSF displayed in Fig.5(b) is measured in the non-collective scattering regime and

accesses the properties of individual electrons as the shape of the DSF reflects the velocities of the electrons in the

direction of the scattering vector ~k. This will permit one to evaluate the importance of the electron degeneracy effects.

It can be seen that our result differs from the RPA calculation due to the presence of degenerate electrons. The RPA

calculation in the classical limit agrees very well with our results. The effects of interactions between charges begin

to be negligible.

3.2. Compressed beryllium

The results presented in this section correspond to observations of both the inelastic Compton and plasmon scat-

tering spectra from shock-compressed dense matter [16]. The mass density is ρ0 = 5.5 g/cm−3 and the temperature

is 13 eV. In the experiment, two scattering angles were chosen to probe the density fluctuations in both scattering

regimes, i.e., the collective regime with θ = 25◦ and non-collective regime with θ = 90◦. The probe wavelength here

is 0.2 nm.

In order to fulfill Eq. 9 and Eq. 10 with small enough values of k, the TCP-MD simulations have been performed

with 200 atoms of beryllium. We started the simulations with a temperature of 13 eV and an electronic density

corresponding to a mean charge Zb = 3. After the equilibration phase, we reached an equilibrium state with the

parameters: ne = 8.21 × 1023 cm−3 and Zb = 2.24. This corresponds to charge coupling parameters Γe = 1.67 and

Γi = 6.41 for electrons and ions, respectively, and a degeneracy parameter Θe = 0.41.

Here again, it can be seen in Fig.6(a) that the plasmon peak location and width are modified by the density effects.

Figure 6(b) clearly demonstrates that the electron are mainly degenerate and thus our model is not appropriate to

simulate this case with Θe = 0.41 and α < 1.

4. Discussion

For a better understanding of the different results, an analysis of the maximum position ∆E of S ee(k, ω) as a

function of k has been performed.
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Figure 6: Dynamic structure factor for (a): α = 3.11 and (b): α = 0.66 plotted for ne = 8.21 × 1023cm−3 and Te = 13 eV.

We recall that for α < 1, the density fluctuations of individual electrons are resolved and the Compton down-shifted

spectrum is observed. In a nondegenerate plasma, the Compton scattering spectrum will reflect a Maxwell-Boltzmann

distribution, providing a measure of the electron temperature whereas for degenerate plasma, the Compton spectrum

will reflect a Fermi distribution.

For α > 1, one has access to the collective regime and to the plasmon scattering features. For a classical collision-

less plasma an expression for the plasmon dispersion has been given by Bohm and Gross [22]:

ω2
BG = ω

2
pe +

3kBTe

me

k2, (11)

with ωpe =

√

4πnee2

me

, the electronic plasma frequency. This relation has been obtained by expanding the dielectric

function to second order in k for a classical Maxwell-Boltzmann ideal plasma. In order to extend the range of ap-

plicability to higher wave numbers and higher densities (or lower temperatures), a modified Bohm-Gross dispersion

relation including electron quantum diffraction effects has been proposed [17]:

ω2
BGmod = ω

2
pe +

3kBTe

me

k2(1 + 0.088neΛ
3
e) + (

~k2

2me

)2. (12)

These relations do not account for particle interactions. Their range of applicability is restricted to small k where

the interactions between particles are predominant. In our model, all the interactions between particles are taken

into account but as noted in the previous section, degeneracy effects are missing. Using the same idea as for the

modification of ωBG and assuming that the differences between the RPA and RPA in classical limit are all due to

degeneracy effects, we propose a modification of our pure classical results obtained with TCP-MD that combines the

consideration of interactions between all particles and the effects of degeneracy. In practical terms, the difference

between the two curves representing the maximum position of S ee(k, ω) calculated in the RPA and the RPA in the

classical limit models has been fitted by a polynomial function, P(k), of the variable k. This polynomial function thus

captures the effects of electron degeneracy, and the TCP-MD results have been modified as follows:

∆E2
TCP−MDmod = ∆E2

TCP−MD + P(k)2. (13)

Comparisons of the results obtained by TCP-MD with RPA and RPA in the classical limit results and pure electron

OCP simulations are plotted in Fig. 7 and in Fig. 8 for un-compressed and compressed cases, respectively.

Comparing the results obtained with pure classical models, it can be seen in Fig. 7 that the positions of the plasmon

peaks in the TCP-MD and in the OCP are shifted towards lower frequencies relative to the RPA in the classical limit

due to interactions between particles. For large k (small α), both RPA and simulations yield almost the same location

for the maximum peak of the Compton spectrum. Here the non-collective regime has been reached and the Compton

spectrum reflects the thermal electronic motion.
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Figure 7: Maximum position ∆E of S ee(k, ω) as a function of k for the un-compressed case conditions. The vertical grey lines show from the left

to the right, the positions of the inverse of λD and λT F , respectively. The two dash-double dot lines at small and large k show the two asymptotes.

When the degeneracy effects are accounting for, RPA (empty triangles and long dashes) and modified TCP-MD

(black squares and full line) differ at low k due to the strong influence of particle interactions, but they give similar

results as soon as 1/kλT F < 1.

Finally, for sake of completeness, we have plotted in Fig. 7 the maximum position of the plasmon peak (diamond)

measured in the un-compressed beryllium experiment [15].

Similar results have been obtained for the compressed beryllium conditions. The results are plotted in Fig. 8.

Owing to the fact that the parameter α does not span exactly the same range of values as previously, similar behavior

is observed comparing the different results obtained with pure classical models. The maximum peak values obtained

with the modified TCP-MD compare very well with the data points measured in the compressed beryllium experiment

[16] plotted again for completeness.

To summarize, a two-component plasma classical molecular dynamics simulation code has been applied to cal-

culate free electron dynamic structure factors for beryllium in warm dense matter conditions. The ionic structure

properties compare well with results obtained with finite temperature density functional theory molecular dynamics

and also compare well with the ionic mean charge and thus the electronic density. Concerning the electron dynamic

properties, to neglect the degeneracy effects is a weakness of this model. When the scattering wavelength is such that

the α parameter is much larger than unity, the electron degeneracy effects are negligible and our results are useful to

investigate the role of interactions between particles and how these affect the position of the plasmon peak and the

broadening of the structure factor. In order to extend the range of applicability of our results, a modification of the

relation that gives the position of the maximum peak of the DSF has been proposed to keep the benefit of the classical

MD while including the effects of electron degeneracy, which is important as estimates for the peak position are useful

for plasma diagnostics.
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[18] K. Wünsch, J. Vorberger, D.O. Gericke, Phys. Rev. E 79 (2009) 010201(R).

[19] V. Schwarz et al., HEDP 6 (2010) 305.

[20] J. Ye, B. Zhao, J. Zheng, Phys. Plasmas 18 (2011) 032701.

[21] N.R. Arista and W. Brandt, Phys. Rev. A 29 (1984) 1471.

[22] D. Bohm, E.P. Gross, Phys. Rev. 75 (1949) 1851.

11


