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Heat transfer between two silica clusters is investigated by using the nonequilibrium Green’s function
method. In the gap range between 4 Å and 3 times the cluster size, the thermal conductance decreases as
predicted by the surface charge-charge interaction. Above 5 times the cluster size, the volume dipole-dipole
interaction predominates. Finally, when the distance becomes smaller than 4 Å, a quantum interaction
where the electrons of both clusters are shared takes place. This quantum interaction leads to the dramatic
increase of the thermal coupling between neighbor clusters due to strong interactions. This study finally
provides a description of the transition between radiation and heat conduction in gaps smaller than a few
nanometers.
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With the recent developments of nanotechnology, elec-
tronic devices continue to scale down in dimension and
scale up in power density [1]. As a result, near-field
radiation starts to play a notable role in the thermal design
at nanoscales. Recently, it has been demonstrated both
theoretically [2–7] and experimentally [8–10] that heat
transfer through near-field radiation between two parallel
plates or between a sphere and a plane can be several
orders of magnitude larger than the blackbody limit over a
limited range of frequency. This clearly corroborates the
fact that when the gap between two objects is smaller than
the characteristic photon wavelength, a different physical
behavior emerges in which near-field radiation and
acoustic phonon tunneling significantly contribute to heat
transfer [11,12].
The first measurement of the radiative heat flux between

two dielectric materials separated by a nanoscale gap dis-
tance has recently been performed by Narayanaswamy,
Shen, and Chen [8,9]. Their results led them to conclude
that the proximity-force approximation is not valid for near-
field radiationheat transfer.Shortlyafter,Rousseauetal. [10]
also measured the heat transfer in the near-field regime.
Interestingly, and in contrast with the conclusions of
Narayanaswamy, Shen, and Chen, these later results con-
firmed the proximity approximation. The difficulty in
performing such experiments makes it probable that heat
transfer at the nanoscale will continue to be debated, as
commented by Kittel [13]. Near-field radiation under the
dipole or multipole approximation has been extensively

investigatedon a theoretical basis.Nonetheless,mechanisms
taking place for separation distances shorter than 10 nm
remainunclear.This rangeof separationdistancesmaynotbe
directly accessible by experiments due to the difficulty in
fabricating well-defined planes and spheres at those scales.
At the same time, asmodern nanostructuresmight be smaller
than 10 nm and are separated in some cases by only a few
fractions of a nanometer, this range of lengths is of great
interest to thosewhodesignnanoscale devices [13,14]. From
a fundamental point of view, this domain also involves the
less understood transition from a classical charge-charge
interaction, logically described as a radiation in the near
field, to a chemical bond interaction, yielding pure heat
conduction.
By means of molecular dynamics simulations,

Domingues et al. [15] found a transition regime charac-
terized by a thermal conductance larger than the contact
conductance. But the largest value exceeded the upper
physical limit. Using ultrahigh vacuum inelastic scanning
tunneling microscopy, a previously unknown mechanism
of thermal transport—a field-induced phonon tunneling—
has been reported by Altfeder, Voevodin, and Roy [16]. The
thermal energy transmitted through an atomically narrow
vacuum gap exceeds, by 10 orders of magnitude, the one of
blackbody thermal radiation. In fact, before these exper-
imental findings, Kosevich [11] and Prunnila and Meltaus
[12] modeled how acoustic phonons can directly tunnel
through vacuum by introducing coupling mechanisms, and
both of them have shown that acoustic phonons can travel
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through the vacuum gap with unitary transmission and thus
can lead to significant thermal conductance and heat flux.
In this Letter, we estimate the heat transfer through a

chain composed of identical noncontacting silica clusters
by means of the phonon nonequilibrium Green’s functions.
We show that there are two critical vacuum gaps of about
4 Å and 3 to 5 times the cluster size. The first critical gap of
4 Å corresponds to a transition between the classical and
the quantum regimes with strong interaction. Above this
critical gap, the conductance decreases first according to a
d−3 power law, d being the distance between the center of
mass, and then gradually follows a d−6 power law, when the
gap is larger than 5 times the cluster size. These power laws
can be explained by classical surface charge-charge and
volume dipole-dipole interactions, respectively. Below 4 Å,
the conductance shows a much stronger dependence on gap
thickness. The first critical gap is confirmed by ab initio
calculations showing that the electronic wave functions
indeed merge when the gap becomes shorter than 4 Å.
We consider a system of identical silica clusters sepa-

rated by a distance d between the cluster centers and a gap l
(Fig. 1, top). Clusters are coupled through the van Beest,
Kramer, and van Santen (BKS) potential [17], composed of
Coulomb and Buckingham potentials. The BKS potential
provides the full physical picture of the long-range electro-
magnetic and the short-range repulsive-attractive inter-
actions. We consider one cluster as the reference system
and the clusters on its left and right sides serve as reservoirs.
The system period is illustrated in Fig. 1 (top). The gap
conductance σ between two clusters is derived from the
energy transmission Tr as follows [18–20]:

σ ¼

Z

ωmax

0

TrðωÞ
∂

∂T

�

1

eℏω=kBT − 1

�

ℏω
dω

2π
; (1)

where ω andωmax are the energy and the Debye frequencies.
T refers to the mean temperature of the system, kB and ℏ

represent the Boltzmann and the reduced Planck’s constants,
respectively.
The transmission Tr is obtained from a nonequilibrium

Green’s function approach [18–20] as TrðωÞ¼
Tr½ΓLGsΓRG

þ
s �. The advanced and retarded Green func-

tions Gþ
s and Gs can be deduced from

Gs ¼ ½ðωþ iΔÞ2I − Kss − ΣL − ΣR�
−1; (2)

where Δ is an infinitesimal imaginary part that maintains
the causality of the Green’s function and ΣL ¼ KabgLK

þ
ab,

ΣR ¼ KabgRK
þ
ab are the self-energies of the left and right

leads, the “þ” exponent indicating the Hermitian conju-
gation. Finally, gL and gR refer to the surface Green’s
functions of the left and the right leads, while Kss and Kab

are the force constant matrices derived from the BKS
potential, for one cluster and between neighboring clusters,
respectively. The expression of the transmission also
includes ΓL ¼ iðΣL − Σ

þ
L Þ and ΓR ¼ iðΣR − Σ

þ
R Þ.

The thermal conductance between clusters obtained from
Eq. (1) is reported in Fig. 2. The conductance decreases
very quickly with distance in the short gap range. The
power law in this range is estimated to be about d−12 and
the absolute value of the power slightly increases with the
increase of the particle size. The thermal conductance per
unit cross section indeed increases with cross section as the
number of interacting pairs per atom increases. This latter

FIG. 1 (color online). Schematics of the silica cluster systems
considered in the Green’s function calculations (top) and the
ab initio computations (bottom). For the Green’s function calcu-
lation, the clusters areN × N × N unit cells cubes with SiO2 lattice
constant of 4.52 Å. In the ab initio calculations, two parallel silica
planes separated with different gap distances are used and electron
densities inside the gaps are calculated with this model.
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FIG. 2 (color online). Thermal conductance between two
neighboring clusters at 300 K for different cluster sizes versus
the distance d indicated in Fig. 1. In our calculations, the cluster is
a cube N × N × N unit cells in volume. The diameter D is set in
such a way that the sphere volume is equivalent to that of the
simulated cube. The distance dwas used as the abscissa instead of
the gap distance l in order to discriminate the curves otherwise
superimposed. The MD results are taken from Ref. [14], where
the same BKS potential parameters as those adopted in this work
were used.
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number becomes larger at short distances and leads to a
slight growth of the absolute exchanged power. This growth
should, however, saturate to a maximum value as the
number of interacting pairs per atom also saturates, but
this limit remains beyond the maximum size under con-
sideration here.
In the intermediate distance range, the conductance

decrease with distance turns to be smoother and follows
the power law d−3, which is expected in the framework of
the nonpiezoelectric interactions [11]. Silicon and oxygen
atoms form a dipole as shown in the inset of Fig. 2 and
each particle can be regarded as one macroscopic dipole,
with bound charges of opposite sign at the front and rear
surfaces. When the distance between two clusters is
comparable with the cluster size, the force per unit surface
area of cluster 1 between surface charges is proportional to
S2=d

2, where S2 is the surface area of cluster 2. According
to our model, the transmission of acoustic phonons through
the vacuum gap can be written as [11]

jTaphj
2 ¼

1

1þ ðω=ω0Þ
2
; (3)

where ω0 represents the effective width of the acoustic
phonon pass band through the gap; ω0 is proportional to
themodulusof thederivativeof the forceper unit surface area
with respect to the gap width, and as a result, ω0 ∝ S2=d

3.
The total thermal conductance is given by the integral of
transmission (3) over all frequencies times the surface area of
cluster 1 S1 and is proportional to S1ω0, and, hence, is
characterized by the scaling S1S2=d

3 [11]. This means that
the conductance in this range of distance d is performed
mainly by acoustic phonons, which is in agreement with our
analysis of transmission function obtained from the Green’s
function. Interestingly, the slope transition in the log scale
occurs at the same gap distance l ¼ 4 Åwhatever the cluster
diameterD.When the gap increases further, i.e., the distance
between two neighboring clusters becomesmuch larger than
the particle size, the energy transfer between two clusters is
performed by optical phonon exchange through dipole-
dipole interaction [15], following the Föerster energy trans-
fer with a 1=d6 decay law [21]. The transition from the
charge-charge to dipole-dipole interaction occurs smoothly
whend is around3 to 5 times the cluster size. Furthermore, in
the charge-charge interaction region, the conductance at a
given gap width l follows a D3.85 scaling law, while in the
dipole-dipole interaction range, the conductance varies with
diameter according toD6.5 for a given center ofmassdistance
d. These findings further confirm our proposed mechanism
of surface charge-charge and volume dipole-dipole heat
transfer, since the total conductance is proportional to the
product of clusters surface areas S1S2, that is, toD1

2D2
2=d3

for surface charge-charge interaction, while the conductance
is proportional to the product of clusters volumesV1V2, that
is, to D1

3D2
3=d6, for volume dipole-dipole interaction.

To validate our predictions, molecular dynamics (MD)
simulation results as taken fromRef. [14] are plotted in Fig. 2
for comparison. A clear agreement betweenMD and Green’s
function predictions appears in the long distance range. But
there is no intermediate region in MD predictions and the
conductance from the Green’s function is several orders of
magnitude smaller than the one yielded fromMD in the small
gap range. Also, in contrast to MD simulations, no conduct-
ance decrease is found right before the contact in our Green’s
function calculations. Instead, the conductance increases
monotonically while the gap decreases. In fact, the maximum
conductance before contact predicted by MD simulations
exceeds the physical upper limit σmax as shown in Fig. 2.
This limit is calculated from the maximum energy
3NkBðT1 − T2Þ possibly transferred between two neighbor
clusters of N atoms each, set to temperatures T1 and T2.
Considering the fastest transfer characterized by the highest
mode frequency fmax, the maximum conductance is obtained
as σmax ¼ 3NkBfmax. The MD predicted conductance just
before the contact is 1 or 2 orders ofmagnitude larger than the
maximum value while the nonequilibrium Green’s function
predictions give estimations below this limit.
To understand the origin of the change in the dependence

of the conductance to the distance d, we performed ab initio
calculations (ABINIT code [22]) of the electron densities
for two silica planes schematically shown in Fig. 1, and
separated by vacuum gaps ranging from 0 to 6 Å. As each
plane consists of a 1 × 1 × 2 supercell, the two cells’ axes
are perpendicular to the interacting surfaces. Each unit
cell contains twelve atoms and the simulation box includes
four cells and 48 atoms. Experimental data for the
atomic positions are used and the exchange-correlation
Hamiltonian is treated within the generalized gradient
approximation with the Perdew-Burke-Ernzerhof func-
tional [23]. Fritz-Haber Institute pseudopotentials [24]
are adopted for Si and O atoms. The cutoff energy is set
to 820 eV and the k-grid size to 4 × 4 × 1.
As revealed by Fig. 3, the electron density is nonzero

in the middle of the gap, when the gap is smaller than 4 Å
but decreases rapidly as the gap widens from 0 to 4 Å.
The electron density reaches zero in the middle of the gap
when l increases beyond 4 Å and the zero electron density
domain extends when further increasing the gap. This
indicates that the electron wave functions of both sides
actually overlap in the short gap range when l < 4 Å to
form a bond. In this region, the atoms of both sides are
connected through a single electronic wave function instead
of interacting through electromagnetic forces relating two
separated wave functions. Beyond 4 Å, near-field radiative
heat transfer can be described by Maxwell equations while
the quantum Schrödinger equation has to be considered
when l < 4 Å. Since the bonds between atoms in silica
are covalent, we may call the bond before the contact
“pseudocovalent.”With the formation of those latter bonds,
the force between two neighbors dramatically increases
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beyond the force produced by electromagnetic waves. As a
result, heat transfer shifts from radiative to conductive, also
leading to a slope change of the thermal conductance in the
small gap range.
To check the relative contribution of acoustic and optical

phonons to heat conduction, we now turn to our previous
modeling of the transmission of acoustic phonon modes
through a vacuum gap as shown in Eq. (3). Since ω0

represents the effective width of the acoustic phonon
passband through the gap and it is proportional to the
derivative of the force between clusters with respect to the
gap width, it decreases with the increase of the gap width.
Consequently, the acoustic phonon cutoff frequency
decreases when the gap widens and the frequency range
of allowed transmission converges to zero.
Figure 4 reports the cumulative transmission coefficient

from one cluster to its neighbor as a function of frequency
and distance l. The cumulative transmission function
increases continuously for the smallest gap of 1 Å (black
line) reflecting a continuous dependence of the trans-
mission on frequency. The continuous decrease of the
transmission as the frequency ω0 reduces to zero reveals
that the modes involved are indeed acoustical ones.
When the gap width is slightly increased from 1 to 4 Å,

the cumulative transmission function dramatically
decreases and includes both a continuum at low frequencies
and a set of jumps due to a discrete transmission at higher
frequencies as highlighted by the inset of Fig. 4. In
qualitative agreement with the model of Eq. (3), widening
the gap indeed results in a decrease of the acoustic
frequency pass band, which uncovers the presence of
optical contributions appearing as peaks in the transmission
spectrum. A careful analysis of our data shows that the
frequency range of the acoustic phonons continuum

reduces to zero as the gap width reaches 5 times the
particle size and accomplishes most of the heat transfer
when the gap width is smaller than 3 times the particle size.
The discrete set of modes also progressively disappears
when the gap width is further increased and only the
modes related to force constants of long range interactions
remain when the gap is enlarged, and those also gradually
disappear as those long range interactions vanish.
By considering the phonon-induced interactions of the

gap edges, Kosevich [11] and Prunnila and Meltaus [12]
have shown independently that acoustic phonons could
transmit energy between separated bodies by tunneling
through the vacuum gap, which can lead to a significant
thermal conductance enhancement and which is consistent
with our findings. Accordingly, Altfeder, Voevodin, and
Roy [16] observed phonon tunneling from a sharp STM tip
into a gold film at a vacuum gap distance of 3 Å. The
authors claim that the tunneling effect is driven by surface
electron-acoustic-phonon interaction. This result supports
our argument stating that acoustic phonons are predomi-
nant in the phonon tunneling through small gaps.
In conclusion, the nonequilibrium Green’s function

technique has been implemented for calculating the heat
transfer between two silica clusters. We found that the
studied gap range can be divided into three parts with two
critical gaps of 4 Å and 3 to 5 times the cluster size. The
heat transfer regimes are characterized by the decay power
laws of d−12, d−3, and d−6, successively. The critical gap of
4 Å corresponds to the classical to quantum transition
beyond which heat transfer between neighboring clusters
follows the classical law prescribed by surface charge-
charge (intermediate range) and volume dipole-dipole
(long-range) interactions, while the heat flux drastically
increases for the gap distance below 4 Å. Near-field
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radiation clearly captures the thermal interaction above
l ¼ 4 Å, but the heat transfer below this distance is
dominated by heat conduction as we have shown that
electrons are actually forming a chemical bond in the gap.
Our results thus provide a deeper insight into understanding
the behavior of the transition between radiation and heat
conduction in gaps smaller than a few nanometers.
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