
HAL Id: hal-01053344
https://hal.science/hal-01053344

Submitted on 30 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Axial hypertoroidal moment in a ferroelectric nanotorus:
A way to switch local polarization

G. Thorner, Jean-Michel Kiat, Christine Bogicevic, I. Kornev

To cite this version:
G. Thorner, Jean-Michel Kiat, Christine Bogicevic, I. Kornev. Axial hypertoroidal moment in a
ferroelectric nanotorus: A way to switch local polarization. Physical Review B: Condensed Matter and
Materials Physics (1998-2015), 2014, 89, pp.220103. �10.1103/physRevB.89.220103�. �hal-01053344�

https://hal.science/hal-01053344
https://hal.archives-ouvertes.fr


RAPID COMMUNICATIONS

PHYSICAL REVIEW B 89, 220103(R) (2014)

Axial hypertoroidal moment in a ferroelectric nanotorus: A way to switch local polarization

Gentien Thorner,1 Jean-Michel Kiat,1,2 Christine Bogicevic,1 and Igor Kornev1

1Laboratoire Structures, Propriétés et Modélisation des Solides, associé au CNRS (UMR8580), Ecole Centrale Paris,
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Growth of ferroelectric nanotori is reported and first-principles-based effective Hamiltonian simulations were
performed on these new objects. They could reproduce the nonpolar (phase I) and homogeneously toroidized
(phase II) states of an isolated nanotorus. Computation of an axial hypertoroidal moment leads to numerical
observation of two new phases: (i) a homogeneously hypertoroidized one (phase III) that can be switched by a
homogeneous electric field and (ii) another one with striking new polarization patterns (phase IV) due to azimuthal
variations of the hypertoroidal moment. In both phases, hypertoroidization coexists with a homogeneous axial
toroidal moment.
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A giant step in the field of ferroelectricity occurred with
the discovery of toroidal ordering [1] of polarization [2].
Indeed the possibility to create new dipole configurations
based on this special arrangement of polar order in the form of
vortices has opened exciting possibilities for the downscaling
of electronic devices such as ferroelectric random access
memories [3]. However, as ferroelectric toroidization is an
axial vector, it is unaffected by homogeneous electric fields:
Contrary to overall polarization, there is no possibility of
switching by a classical way. Thus, writing memory nan-
odevices based on toroidal moments would require complex
solutions.

One possible way could be to use nanodots having the
shape of nanorings with an off-centered hole. In these objects,
the transverse hypertoroidal moment (which is a polar vector
[4]) has been extensively studied by Prosandeev et al. [5] at
room temperature and above. This order parameter involves
a double cross product of local polarization with dipole
site positions, in order to probe the curl of ferroelectric
toroidization. This provides a convenient way of describing
states that have subtle ordering features which cannot be
described in terms of overall polarization or toroidization.
As an example, computation of this parameter can probe
the curvature in flower states or characterize onion states.
From a more general point of view, this parameter shares
the time-reversal symmetry and space-reversal antisymmetry
properties of homogeneous polarization and, being a polar
vector, can couple to homogeneous electric fields.

Perovskite nanorings with an off-centered hole as in [5]
are most probably very difficult to obtain and, to the best
of our knowledge, their synthesis has not been reported.
Therefore, in our study, our purpose is to keep the torus hole at
the center for technological reasons, and to demonstrate that
another component of the hypertoroidal moment, related to a
completely different inhomogeneous polarization state, can be
switched, i.e., we focus on the axial part of the hypertoroidal
moment that describes poloidal polarization in a torus.

Thus, this Rapid Communication will first explain the
general interest of ferroelectric nanotori. Then, it will move
on to the BaTiO3 nanotori that we experimentally obtained.
In the rest of this Rapid Communication, deeper insight will
be gained with effective Hamiltonian simulations of local

polarization: Axial hypertoroidal moment will be introduced
and the effect of the torus shape will be investigated.
Spontaneous azimuthal modulation of an axial hypertoroidal
moment will be evidenced. Lastly, in the case where the axial
hypertoroidal moment is homogeneous, switching by homo-
geneous electric fields will be presented.

Beyond simply connected geometries such as zero-
dimensional dots [2] and hysterons [6] (elongated nanodots)
or one-dimensional wires [7,8] or two-dimensional planes
[9,10], torus-shaped nanodots (or nanorings) give rise to
new and fascinating dipolar patterns. Another advantage of
nanotori is the fact that their geometry makes them unlikely
to form homogeneously polarized states in which free charges
screen the polarization. Moreover, nanoring geometry prevents
isolated dots with finite toroidal moments to get strain energy
penalty due to the presence of a polarization topological defect
at the vortex core [11], as this defect is in this case outside of
the ferroelectric material. Last but not least, bowl-like BaTiO3

nanoparticles have been experimentally obtained [12] without
using any template [13].

In this work, hydrothermal growth of BaTiO3 nanotori is
reported, starting from hydrothermally prepared titanate mul-
tiwall spiral nanotubes [14]. Contrary to the case considered
in [15], the crystal structure induces anisotropy and the actual
geometry is shown in Fig. 1.

Based on the transmission electron microscopy (TEM)
observation of the edges and on that of larger regions,
the rest of this work deals with simulations describing a
single-crystalline stress-free torus whose main axis lies along
the pseudocubic [001] direction, subsequently called the z

axis, with unit vector ez.
All the numerical results were obtained with the coefficients

of the first-principles-derived effective Hamiltonian [16] of
bulk BaTiO3: For the whole simulation cell (1), it depends
on all the polar local modes (ui = pi/Z* with Born effective
charge Z*) and on all the local strains of each ith five-atom
unit cells.

Etot = Eself ({u}) + Edpl({u}) + Eshort({u})
+Eelas({ηl}) + Eint({u},{ηl}). (1)
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FIG. 1. (a) Highly anisotropic experimentally obtained and sim-
ulated torus with major radius R and minor radius r . (b) BaTiO3 nan-
otori scanning electron microscopy picture. (c) X-ray diffractogram.
(d) Transmission electron microscopy image of lattice fringes at the
edge of a nanotorus.

The first term in Eq. (2) gives rise to an energy penalty when
polarization does not point along the principal axes and, as
such, takes the anisotropy of the structure drawn in Fig. 1 into
account.

Eself ({u}) =
∑

i

[
κ2|ui |2 + α|ui |4

+ γ
(
u2

ixu
2
iy + u2

iyu
2
iz + u2

izu
2
ix

)]
. (2)

Monte Carlo (MC) simulations were performed using
a Metropolis-Hastings algorithm. At each temperature,
50 000 MC sweeps were performed, and physical observ-
ables were recorded over 50 000 extra averaging sweeps.
Cooling steps were 50 K from 950 to 200 K and 5 K
afterwards.

The high anisotropy of nanotorus imposed a parallelepi-
pedic simulation cell [represented with a solid line in Fig. 1(a)]
in which dipole sites form a cubic grid. However, inside
these supercells, the lattice sites that sit outside of the torus
do not contain ferroelectric material so their local dipoles
were permanently set to zero and their elastic constants
matched to those of the ferroelectric. To account for the
fully unscreened electrostatic boundary conditions around the
isolated particle, dipole-dipole interaction was computed by
real-space summation over the simulation cell rather than
the Ewald method [17]. No surface-induced relaxation term
was included. The simulation supercell had periodic elastic
boundary conditions, so that the local strain was not imposed at
the edges. During this study, the number of ferroelectric lattice
sites inside the simulation supercell were kept approximately
constant at a value of N = 2400. However, as the aspect

ratio a = r/R of the torus enclosed in the supercell is a
control parameter as we show below, various simulation
boxes, shapes, and sizes were used in the present work
(exact sizes were 23 × 23 × 12, 27 × 27 × 11, 28 × 28 × 10,
38 × 38 × 9, 42 × 42 × 8, and 77 × 77 × 7, in units of lattice
constant, which means v1/3 ≈ 4 Å).

Several global quantities were recorded, such as homo-
geneous volumic polarization [expression of P in Eq. (3),
in which index i runs along all lattice sites contained
in the supercell], which allows computation of transverse
polarization at site i, δpi = pi − vP.

P = 1

Nv

∑
i

pi , (3)

T = 1

2Nv

∑
i

ri × δpi , (4)

He = 1

4Nv

∑
i

[ri × (ri × δpi)]. (5)

Even though both of the global quantities mentioned thereafter
have exact expressions that are origin independent [18], we
used a supercell-centered set of coordinates to write the electric
toroidal moment T (4) and a simplified form [19] of the electric
hypertoroidal moment He (5).

Toroidal moment physically describes the average of the
curl of the polarization vector field, whereas the less intuitive
the hypertoroidal moment represents the average of the curl
of the toroidization vector field [4]. Thus, in the geometry of
a torus, the axial component of overall toroidal moment Tz =
T · ez directly probes the toroidal component of polarization
field lines (i.e., local ordering of dipoles along eθ ), whereas
overall axial hypertoroidal moment Hez = He · ez directly
probes the poloidal component of polarization field lines (i.e.,
local ordering of toroidal moments along eθ ) [20]. Therefore,
this z-axis component of the hypertoroidal moment in nanotori
is completely different from its xy-plane components in rings
[4,5,18] having an off-centered hole.

In this study, we have investigated the effect of torus aspect
ratio a which is the main control parameter. Figure 2(a) shows
that four phases arise when cooling an isolated nanotorus of
arbitrary aspect ratio. In the absence of externally applied
homogeneous electric fields, all components of homogeneous
polarization and transverse toroidization (Tx and Ty) remained
zero within error bars at the temperatures and aspect ratios we
plotted.

At high temperatures, a paraelectric phase with no toroidal
moment (phase I with field line pattern symmetry point group
∞/mmm, even though the dipole grid has 4/mmm symmetry)
is always observed whatever the a value is [Fig. 2(b)]. It
always converts at lower temperatures into a ferrotoroidic
state (phase II, field line pattern symmetry point group ∞/m).
These two phases were already known since they have also
been observed by Prosandeev et al. in lead zirconate titanate
nanorings [4,5,18].

Our simulations reveal two additional phases: At low
temperatures, the polarization state depends on the a value
[Figs. 2(f)–2(h)]. In the a > 0.3 case, phase II converts
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FIG. 2. (Color online) (a) Aspect ratio versus temperature phase diagram. (b) Red polarization field lines of high temperature nonpolar
phase I at 450 K for a = 0,24. (c)–(e) Red polarization field lines at 5 K for a = 0.90 (phase III), 0.24 (phase IV), and 0.07 (phase II); horizontal
blue arrow represents toroidal moment; vertical green arrows represent hypertoroidal moment. (f)–(h) plot axial toroidal (blue circles) and
hypertoroidal (green crosses) moments as functions of temperature for the same values of a. In phase IV, (i) represents the oscillations of
hypertoroidization as a function of azimut θ at 5 K for a = 0.24.

into another state that has both toroidal and hypertoroidal
moments along the z direction (phase III, field line pattern
point group ∞) [Fig. 2(c)]. Even though the dipole grid
has 4/mmm symmetry, considering that rotating a hysteron
around its axis generates a solid spindle torus, there is an
analogy between the poloidal component of polarization and
the double vortex states that have been simulated in isolated
hysterons [6]. However, polarization field lines are not purely
poloidal, as expected in [21–23]. There is a coexistence of
axial toroidal moment with axial hypertoroidal moment that
reminds one of the coexistence of homogeneous polarization
with toroidal moment that is also observed along the main
axis of an array of aligned infinite ferroelectric nanowires
[8,24]. On the contrary, at low values of a < 0.2, there
is no second transition, and phase II remains stable down
to low temperatures [Fig. 2(e)]. For an intermediate value
0.2 < a < 0.3, the competition between these two interactions

produces interesting new phenomena. Indeed, in that case,
neither phase II nor phase III can be stable, and this frustrated
situation leads to unexpected symmetries in the polarization
patterns [Fig. 2(d)]. On average, the new phase IV has
no hypertoroidal moment at low temperatures, as was the
case for phase II. However, its polarization field lines at
low temperature do not exhibit the same behavior as in
phase II: The absolute value of local hypertoroidal moment
along z (hezi = 1/4 [ri × (ri × pi)] · ez) is finite in most of
the torus. Cancellation of average Hez only occurs due to
azimuthal oscillations of hezi . Drawing an analogy with
the situation observed in antiferroelectrics/antiferromagnetics,
phase IV can be described as antiferrohypertoroidic, in
addition to its ferrotoroidic component. Deeper insight in
phase IV requires an understanding of these variations. Thus,
at 5 K for a = 0.24, we plotted in Fig. 2(g) a truncated
series (K = 7) that captured the oscillations [Fig. 2(d)] of
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hypertoroidization (6).

〈hez〉ρ,z(θ )

= 1

2K + 1

∑
i

hezi

[
1 + 2

K∑
k=1

(
Tk

(
xi(

x2
i + y2

i

)1/2

)
cos(kθ )

+ yi(
x2

i + y2
i

)1/2 Uk−1

(
xi(

x2
i + y2

i

)1/2

)
sin(kθ )

)]
. (6)

From local hypertoroidal moments hezi and Cartesian coor-
dinates (xi,yi,zi) of all sites i, function (6) interpolates the
sum over radii and heights of all hezi corresponding to azimut
θ . In Eq. (6), Tk and Uk respectively represent the kth order
Chebyshev polynomia of first and second kind.

It is observed that the dominant contribution of hy-
pertoroidal moment oscillations comes from a sinusoidal
component that has eight nodes. Thus, one could assign as
a first approximation the 8 point group of symmetry to the
polarization field lines pattern.

Returning to the homogeneously hypertoroidized phase III,
one should pay attention to the size of simulated nanotori:
Provided that extremely small objects can be experimentally
obtained, the information density of a memory nanodevice
using these individual particles as ferroelectric bits would
be enormous. Moreover, in addition to the advantage of
small size, the absence of overall polarization should strongly
reduce the phenomenon of electrostatic interaction between
neighboring ferroelectric bits, and the inhomogeneous electric
field produced by these dipolar arrangements may allow
nondestructive readout through noncontact electric force mi-
croscopy. One should also mention that 8 and ∞/m(phase II)
symmetry groups have an inversion center, whereas ∞
symmetry group (phase III) does not. This means that the
low temperature phase III may be gyrotropic. Thus, it may
exhibit an optical activity that could possibly be tuned by
modulating hypertoroidal moment and/or toroidal moment.
Such a behavior has recently been simulated in the case of
an array of aligned BaTiO3 nanowires embedded in a SrTiO3

matrix [25]: Well-separated nanotori embedded in a matrix
could offer an alternative route for an experimental realization
of such an optical modulator that would have the ability to
change from levorotatory to dextrorotatory optical behavior.

Thus, we checked that hypertoroidal moment could effec-
tively be switched by application of homogeneous electric
fields. As a test case, we considered a torus with aspect
ratio a = 0.90 at a temperature of 40 K so as to be sure
that, in the absence of external electric field, phase III is
the stable initial state. We then cycled an electric field
along the z axis and recorded expression (5) of hypertoroidal
moment. The hysteresis loop in Fig. 3 clearly demonstrates
that there are two enantiomeric stable states in the absence of

FIG. 3. (Color online) Hysteresis loop of axial hypertoroidal
moment switched by homogeneous axial electric field for a = 0.90
at T = 40 K. Thick black arrows show the direction of the loop. Inset
(a) represents the polarization field lines initial state at 40 K under
zero field, which is the same as in Fig. 2(c). (b) is taken at −7.2 ×
108 V/m. (c) is under zero field and represents an enantiomer of
(a) due to switching of hypertoroidal moment without affecting the
toroidal moment. (d) is taken at +7.2 × 108 V/m.

an applied electric field [Figs. 3(a) and 3(c)] and that a
homogeneous electric field along the z axis allows switching.

To summarize, we have (1) obtained BaTiO3 nanotori.
Later on, we focused on numerical simulation of an isolated
nanotorus of arbitrary aspect ratio and found two entirely new
states in addition to the already known paraelectric (phase I)
and homogeneously toroidized (phase II) states. Computing
the axial hypertoroidal moment led to (2) observation of
homogeneous hypertoroidization that coexists with axial
homogeneous toroidization (phase III). An even more striking
state (phase IV) was also observed (3) due to azimuthal
oscillations of the local axial hypertoroidal moment. Lastly
(4), control of the homogeneous hypertoroidal moment was
demonstrated in phase III. This opens a new way to increase
the density of information stored in memory nanodevices,
and a new possibility to create ultrafast optically active
components.

We thank Fabienne Karolak for her help during the
synthesis of BaTiO3 nanotori, Françoise Garnier for the SEM
picture, and Paul Haghi-Hastiani for the TEM one. G.T.
and J.M.K. want to thank Dr. Bellaiche for a very useful
discussion. G.T. thanks Ecole Normale Supérieure de Lyon
for financial support. Three-dimensional visualizations were
performed with VAPORGUI software [26].
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