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SUMMARY
We introduce a covariate-specific total variation penalty in two semiparametric models for the
rate function of recurrent event process. The two models are a stratified Cox model, introduced
in Prentice et al. (1981), and a stratified Aalen’s additive model. We show the consistency and
asymptotic normality of our penalized estimators. We demonstrate, through a simulation study,
that our estimators outperform classical estimators for small to moderate sample sizes. Finally
an application to the bladder tumour data of Byar (1980) is presented.
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1. INTRODUCTION

Recurrent events arise in clinical or epidemiological studies when each subject experiences re-
peated events over time. Clinical examples include repetition of asthma attacks, epileptic seizures
or tumour recurrences for individual patients. In this context, proportional hazards models have
been largely studied in the literature to model the rate or mean functions of recurrent event data.
For instance, Andersen & Gill (1982) introduce a conditional Cox model where the recurrent
events process is assumed to be a Poisson process. Similar proportional hazards models and ex-
tensions are considered in Lawless & Nadeau (1995), Lin et al. (1998), Lin et al. (2000) and Cai
& Schaubel (2004).

To model rate functions in a recurrent events context, a different approach consists in fitting a
Cox model for each event count. Along these lines, Prentice et al. (1981) introduce two stratified
proportional hazards models with event-specific baseline hazards and regression coefficients. Gap
times and conditional models are presented in their paper and a marginal event-specific model
is studied in Wei et al. (1989). We refer to Kelly & Lim (2000) for a complete review of existing
Cox-based recurrent event models.

Additive models provide an useful alternative to proportional hazards models. For classical
counting processes, the Aalen model was first introduced in Aalen (1980) and is extensively
studied in McKeague (1988), Huffer & McKeague (1991), Lin & Ying (1994). It is considered
in the context of recurrent events in Scheike (2002). We propose in this paper to consider an
event-stratified version of the Aalen model, in the manner of Prentice et al. (1981).

As demonstrated in what follows, event-stratified models allow more flexibility but suffer
from over-parametrization when the sample size is not large enough compared to the numbers
of covariates and recurrent events. To address this drawback, we construct estimators which
do not vary much between two consecutive recurrent events, or equivalently with small total

variations (see Section 2.4 for details). To achieve this goal, we consider minimizers of empirical



risks penalized via a covariate-specific total variation penalty. As such, our algorithms are part
of the class of fused lassos algorithms. The latter have been introduced and studied, for noised
piecewise constant signals, by Tibshirani et al. (2005), Rinaldo (2009) or Harchaoui & Lévy-Leduc
(2010). Lasso estimators in the context of survival analysis with high dimensional covariates
have been introduced and studied in Tibshirani (1997), Huang et al. (2013) in the Cox model
and Martinussen & Scheike (2009b), Gaiffas & Guilloux (2012) in the Aalen model, among others.

The settings of recurrent events with a terminal event, and the two models studied in this
paper are presented in the next section. In paragraph 2.4, we describe our novel algorithm, which
involves a total variation penalization of criteria, specific to either the multiplicative or additive
models. It requires preliminary details on inference in these two models, which are given in
paragraph 2.2 and 2.3. Consistency and asymptotics distributions of our estimators are derived
in Section 3. Simulation studies and a real data analysis are provided in Sections 4 and 5. We

conclude with a discussion in Section 6.

2. MODELS AND ALGORITHM
2.1 Models

Let D denote the time of the terminal event and N (t) the cadlag process that counts the number
of recurrent events occurring in the interval (0, ], with the convention N(0) = 0. As no recurrent
events can occur after D, the process N has jumps only on (0, D]. The p-dimensional process of
covariates is denoted by X and is assumed to be left continuous. The event-specific rate function

of the process N, denoted by po, is defined as

for s =1,2,...and t in A, = {t : P[N(t—) = s — 1,D > t] > 0} and is null outside of A,. The

set Ay represents the time intervals where the s-th recurrent events can occur with a positive



probability and lies in Supp(D), the support of D. Apart from the stratification, this definition
of the rate function can be found in Scheike (2002).

We consider two semiparametric models for the function py. The first one is an event-specific
multiplicative rate model introduced in Prentice et al. (1981). In this model, the rate function is

specified, for s =1,2,... and t in Ag, by

po(t, s, X (t)) = ap(t, s) exp (X (t)Bo(s)) (2.2)

where for each event number s, 8y(s) is an unknown p-dimensional vector of parameters and «yq
is an unknown baseline function.

Following Scheike (2002), and Zeng & Cai (2010), we also propose to consider its additive
counterpart. The rate function in our event-specific additive model is then for s =1,2,... and ¢

in Ag:
po(t,s, X(t)) = ao(t,s) + X(t)Bo(s). (2.3)

When fy is assumed to be constant over the events, models (2.2) and (2.3) are usually referred
to as stratified Cox and Aalen models (see e.g. Martinussen & Scheike (2006), page 190). To
insist on the constancy of 5y (as a function of s), these particular cases of models are hereafter
designated as “constant coefficient models”.

As, in practice, the individuals experience only a finite number of recurrent events, we will
concentrate on the estimation of the rate function for the first B events, where B is an user-chosen
integer (see the example in Section 5). Mathematically, this means that we only consider the
observation of the process N on the interval [0, E(B)], where E(B) is the hitting time of [B, cc).
Equivalently, we consider that we observe the stopped process N*, defined through N*(t) =
N(t A E(B)), for all t > 0. Noticing that, for all s =1,..., B and all t > 0, {N*(t—) = s — 1} =
{N(t—) = s — 1} C {t < E(B)}, the event-specific rate function of N* equals the one of N,

such that equation (2.1) holds with N replaced by N*. This is equivalent to assuming that the



total number of observed events is almost surely bounded by B, which is the classical framework
for inference for recurrent event processes (see e.g. Scheike (2002), Dauxois & Sencey (2009)
or Bouaziz et al. (2013)).

We consider the problem of estimating the unknown parameter 5y = (8o(1),...,B0(B)), in
stratified models (2.2) and (2.3) on the basis of data from n independent individuals. Introducing
the censoring time C, the data consist of n independent replications {N;(t),T;, 6;, X;(t),t < 7},
i =1,...,n, where N;(t) = Nf(t A C;), T; = D; A C; is the minimum between D; and Cj,
0; = 1(D; < Cy), (X;(t),0 <t <T;) is the covariates process and 7 represents the end-point
of the study. In addition, we define the event-specific at-risk function Y* and the overall at-risk

function Y. For each individual ¢, for all ¢ in [0, 7]:
B
V() = 1T > 6 Ni(t=) = s — 1), Yilt) = S V7() = 1(T; > ¢).
s=1
Let AT = A, N[0, 7]. The following two assumptions are mandatory to perform estimation.
Assumption 1 For all s=1,...,B, and t in AT, E[Y*(¢)] > 0 and P[E(B) < 7] > 0.

The fist part is classical in survival analysis (see for instance Andersen et al. (1993)). The
second part implies that, for s = 1,2,..., B, the sets Al are non-empty. Note also that the

processes Y, are almost surely null on the complementary of A, in [0, 7].
Assumption 2 Forall s=1,...,B, and ¢ in A7,
E[dN*(t) | X(t),DAC > t,N*(t—) =s — 1] = E[dN*(t) | X(t),D > t, N*(t—) = s — 1].

This assumption is classical in recurrent events context and can be found for instance in Lin
et al. (2000). It is the analog of the independent right censoring definition I11.2.1. of Andersen et al.
(1993). We refer the reader to the Supplementary Material for a discussion on these assumptions.

In particular, sufficient conditions are presented for these assumptions to hold.



In our framework, the unknown vector of parameters 5y has p x B unknown coefficients to be
estimated. For reasonable sizes of sample n, these models are over-parametrized in the sense that,
when /n < p x B, the estimators show very poor behaviour (see Section 4 for an illustration).
On the other hand, simpler forms of models (2.2) and (2.3), in which the unknown parameter
does not change with the event, Sy(s) = Sy, might be too poor to accurately fit the data (see
also Section 4 and the discussion in Kelly & Lim (2000)). In this paper, we aim at providing

estimators realizing a compromise between these two situations.

2.2 Inference in the multiplicative model

As in Prentice et al. (1981), in the multiplicative event-specific model (2.2), an estimator BEs/mult
of the unknown parameter By € RP*E is defined as the maximizer of the stratified partial log-

likelihood, or equivalently as

BEs/muit € argmin LIT(B) (2.4)
BERPXB

= argmin _ZZ/[OT —log Zys exp (X;(1)B(s)) | p Y (£)dNy(t)

BERPxB s=1i=1

An estimator BC /muit 10 the constant coefficient model is defined as

Bc/mult € argmm —— ZZ/ — log ZYS exp (X;(¢)P) Y2 (t)dN;(t)
i=1 s=1 j=1
(2.5)
The right term of equation (2.5) is the standard log-likelihood of a stratified Cox model (see for

instance Therneau (2000) p.44-45 or Kalbfleisch & Prentice (2011) p.118-119).

2.3 Inference in the additive model

As noticed in Martinussen & Scheike (2009a,b) or Gaiffas & Guilloux (2012), in the usual additive

hazards model, the estimator /3 ES/add Of the unknown parameter 3y € RP*E can be written as



the minimizer of a (partial) least-squares criterion:

BEs/ada € argmin L5 (3) = argmlnz {8(5) TH,(5)B(s) — 2hn(s)B(5) }, (2.6)
BERPXB 56Rp><B
where for all s € {1,..., B}, H,(s) are p x p symmetrical positive semidefinite matrices and h,,(s)

are p-dimensional vectors equal to

Z ve () Z(t)_XS(t)) dt and hy (s Z v (1) (Xa(h) =X (1) ) ani(t)

[0,7] [0,7]
with X*(t) = >0, X;(¢)Y#(t)/ o1, Y*(t) and the convention that 0/0 = 0.
On the other hand, an estimator BC Jadd 10 the constant coefficient model is defined as
B

B
B¢ /ada € argmin (8TH, 8 — 2h,,3) , with H,, = ZH ) and h, = Z B (s). (2.7)
BERP s—1 _

This formula gives an analogue of the so-called stratified Cox model to the Aalen case. Note also
that the quantities H,, and h,, are not the same as the ones involved in a standard Aalen model
with no stratification (see for instance the terms D,, and d,, in Martinussen & Scheike (2009b)).
In our constant coefficient models By is constant and therefore its estimators are also constants,

but the baseline ayg is still stratified with respect to s.

2.4 A total-variation penalty

To overcome the possible over-parametrization of models (2.2) and (2.3), we propose to define
penalized versions of criteria (2.4) and (2.6). For all 3 = (B8(s),s = 1,...,B) with S(s) =
(BY(s),...,BP(s)), define for all j =1,...,p
B B
B = (F(1),.... /(B) and Tv(57) = 3 | (s) = F(s — )| = Y_[AF(s)].  (28)
s=2 s=2

We now consider the minimizers of the partial log-likelihood (respectively the partial least-

squares) penalized with a covariate specific total variation. Define the penalized estimators in



models (2.2) and (2.3) as:

Brv/mute € argmin ¢ LEE(B)+ =2 " tv(87) ¢ and (2.9)
BERPXB n =1
. A, ,
Brv/ada € argmin  LEES(8) + = ZTV(B]) . (2.10)
BERPXB n =1

These penalized algorithms are part of the class of fused-lasso algorithms (see e.g. Tibshirani et al.
(2005), Rinaldo (2009) for a definition) and can be rewritten as lasso algorithms (the details are

given in Supplementary Material).

3. ASYMPTOTIC RESULTS

We successively provide the asymptotic results for the estimators Brv Jadd in the additive model
and BTV /muit in the multiplicative model. Their proofs are postponed in Supplementary Material.

In both models, the following conditions are mandatory.

Assumption 3 1. The covariate process X (-) is of bounded variation on [0, 7].
2. There exists a constant M such that for all ¢ in [0, 7], X (t) € [-M, M]? almost surely.

3. Foralls=1,...,B, [,, a(t, s)dt < co.

Parts 1 and 2 of Assumption 3 are equivalent to Assumption (ii) in Scheike (2002). Part 3 is
a stratified form of Assumption 7.2.1, for instance, in Andersen et al. (1993).

Define, for all s =1,...,B and t in A7, the centered process
t
M?(t) = N(t) —/ ]E[dN(r) | X(r),DAC Z7r,N(r—)=s— 1]
0

and the p X p matrix

s 2
H(s) = [ B x0T [ <]E[YE%>§ t()t)])@

s

dt,

which, thanks to Assumptions 1 and 2, is well defined.



THEOREM 3.1 Assume that, for each s = 1,..., B, H(s) is non-singular and that Assumptions 1,
2 and 3 are fulfilled.
1. If A /n — 0 as n — oo then BTV/add converges to [y in probability.

2. If \y/+v/n — Ao = 0 as n — oo then \/E(BTV/add — Bp) converges in distribution to

argmin Aggq(u) = argmin [Z {u TH( Ju(s) — 2u(s)T§add(s)}

weERpPXB wERPX B
p B
#2030 3 (A0 LR = 0) + s AR A ()85 £ 0}

and for each s, £,44(8) is a centered p-dimensional gaussian vector with covariance matrix equal
to

E

(] - E[ys(t)X(t)]/E[ys(t)])W(t)dMS(t))ﬂ .

We now state an analogous result in the multiplicative model. Define for all s =1,..., B and
for all ¢ in A7,
sO(s,t,8) = E[Y*(t) X (t)® exp(X (t)B(s))],1 = 0,1, 2.
Introduce e(s,t,3) = sM(s,t,8)/s0(s,t,8), v(s,t,8) = 53 (s,t,08)/5O(s,t,8) — e(s,t,3)%?
and 3(s fA, JE[Y5(t)dN(t)]. For any s = 1,...,B and for any ¢ in AT, the three
functions s (s,t, By) are bounded due to Assumption 3 and e(s,t, 3),v(s,t, ) and X(s,3) are

finite due to Assumptions 1 and 3.

THEOREM 3.2 Assume that for each s = 1,..., B, 3(s, ) is non-singular and that Assump-
tions 1, 2 and 3 are fulfilled.
1. If A /n— 0 as n — oo then /BTV/mult converges to By in probability.

2. If A\ /v/n = Ao = 0 as n — oo then \/E(BTv/mult — Bo) converges in distribution to

B
argmin A, (u) = argmin [Z {;u(s)TE(s, Bo)u(s) — ’U/(S)Tgmult(S)}

uERPXB uERPXB —1

20 30 D {140 ()[1(AB(5) = 0) + sgn(AB (5))(Aw () L(AB(s) £ 0)} |,

j=1s=2
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and for each s, £,.¢(s) is a centered p-dimensional gaussian vector with covariance matrix equal

to

®X2
E ( / (X() — e(s,, fo) YS(t)dMS(t))
AT

First results of Theorems 3.1 and 3.2 prove the consistency of our estimators, on the mandatory
condition that A, /n tends to 0. This ensures that they behave better than the constant coefficient
estimators when [; is non constant. In addition, the considered penalty will induce sparsity for
each covariate j = 1,...,p in the successive differences AB’(s), s = 1,..., B. As a consequence,
the effects of a covariate on two consecutive events will often be equal. We show, in the following
simulation study, that this induced sparsity ameliorates the behaviour of our estimators compared
to the unconstrained ones (defined in Equations (2.4) and (2.6)).

The second results show that asymptotic normality can be achieved only if A, /+/n tends to
0. In that case, the asymptotic variance of the limiting distribution can be estimated by means
of the analog of the optional variation in this context, see Martinussen & Scheike (2006, page
150-151) for details.

However, when Ay = 0, the algorithm is no longer consistent in selection, in the sense that in

both multiplicative and additive cases, as n tends to infinity,
P[{(j.5) € R” x R®, A(Bfy)(s) # 0} = {(J,s) € R” x R¥, A(B])(s) # 0}] — 0.

Even in the case where A, /v/n — Ao > 0, this probability is asymptotically stricly less than 1,
see Zou (2006) for details. To enhance the sparsity in the covariate-specific successive differences
(or equivalently to force BTV/mult and BTV/add to have several constant coefficients), we consider
a reweighted lasso, in the manner of Zou (2006) or Candes et al. (2008). In both models the two

steps (or reweighted lasso) estimators are defined as

~ . )\n .
BTV /muit € argmin LPE(p) 4+ == |AB(s)] (3.11)
BERPXB n 3

p B

1s=2 ‘AB%V/mult(S” + |ABO|
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and

5 . Ay IS 1 .
Brvada =€ argmin { LPLS(8) + > IAB7(s)] b, (3.12)

e N (A aaa(5)] + 1G]

where BTV/mult and BTV/add are defined in Equations (2.9) and (2.10) and in both cases:

|ABS| = min{|AﬁA%V(s)|,j =1,...,p,s=1,...,B, |ABJTV(S)\ # 0}.

4. IMPLEMENTATION AND SIMULATION STUDIES

We compare the performance of the penalized estimators (2.9) and (2.10), the constant coefficient
ones (2.5) and (2.7), and the unconstrained ones (2.4) and (2.6). To mimic the bladder tumour
cancer dataset studied in Section 5, we set p = 4 and consider B = 5 recurrent events for the
estimation. In the multiplicative and additive models, the sample size n varies from n = 50 =

2.5 pB to n = 1000 ~ (pB)?-3.

4.1 Implementation of penalized estimators.

The minimizers of the partial log-likelihood, respectively, the partial least-squares, penalized with
a covariate specific total variation of Equations (2.9) and (2.10) can be seen as lasso estimators
by introducing a block matrix D of size (pB x pB) with p diagonal blocks being equal to a lower
triangular matrix with nonzero elements equal to 1 and p? — p off-diagonal blocks being matrices
of zeros.

The minimization problems of Equations (2.9) and (2.10) can then be rewritten as
Brv = DAry with

PIRNLAE-R A
} i L. (D = J = i L. (D - 4.13
ey € angin § £,07) 422 3% W) { = anguin { 2,00+ 2l (413

yERPXEB YERPX B
where L, is either LFX or LPX and, in both cases, 47y = (B%V(l), AB%V@)7 cey AB;V(B))T.

The related R functions can be found at http://www.lsta.upmc.fr/guilloux.php?main=publications.
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The regularization parameter is chosen in both multiplicative and additive cases via 5-fold
cross-validation, defined by the lasso formulations of Equation (4.13). For details in the multi-
plicative model, see Simon et al. (2011, pages 9-10) or van Houwelingen et al. (2006). Details for

the additive model may be found in Martinussen & Scheike (2009b, page 608).

4.2 Simulation scheme

We draw p = 4 constant covariates from uniform distributions on [0,2] and set the parameters
values at B3 = 0.25(0,0,1,1,0), 82 = (1,...,1), B8 = b(1,2,3,4,5) and B3 = (0,...,0). We
generated recurrent event times from the multiplicative (2.2) and additive (2.3) models with
baseline defined through the Weibull distribution with shape parameter ayy and scale parameter
1 (see Supplementary Materials for a more detailed description of the simulation scheme). The
death and censoring times are generated from exponential distributions with parameters ap and
ac respectively. We set the value of parameter ayy at 1.5, and of b at 4 in the additive case and
—1 in the multiplicative case. Finally, the values of ap and ac are empirically determined to
obtain 14 — 15% of individuals experiencing the fifth event. More results for Pops = 28 —29% were

obtained and are reported in Supplementary Material.

4.3 Performance evaluation

To evaluate the performance of the different estimators, we conduct a Monte Carlo study with
M = 500 experiences. The estimation accuracy is investigated for each method via a mean squared

rescaled error defined as

MsE = 0 Z 1B ~ ﬁOHQ, (4.14)

where Bm is the estimation in the sample m. We furthermore study the detection power of

non-constant (respectively constant) covariate effects by computing specificities (SPEC) and sen-
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sitivities (SENS) for each method. For an estimation f3,,, define false (FP) and true (TP) positives

FP(Bm) = Card (j € {1,...,p} such that TV(B{,L) # 0 and Tv(ﬂg) =

TP(fr) = Card (j € {1,...,p} such that Tv(53%,) # 0 and TV(8%) # 0

and false (FN) and true (TN) negatives by exchanging = and # in the above definitions (see (2.8)
for the definition of TV). The specificity and sensibility of a method are defined over the M

replications as

1 TN(Bp)
m 4.15
SPEC = m§:1 S+ rr(B) (4.15)

and

TP (B )
TP(Bpn) + FN(Bp)

SENS = M mz: (4.16)

such that 1 is the ideal value for both indicators of detection power. The results are presented in

Tables 1-2.

4.4 Results

As expected, the constant model is biased and, in particular, for our choice of a non-constant (g,
the MSE does not decrease with the sample size n. The comparison between the unconstrained
and penalized estimators is in favour of our estimators in all cases as long as n is much smaller than
(pB)?. For p =4, B =5, n = 100 and P.ps = 14% (which are values close to those encountered
in the bladder tumour cancer dataset studied in the next section) our penalized estimators are
respectively, 2.41 in the additive model and 1.38 in the multiplicative model, times better than
the unconstrained ones in terms of estimation error.

Regarding the sensitivity and specificity indexes defined in Section 4.3, the unconstrained
estimators, which, by definition, has no constant coefficients, has a perfect sensitivity and a null
specificity. On the opposite, the constant estimator can not detect a non-constant effect and,

as a consequence, produces no false positive, nor true positive, with the consequence that its
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sensitivity is null and its specificity equals one.

The one-step penalized estimators of Equations (2.9) and (2.10) have almost perfect sensitiv-
ities, but their specificities decrease with the sample size. In our opinion, this is due to the cross
validation, which tends to choose smaller regularization parameters for larger sample sizes. This
choice is consistent with the theoretical values of A, displayed in Theorems 3.1 and 3.2. This
however leads to the classical non-consistency in selection of one-step estimators, as discussed at
the end of Section 3.

To overcome this drawback, we defined in Equations (3.11) and (3.12), two-steps estimators.
They are expected to enhance the sparsity in the estimated successive differences and conse-
quently, produce less false positives and more true negatives. Results indeed show increased
specificities for comparable sensitivities, as compared to the one-step estimators. These two-steps
estimators however are expected to be more biased, this phenomenon can be seen in Table 2 for
example. When the specificities of the one-step and two-steps estimators are of the same order,
the MSE of the latter is greater.

We repeat the simulation study for ay, = 0.5 and then for a Gompertz baseline with shape
parameter ag = 1.5 and 0.5 and scale parameter 1. The results are reported in Supplementary
Material. As expected, we observe that a drop in the percentage of individuals experiencing the

fifth event drops affects the performances of all estimators. Other conclusions are similar.

5. BLADDER TUMOUR DATA ANALYSIS

In this section we illustrate the behaviour of our estimators on the bladder tumour cancer data
of Byar (1980). These data were obtained from a clinical trial conducted by the Veterans Admin-
istration Co-operative Urological Group. One hundred and eighteen patients were randomised to
one of three treatments: placebo, pyridoxine or thiotepa. For each patient, the time of recurrence

tumours were recorded until the death or censoring times. The number of recurrences ranges from
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0 to 10. Two patients who were censored before the beginning of the study are removed. The
dataset is therefore composed of 116 patients with 47 patients from the placebo group, 38 from
the thiotepa group and 31 from the pyridoxine group. On these patients, since 13.79% experienced
at least five tumour recurrences and only 6.9% patients experienced six tumour recurrences or
more, we set the parameter B to 5. For interpretation purpose, the treatment variable is coded
as two new binary variables, pyridoxine and thiotepa, making placebo the reference. In addition
to these two treatment variables two supplementary covariates were recorded for each patient:
the number of initial tumours and the size of the largest initial tumour.

Tables 3, 4 and figure 1 display the estimates obtained from the constant coefficient, uncon-
strained, total variation and two steps total variation estimators in the multiplicative model. The
unconstrained estimator shows very strong variations and is difficult to interpret as such. On the
other hand, the constant coefficient estimator gives valuable information on the impact of each
covariate, but in turn cannot detect a change in variation. Our total-variation estimators reach
compromise: they are not constant but easily interpretable.

For instance, a remarkable aspect of the pyrodixine treatment can be highlighted from the
total variation estimation: this treatment produces a protective effect for the first three tumour
recurrences but the hazard rate of further recurrences are increased by this treatment. In the
same way, an increase in the effect of the initial number of tumours on recurrences is observed
from the third recurrence. On the opposite, the effects of the thiotepa treatment or the size of the
largest tumour are shown to be constant in the total variation model, the parameter estimates
having values similar to the ones obtained in the constant model.

Our conclusions on the treatments effects are in agreement with previous studies on blad-
der tumours recurrences. For instance, no difference in the rate or time to tumour recurrence
was found from patients using pyrodixine with patients using placebo in Tanaka et al. (2011)

and Goossens et al. (2012). Moreover, Huang & Chen (2003) and Sun et al. (2006) have respec-
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tively studied gap time recurrences in the multiplicative and additive models. The results obtained
from the former showed a small protective effect of this treatment while the latter concluded that
gap times did not seem related to pyridoxine. These examples illustrate the nice features of our
total-variation estimator: it provides sharper results, giving relevant informations on covariates
effect with respect to the number of recurrent events experienced by a subject and it provides the

ability to detect a change of variation. Further details are provided in Supplementary Material.

6. DISCUSSION

In this paper, the Aalen and Cox models were studied to model the effect of covariates on the rate
function. However, such models are not essential in our approach. Penalized algorithms could be
easily derived for other models such as the accelerated failure time model or the semiparametric
transformation model for instance.

Although we have only presented asymptotic theoretical results, the simulation studies show
clear evidence that our estimators outperform standard estimators for small sample sizes. There-
fore, it would be of great interest to study their finite sample properties. However, such results
involve deviation inequalities for non i.i.d. and non martingale empirical processes. To our knowl-
edge, no such results have yet been established in the context of recurrent events.

Another development of the present paper would be to establish results for the estimation
of change-point locations and the number of change-points. Such results can be found for the
change-point detection in the mean of a gaussian signal in Harchaoui & Lévy-Leduc (2010), for

instance.

ACKNOWLEDGEMENT

The authors are very grateful to the associate editor and the referees for their valuable comments

which have helped improve the original manuscript.



REFERENCES 17
REFERENCES

AALEN, O. (1980). A model for nonparametric regression analysis of counting processes. In
Mathematical statistics and probability theory (Proc. Sizth Internat. Conf., Wista, 1978), vol. 2

of Lecture Notes in Statist. New York: Springer, pp. 1-25.

ANDERSEN, P. K., BorGAN, @., GILL, R. D. & KEIDING, N. (1993). Statistical models based

on counting processes. Springer Series in Statistics. New York: Springer-Verlag.

ANDERSEN, P. K. & GILL, R. D. (1982). Cox’s regression model for counting processes: a large

sample study. Ann. Statist. 10, 1100-1120.

Bouaziz, O., CoMTE, F. & GuiLLoux, A. (2013). Nonparametric estimation of the intensity

function of a recurrent event process. Statist. Sinica 23, 635—665.

BYAR, D. P. (1980). The veterans administration study of chemoprophylaxis for recurrent stage
1 bladder tumors: comparison of placebo, pyridoxine, and topical thiotepa. Bladder Tumors
and Others Topics in Urological Oncology , (Edited by M. Pavone-Macaluso, P. H. Smith, and

F. Edsmyn), 363-370.

Cal, J. & SCHAUBEL, D. E. (2004). Marginal means/rates models for multiple type recurrent

event data. Lifetime Data Anal. 10, 121-138.

Canpis, E. J., WakIN, M. B. & Boyp, S. P. (2008). Enhancing sparsity by reweighted Iy

minimization. J. Fourier Anal. Appl. 14, 877-905.

Dauxois, J.-Y. & SENCEY, S. (2009). Non-parametric tests for recurrent events under competing

risks. Scand. J. Statist. 36, 649-670.

GAIFFAS, S. & GUILLOUX, A. (2012). High-dimensional additive hazards models and the lasso.

Electron. J. Statist. 6, 522-546.



18 REFERENCES

GOOSSENS, M. E., BUNTINX, F., JONIAU, S., ACKAERT, K., AMEYE, F., BILLIET, I., BRAECK-
MAN, J., BREUGELMANS, A., DARRAS, J., DILEN, K., GOEMAN, L., KELLEN, E., TOMBAL,
B., VAN BRUWAENE, S., VAN CLEYENBREUGE, B., VAN DER AA, F., VEKEMANS, K.,
VAN POPPEL, H. & ZEEGERS, M. (2012). Designing the selenium and bladder cancer trial (se-
leblat), a phase 11l randomized chemoprevention study with selenium on recurrence of bladder

cancer in belgium. BMC' Urology 12.

HarcHaoul, Z. & Livy-Lepuc, C. (2010). Multiple change-point estimation with a total

variation penalty. J. Amer. Statist. Assoc. 105, 1480-1493.

Huang, J., SuN, T., YING, Z., YU, Y. & C.-H., Z. (2013). Oracle inequalities for the lasso in

the cox model. Ann. Statist. 41, 1142-1165.

Huang, Y. & CHEN, Y. Q. (2003). Marginal regression of gaps between recurrent events.

Lifetime Data Anal. 9, 293-303.

HUFFER, F. W. & MCKEAGUE, I. (1991). Weighted least squares estimation for aalen’s additive

risk model. J. Amer. Statist. Assoc. 86, 114-129.

KALBFLEISCH, J. D. & PRENTICE, R. L. (2011). The statistical analysis of failure time data,

vol. 360. John Wiley & Sons.

KeLLy, P. & Liv, L. L.-Y. (2000). Survival analysis for recurrent event data: an application to

childhood infectious diseases. Statist. Med. 19, 13-33.

LawLEss, J. F. & NaDEAU, C. (1995). Some simple robust methods for the analysis of recurrent

events. Technometrics 37, 158-168.

LiN, D. Y., WEr, L. J., YaNg, L. & YING, Z. (2000). Semiparametric regression for the mean

and rate functions of recurrent events. J. R. Statist. Soc. Ser. B Statist. Methodol. 62, 711-730.



REFERENCES 19

LiN, D. Y., WEL L. J. & YING, Z. (1998). Accelerated failure time models for counting processes.

Biometrika 85, 605-618.

LiN, D. Y. & YING, Z. (1994). Semiparametric analysis of the additive risk model. Biometrika

81, 61-71.

MARTINUSSEN, T. & ScHEIKE, T. H. (2006). Dynamic regression models for survival data.

Statistics for Biology and Health. New York: Springer.

MARTINUSSEN, T. & SCHEIKE, T. H. (2009a). The additive hazards model with high-dimensional

regressors. Lifetime Data Anal. 15, 330-342.

MARTINUSSEN, T. & SCHEIKE, T. H. (2009b). Covariate selection for the semiparametric addi-

tive risk model. Scand. J. Statist. 36, 602—619.

McKEAGUE, I. W. (1988). Asymptotic theory for weighted least squares estimators in Aalen’s
additive risk model. In Statistical inference from stochastic processes (Ithaca, NY, 1987), vol. 80

of Contemp. Math. Providence, RI: Amer. Math. Soc., pp. 139-152.

PRENTICE, R. L., WILLIAMS, B. J. & PETERSON, A. V. (1981). On the regression analysis of

multivariate failure time data. Biometrika 68, 373-379.

RINALDO, A. (2009). Properties and refinements of the fused lasso. Ann. Statist. 37, 2922-2952.

ScHEIKE, T. H. (2002). The additive nonparametric and semiparametric Aalen model as the

rate function for a counting process. Lifetime Data Anal. 8, 247-262.

SIMON, N., FRIEDMAN, J., HASTIE, T. & TIBSHIRANI, R. (2011). Regularization paths for cox’s

proportional hazards model via coordinate descent. J. Statist. Software 39, 1-13.

SuN, L., PArk, D.-H. & Sun, J. (2006). The additive hazards model for recurrent gap times.

Statist. Sinica 16, 919-932.



20 REFERENCES

TaNAKA, T., Mivazawa, K., Tsukamoro, T., Kuno, T. & Suzuki, K. (2011). Pathobiology

and chemoprevention of bladder cancer. .J. Oncol. .

THERNEAU, T. M. (2000). Modeling survival data: extending the Cox model. Springer.

TIBSHIRANI, R. (1997). The lasso method for variable selection in the cox model. Statist. Med.

16, 385-395.

TiBSHIRANI, R., SAUNDERS, M., Rosser, S., ZHu, J. & KnigHT, K. (2005). Sparsity and

smoothness via the fused lasso. J. R. Statist. Soc. Ser. B Statist. Methodol. 67, 91-108.

VAN HOUWELINGEN, H., BruiNsMA, T., HART, A., VAN'T VEER, L. & L.F.A., W. (2006).

Cross- validated cox regression on microarray gene expression data. Statist. Med. 25, 3201

3216.

WEI, L. J., LN, D. Y. & WEISSFELD, L. (1989). Regression analysis of multivariate incomplete

failure time data by modeling marginal distributions. J. Amer. Statist. Assoc. 84, 1065-1073.

ZENG, D. & Car, J. (2010). A semiparametric additive rate model for recurrent events with an

informative terminal event. Biometrika 97, 699-712.

Zou, H. (2006). The adaptive lasso and its oracle properties. J. Amer. Statist. Assoc. 101,

1418-1429.

SUPPLEMENTARY MATERIAL

Supplementary material contains proofs of Theorems 3.1 and 3.2. They also include comments on
the asymptotic distribution of our estimators, details of the simulation scheme used in Section 4,

an extended simulation study and additional analysis on the bladder tumour data of Byar (1980).
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Table 1. Simulation results in the multiplicative model for Pops = 14%

n Unconstrained Constant TV two-steps TV
MSE SPEC  SENS MSE SPEC  SENS MSE SPEC  SENS MSE SPEC  SENS
50 5576.511 0 1 225.077 1 0 72.732 0.271 0.813 | 67.697 0.598  0.68
100 64.231 0 1 216.658 1 0 46.484 0.226 0.844 | 39.562 0.583 0.709
500 12.447 0 1 212.578 1 0 17.232  0.18 0.911 | 17.998 0.917 0.559
1000 9.06 0 1 213.292 1 0 14.215  0.192 0.9 17.353 0.983 0.512
MSE: mean square error, SPEC: specificity, SENS: sensitivity.
Table 2. Simulation results in the additive model for P s = 14%
n Unconstrained Constant TV two-steps TV
MSE SPEC  SENS MSE SPEC  SENS MSE SPEC  SENS MSE SPEC  SENS
50 1208.174 0 1 398.849 1 0 367.377 0.312 1 480.105 0.601 0.992
100 534.269 0 1 360.757 1 0 221.454 0.241 1 283.258  0.582 1
500 202.669 0 1 339.446 1 0 139.481 0.154 1 171.794  0.525 1
1000 | 168.751 0 1 337.813 1 0 133.39  0.103 1 157.899 0.471 1

MSE: mean square error, SPEC: specificity, SENS: sensitivity.

Table 3. Unconstrained and constant parameters estimates for the bladder data in the multiplicative model

s Unconstrained Constant

PYRIDOXINE THIOTEPA SIZE NUMBER | PYRIDOXINE THIOTEPA SIZE NUMBER
1 -0.497 -0.711 -0.028 0.202 -0.037 -0.374 0.03 0.155
2 0.466 0.013 0.044 0.014 -0.037 -0.374 0.03 0.155
3 -0.211 0.027 0.129 0.250 -0.037 -0.374 0.03 0.155
4 0.717 -0.095 0.064 0.274 -0.037 -0.374 0.03 0.155
5 0.657 -0.283 0.072 0.198 -0.037 -0.374 0.03 0.155

Table 4. Total variation and two-steps total variation parameters estimates for the bladder data in the multiplicative

model
S TV two-steps TV
PYRIDOXINE THIOTEPA SIZE NUMBER | PYRIDOXINE THIOTEPA SIZE NUMBER

1 -0.080 -0.373 0.023 0.133 -0.167 -0.387 0.031 0.122
2 -0.080 -0.373 0.023 0.133 -0.167 -0.387 0.031 0.122
3 -0.080 -0.373 0.023 0.133 -0.167 -0.387 0.031 0.265
4 0.241 -0.373 0.066 0.241 0.625 -0.387 0.031 0.265
5 0.241 -0.373 0.066 0.241 0.625 -0.387 0.031 0.265
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FIGURE CAPTIONS

Fig. 1. Estimates for the bladder data in the multiplicative model. The crosses represent the
constant estimator, the filled circles the unconstrained estimator, the circles the total variation

estimator and the squares the two steps total variation estimator.
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Fig. 1. Estimates for the bladder data in the multiplicative model. The crosses represent the constant
estimator, the filled circles the unconstrained estimator, the circles the total variation estimator and the
squares the two steps total variation estimator.



