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Summary

We introduce a covariate-specific total variation penalty in two semiparametric models for the
rate function of recurrent event process. The two models are a stratified Cox model, introduced
in Prentice et al. (1981), and a stratified Aalen’s additive model. We show the consistency and
asymptotic normality of our penalized estimators. We demonstrate, through a simulation study,
that our estimators outperform classical estimators for small to moderate sample sizes. Finally
an application to the bladder tumour data of Byar (1980) is presented.
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1. Introduction

Recurrent events arise in clinical or epidemiological studies when each subject experiences re-

peated events over time. Clinical examples include repetition of asthma attacks, epileptic seizures

or tumour recurrences for individual patients. In this context, proportional hazards models have

been largely studied in the literature to model the rate or mean functions of recurrent event data.

For instance, Andersen & Gill (1982) introduce a conditional Cox model where the recurrent

events process is assumed to be a Poisson process. Similar proportional hazards models and ex-

tensions are considered in Lawless & Nadeau (1995), Lin et al. (1998), Lin et al. (2000) and Cai

& Schaubel (2004).

To model rate functions in a recurrent events context, a different approach consists in fitting a

Cox model for each event count. Along these lines, Prentice et al. (1981) introduce two stratified

proportional hazards models with event-specific baseline hazards and regression coefficients. Gap

times and conditional models are presented in their paper and a marginal event-specific model

is studied in Wei et al. (1989). We refer to Kelly & Lim (2000) for a complete review of existing

Cox-based recurrent event models.

Additive models provide an useful alternative to proportional hazards models. For classical

counting processes, the Aalen model was first introduced in Aalen (1980) and is extensively

studied in McKeague (1988), Huffer & McKeague (1991), Lin & Ying (1994). It is considered

in the context of recurrent events in Scheike (2002). We propose in this paper to consider an

event-stratified version of the Aalen model, in the manner of Prentice et al. (1981).

As demonstrated in what follows, event-stratified models allow more flexibility but suffer

from over-parametrization when the sample size is not large enough compared to the numbers

of covariates and recurrent events. To address this drawback, we construct estimators which

do not vary much between two consecutive recurrent events, or equivalently with small total

variations (see Section 2.4 for details). To achieve this goal, we consider minimizers of empirical
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risks penalized via a covariate-specific total variation penalty. As such, our algorithms are part

of the class of fused lassos algorithms. The latter have been introduced and studied, for noised

piecewise constant signals, by Tibshirani et al. (2005), Rinaldo (2009) or Harchaoui & Lévy-Leduc

(2010). Lasso estimators in the context of survival analysis with high dimensional covariates

have been introduced and studied in Tibshirani (1997), Huang et al. (2013) in the Cox model

and Martinussen & Scheike (2009b), Gaiffas & Guilloux (2012) in the Aalen model, among others.

The settings of recurrent events with a terminal event, and the two models studied in this

paper are presented in the next section. In paragraph 2.4, we describe our novel algorithm, which

involves a total variation penalization of criteria, specific to either the multiplicative or additive

models. It requires preliminary details on inference in these two models, which are given in

paragraph 2.2 and 2.3. Consistency and asymptotics distributions of our estimators are derived

in Section 3. Simulation studies and a real data analysis are provided in Sections 4 and 5. We

conclude with a discussion in Section 6.

2. Models and algorithm

2.1 Models

Let D denote the time of the terminal event and Ñ(t) the càdlàg process that counts the number

of recurrent events occurring in the interval (0, t], with the convention Ñ(0) = 0. As no recurrent

events can occur after D, the process Ñ has jumps only on (0, D]. The p-dimensional process of

covariates is denoted by X and is assumed to be left continuous. The event-specific rate function

of the process Ñ , denoted by ρ0, is defined as

E
[

dÑ(t) | X(t), D > t, Ñ(t−) = s− 1
]

1(Ñ(t−) = s− 1) = 1(D > t, Ñ(t−) = s− 1)ρ0(t, s,X(t))dt,
(2.1)

for s = 1, 2, . . . and t in As = {t : P[Ñ(t−) = s − 1, D > t] > 0} and is null outside of As. The

set As represents the time intervals where the s-th recurrent events can occur with a positive
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probability and lies in Supp(D), the support of D. Apart from the stratification, this definition

of the rate function can be found in Scheike (2002).

We consider two semiparametric models for the function ρ0. The first one is an event-specific

multiplicative rate model introduced in Prentice et al. (1981). In this model, the rate function is

specified, for s = 1, 2, . . . and t in As, by

ρ0(t, s,X(t)) = α0(t, s) exp (X(t)β0(s)) (2.2)

where for each event number s, β0(s) is an unknown p-dimensional vector of parameters and α0

is an unknown baseline function.

Following Scheike (2002), and Zeng & Cai (2010), we also propose to consider its additive

counterpart. The rate function in our event-specific additive model is then for s = 1, 2, . . . and t

in As:

ρ0(t, s,X(t)) = α0(t, s) +X(t)β0(s). (2.3)

When β0 is assumed to be constant over the events, models (2.2) and (2.3) are usually referred

to as stratified Cox and Aalen models (see e.g. Martinussen & Scheike (2006), page 190). To

insist on the constancy of β0 (as a function of s), these particular cases of models are hereafter

designated as “constant coefficient models”.

As, in practice, the individuals experience only a finite number of recurrent events, we will

concentrate on the estimation of the rate function for the first B events, where B is an user-chosen

integer (see the example in Section 5). Mathematically, this means that we only consider the

observation of the process Ñ on the interval [0, E(B)], where E(B) is the hitting time of [B,∞).

Equivalently, we consider that we observe the stopped process N∗, defined through N∗(t) =

Ñ(t ∧ E(B)), for all t > 0. Noticing that, for all s = 1, . . . , B and all t > 0, {N∗(t−) = s− 1} =

{Ñ(t−) = s − 1} ⊂ {t 6 E(B)}, the event-specific rate function of N∗ equals the one of Ñ ,

such that equation (2.1) holds with Ñ replaced by N∗. This is equivalent to assuming that the
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total number of observed events is almost surely bounded by B, which is the classical framework

for inference for recurrent event processes (see e.g. Scheike (2002), Dauxois & Sencey (2009)

or Bouaziz et al. (2013)).

We consider the problem of estimating the unknown parameter β0 = (β0(1), . . . , β0(B)), in

stratified models (2.2) and (2.3) on the basis of data from n independent individuals. Introducing

the censoring time C, the data consist of n independent replications {Ni(t), Ti, δi, Xi(t), t 6 τ},

i = 1, . . . , n, where Ni(t) = N∗
i (t ∧ Ci), Ti = Di ∧ Ci is the minimum between Di and Ci,

δi = 1(Di 6 Ci), (Xi(t), 0 6 t 6 Ti) is the covariates process and τ represents the end-point

of the study. In addition, we define the event-specific at-risk function Y s and the overall at-risk

function Y . For each individual i, for all t in [0, τ ]:

Y s
i (t) = 1(Ti > t,Ni(t−) = s− 1), Yi(t) =

B
∑

s=1

Y s
i (t) = 1(Ti > t).

Let Aτ
s = As ∩ [0, τ ]. The following two assumptions are mandatory to perform estimation.

Assumption 1 For all s = 1, . . . , B, and t in Aτ
s , E[Y

s(t)] > 0 and P[E(B) 6 τ ] > 0.

The fist part is classical in survival analysis (see for instance Andersen et al. (1993)). The

second part implies that, for s = 1, 2, . . . , B, the sets Aτ
s are non-empty. Note also that the

processes Y s
i are almost surely null on the complementary of As in [0, τ ].

Assumption 2 For all s = 1, . . . , B, and t in Aτ
s ,

E
[

dN∗(t) | X(t), D ∧ C > t,N∗(t−) = s− 1
]

= E
[

dN∗(t) | X(t), D > t,N∗(t−) = s− 1
]

.

This assumption is classical in recurrent events context and can be found for instance in Lin

et al. (2000). It is the analog of the independent right censoring definition III.2.1. of Andersen et al.

(1993). We refer the reader to the Supplementary Material for a discussion on these assumptions.

In particular, sufficient conditions are presented for these assumptions to hold.
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In our framework, the unknown vector of parameters β0 has p×B unknown coefficients to be

estimated. For reasonable sizes of sample n, these models are over-parametrized in the sense that,

when
√
n 6 p × B, the estimators show very poor behaviour (see Section 4 for an illustration).

On the other hand, simpler forms of models (2.2) and (2.3), in which the unknown parameter

does not change with the event, β0(s) = β0, might be too poor to accurately fit the data (see

also Section 4 and the discussion in Kelly & Lim (2000)). In this paper, we aim at providing

estimators realizing a compromise between these two situations.

2.2 Inference in the multiplicative model

As in Prentice et al. (1981), in the multiplicative event-specific model (2.2), an estimator β̂ES/mult

of the unknown parameter β0 ∈ R
p×B is defined as the maximizer of the stratified partial log-

likelihood, or equivalently as

β̂ES/mult ∈ argmin
β∈Rp×B

LPL
n (β) (2.4)

= argmin
β∈Rp×B



− 1

n

B
∑

s=1

n
∑

i=1

∫

[0,τ ]







Xi(t)β(s)− log





n
∑

j=1

Y s
j (t) exp (Xj(t)β(s))











Y s
i (t)dNi(t)



 .

An estimator β̂C/mult in the constant coefficient model is defined as

β̂C/mult ∈ argmin
β∈Rp



− 1

n

n
∑

i=1

B
∑

s=1

∫

[0,τ ]







Xi(t)β − log





n
∑

j=1

Y s
j (t) exp (Xj(t)β)











Y s
i (t)dNi(t)



 .

(2.5)

The right term of equation (2.5) is the standard log-likelihood of a stratified Cox model (see for

instance Therneau (2000) p.44-45 or Kalbfleisch & Prentice (2011) p.118-119).

2.3 Inference in the additive model

As noticed in Martinussen & Scheike (2009a,b) or Gaiffas & Guilloux (2012), in the usual additive

hazards model, the estimator β̂ES/add of the unknown parameter β0 ∈ R
p×B can be written as
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the minimizer of a (partial) least-squares criterion:

β̂ES/add ∈ argmin
β∈Rp×B

LPLS
n (β) = argmin

β∈Rp×B

B
∑

s=1

{

β(s)⊤Hn(s)β(s)− 2hn(s)β(s)
}

, (2.6)

where for all s ∈ {1, . . . , B}, Hn(s) are p×p symmetrical positive semidefinite matrices and hn(s)

are p-dimensional vectors equal to

Hn(s) =
1

n

n
∑

i=1

∫

[0,τ ]

Y s
i (t)

(

Xi(t)−X̄s(t)
)⊗2

dt and hn(s) =
1

n

n
∑

i=1

∫

[0,τ ]

Y s
i (t)

(

Xi(t)−X̄s(t)
)

dNi(t)

with X̄s(t) =
∑n

i=1 Xi(t)Y
s
i (t)/

∑n
i=1 Y

s
i (t) and the convention that 0/0 = 0.

On the other hand, an estimator β̂C/add in the constant coefficient model is defined as

β̂C/add ∈ argmin
β∈Rp

(

β⊤
Hnβ − 2hnβ

)

, with Hn =
B
∑

s=1

Hn(s) and hn =
B
∑

s=1

hn(s). (2.7)

This formula gives an analogue of the so-called stratified Cox model to the Aalen case. Note also

that the quantities Hn and hn are not the same as the ones involved in a standard Aalen model

with no stratification (see for instance the terms Dn and dn in Martinussen & Scheike (2009b)).

In our constant coefficient models β0 is constant and therefore its estimators are also constants,

but the baseline α0 is still stratified with respect to s.

2.4 A total-variation penalty

To overcome the possible over-parametrization of models (2.2) and (2.3), we propose to define

penalized versions of criteria (2.4) and (2.6). For all β = (β(s), s = 1, . . . , B) with β(s) =

(β1(s), . . . , βp(s)), define for all j = 1, . . . , p

βj = (βj(1), . . . , βj(B)) and tv(βj) =

B
∑

s=2

|βj(s)− βj(s− 1)| =
B
∑

s=2

|∆βj(s)|. (2.8)

We now consider the minimizers of the partial log-likelihood (respectively the partial least-

squares) penalized with a covariate specific total variation. Define the penalized estimators in
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models (2.2) and (2.3) as:

β̂tv/mult ∈ argmin
β∈Rp×B







LPL
n (β) +

λn

n

p
∑

j=1

tv(βj)







and (2.9)

β̂tv/add ∈ argmin
β∈Rp×B







LPLS
n (β) +

λn

n

p
∑

j=1

tv(βj)







. (2.10)

These penalized algorithms are part of the class of fused-lasso algorithms (see e.g. Tibshirani et al.

(2005), Rinaldo (2009) for a definition) and can be rewritten as lasso algorithms (the details are

given in Supplementary Material).

3. Asymptotic results

We successively provide the asymptotic results for the estimators β̂tv/add in the additive model

and β̂tv/mult in the multiplicative model. Their proofs are postponed in Supplementary Material.

In both models, the following conditions are mandatory.

Assumption 3 1. The covariate process X(·) is of bounded variation on [0, τ ].

2. There exists a constant M such that for all t in [0, τ ], X(t) ∈ [−M,M ]p almost surely.

3. For all s = 1, . . . , B,
∫

Aτ
s

α0(t, s)dt < ∞.

Parts 1 and 2 of Assumption 3 are equivalent to Assumption (ii) in Scheike (2002). Part 3 is

a stratified form of Assumption 7.2.1, for instance, in Andersen et al. (1993).

Define, for all s = 1, . . . , B and t in Aτ
s , the centered process

Ms(t) = N(t)−
∫ t

0

E
[

dN(r) | X(r), D ∧ C > r,N(r−) = s− 1
]

and the p× p matrix

H(s) :=

∫

Aτ
s

E[Y s(t)X(t)⊤X(t)]dt−
∫

Aτ
s

(E[Y s(t)X(t)])⊗2

E[Y s(t)]
dt,

which, thanks to Assumptions 1 and 2, is well defined.
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Theorem 3.1 Assume that, for each s = 1, . . . , B, H(s) is non-singular and that Assumptions 1,

2 and 3 are fulfilled.

1. If λn/n → 0 as n → ∞ then β̂tv/add converges to β0 in probability.

2. If λn/
√
n → λ0 > 0 as n → ∞ then

√
n(β̂tv/add − β0) converges in distribution to

argmin
u∈Rp×B

Λadd(u) = argmin
u∈Rp×B

[

B
∑

s=1

{

u(s)⊤H(s)u(s)− 2u(s)⊤ξadd(s)
}

+ λ0

p
∑

j=1

B
∑

s=2

{

|∆uj(s)|1(∆βj
0(s) = 0) + sgn(∆βj

0(s))(∆uj(s))1(∆βj
0(s) 6= 0)

}]

,

and for each s, ξadd(s) is a centered p-dimensional gaussian vector with covariance matrix equal

to

E

[

(

∫

Aτ
s

(X(t)− E[Y s(t)X(t)]/E[Y s(t)])Y s(t)dMs(t)
)⊗2

]

.

We now state an analogous result in the multiplicative model. Define for all s = 1, . . . , B and

for all t in Aτ
s ,

s(l)(s, t, β) = E[Y s(t)X(t)⊗l exp(X(t)β(s))], l = 0, 1, 2.

Introduce e(s, t, β) = s(1)(s, t, β)/s(0)(s, t, β), v(s, t, β) = s(2)(s, t, β)/s(0)(s, t, β) − e(s, t, β)⊗2

and Σ(s, β) =
∫

Aτ
s

v(s, t, β)E[Y s(t)dN(t)]. For any s = 1, . . . , B and for any t in Aτ
s , the three

functions s(l)(s, t, β0) are bounded due to Assumption 3 and e(s, t, β),v(s, t, β) and Σ(s, β) are

finite due to Assumptions 1 and 3.

Theorem 3.2 Assume that for each s = 1, . . . , B, Σ(s, β0) is non-singular and that Assump-

tions 1, 2 and 3 are fulfilled.

1. If λn/n → 0 as n → ∞ then β̂tv/mult converges to β0 in probability.

2. If λn/
√
n → λ0 > 0 as n → ∞ then

√
n(β̂tv/mult − β0) converges in distribution to

argmin
u∈Rp×B

Λmult(u) = argmin
u∈Rp×B

[

B
∑

s=1

{

1

2
u(s)⊤Σ(s, β0)u(s)− u(s)⊤ξmult(s)

}

+ λ0

p
∑

j=1

B
∑

s=2

{

|∆uj(s)|1(∆βj
0(s) = 0) + sgn(∆βj

0(s))(∆uj(s))1(∆βj
0(s) 6= 0)

}]

,
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and for each s, ξmult(s) is a centered p-dimensional gaussian vector with covariance matrix equal

to

E





(

∫

Aτ
s

(X(t)− e(s, t, β0))Y
s(t)dMs(t)

)⊗2


 .

First results of Theorems 3.1 and 3.2 prove the consistency of our estimators, on the mandatory

condition that λn/n tends to 0. This ensures that they behave better than the constant coefficient

estimators when β0 is non constant. In addition, the considered penalty will induce sparsity for

each covariate j = 1, . . . , p in the successive differences ∆βj(s), s = 1, . . . , B. As a consequence,

the effects of a covariate on two consecutive events will often be equal. We show, in the following

simulation study, that this induced sparsity ameliorates the behaviour of our estimators compared

to the unconstrained ones (defined in Equations (2.4) and (2.6)).

The second results show that asymptotic normality can be achieved only if λn/
√
n tends to

0. In that case, the asymptotic variance of the limiting distribution can be estimated by means

of the analog of the optional variation in this context, see Martinussen & Scheike (2006, page

150-151) for details.

However, when λ0 = 0, the algorithm is no longer consistent in selection, in the sense that in

both multiplicative and additive cases, as n tends to infinity,

P
[

{(j, s) ∈ R
p × R

B ,∆(β̂j
TV )(s) 6= 0} = {(j, s) ∈ R

p × R
B ,∆(βj

0)(s) 6= 0}
]

→ 0.

Even in the case where λn/
√
n → λ0 > 0, this probability is asymptotically stricly less than 1,

see Zou (2006) for details. To enhance the sparsity in the covariate-specific successive differences

(or equivalently to force β̂TV/mult and β̂TV/add to have several constant coefficients), we consider

a reweighted lasso, in the manner of Zou (2006) or Candès et al. (2008). In both models the two

steps (or reweighted lasso) estimators are defined as

β̃TV/mult ∈ argmin
β∈Rp×B







LPL(β) +
λn

n

p
∑

j=1

B
∑

s=2

1

|∆β̂j
TV/mult(s)|+ |∆β̂0|

|∆βj(s)|







(3.11)
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and

β̃TV/add =∈ argmin
β∈Rp×B







LPLS(β) +
λn

n

p
∑

j=1

B
∑

s=2

1

|∆β̂j
TV/add(s)|+ |∆β̂0|

|∆βj(s)|







, (3.12)

where β̂TV/mult and β̂TV/add are defined in Equations (2.9) and (2.10) and in both cases:

|∆β̂j
0| = min{|∆β̂j

TV (s)|, j = 1, . . . , p , s = 1, . . . , B , |∆β̂j
TV (s)| 6= 0}.

4. Implementation and simulation studies

We compare the performance of the penalized estimators (2.9) and (2.10), the constant coefficient

ones (2.5) and (2.7), and the unconstrained ones (2.4) and (2.6). To mimic the bladder tumour

cancer dataset studied in Section 5, we set p = 4 and consider B = 5 recurrent events for the

estimation. In the multiplicative and additive models, the sample size n varies from n = 50 =

2.5 pB to n = 1000 ≃ (pB)2.3.

4.1 Implementation of penalized estimators.

The minimizers of the partial log-likelihood, respectively, the partial least-squares, penalized with

a covariate specific total variation of Equations (2.9) and (2.10) can be seen as lasso estimators

by introducing a block matrix D of size (pB × pB) with p diagonal blocks being equal to a lower

triangular matrix with nonzero elements equal to 1 and p2 − p off-diagonal blocks being matrices

of zeros.

The minimization problems of Equations (2.9) and (2.10) can then be rewritten as

β̂TV = Dγ̂TV with

γ̂TV ∈ argmin
γ∈Rp×B







Ln(Dγ) +
λn

n

p
∑

j=1

B
∑

s=2

|γj(s)|







= argmin
γ∈Rp×B

{

Ln(Dγ) +
λn

n
‖γ‖1

}

, (4.13)

where Ln is either LPL
n or LPLS

n and, in both cases, γ̂TV = (β̂1
TV (1),∆β̂1

TV (2), . . . ,∆β̂p
TV (B))⊤.

The related R functions can be found at http://www.lsta.upmc.fr/guilloux.php?main=publications.
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The regularization parameter is chosen in both multiplicative and additive cases via 5-fold

cross-validation, defined by the lasso formulations of Equation (4.13). For details in the multi-

plicative model, see Simon et al. (2011, pages 9-10) or van Houwelingen et al. (2006). Details for

the additive model may be found in Martinussen & Scheike (2009b, page 608).

4.2 Simulation scheme

We draw p = 4 constant covariates from uniform distributions on [0, 2] and set the parameters

values at β1
0 = 0.25(0, 0, 1, 1, 0), β2

0 = (1, . . . , 1), β3
0 = b(1, 2, 3, 4, 5) and β4

0 = (0, . . . , 0). We

generated recurrent event times from the multiplicative (2.2) and additive (2.3) models with

baseline defined through the Weibull distribution with shape parameter aW and scale parameter

1 (see Supplementary Materials for a more detailed description of the simulation scheme). The

death and censoring times are generated from exponential distributions with parameters aD and

aC respectively. We set the value of parameter aW at 1.5, and of b at 4 in the additive case and

−1 in the multiplicative case. Finally, the values of aD and aC are empirically determined to

obtain 14−15% of individuals experiencing the fifth event. More results for pobs = 28−29% were

obtained and are reported in Supplementary Material.

4.3 Performance evaluation

To evaluate the performance of the different estimators, we conduct a Monte Carlo study with

M = 500 experiences. The estimation accuracy is investigated for each method via a mean squared

rescaled error defined as

mse =
103

M

M
∑

m=1

‖β̂m − β0‖2
‖β0‖2

, (4.14)

where β̂m is the estimation in the sample m. We furthermore study the detection power of

non-constant (respectively constant) covariate effects by computing specificities (spec) and sen-
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sitivities (sens) for each method. For an estimation β̂m, define false (fp) and true (tp) positives

fp(β̂m) = Card
(

j ∈ {1, . . . , p} such that tv(β̂j
m) 6= 0 and tv(βj

0) = 0
)

tp(β̂m) = Card
(

j ∈ {1, . . . , p} such that tv(β̂j
m) 6= 0 and tv(βj

0) 6= 0
)

and false (fn) and true (tn) negatives by exchanging = and 6= in the above definitions (see (2.8)

for the definition of tv). The specificity and sensibility of a method are defined over the M

replications as

spec =
1

M

M
∑

m=1

tn(β̂m)

tn(β̂m) + fp(β̂m)
(4.15)

and

sens =
1

M

M
∑

m=1

tp(β̂m)

tp(β̂m) + fn(β̂m)
, (4.16)

such that 1 is the ideal value for both indicators of detection power. The results are presented in

Tables 1-2.

4.4 Results

As expected, the constant model is biased and, in particular, for our choice of a non-constant β0,

the MSE does not decrease with the sample size n. The comparison between the unconstrained

and penalized estimators is in favour of our estimators in all cases as long as n is much smaller than

(pB)2. For p = 4, B = 5, n = 100 and pobs = 14% (which are values close to those encountered

in the bladder tumour cancer dataset studied in the next section) our penalized estimators are

respectively, 2.41 in the additive model and 1.38 in the multiplicative model, times better than

the unconstrained ones in terms of estimation error.

Regarding the sensitivity and specificity indexes defined in Section 4.3, the unconstrained

estimators, which, by definition, has no constant coefficients, has a perfect sensitivity and a null

specificity. On the opposite, the constant estimator can not detect a non-constant effect and,

as a consequence, produces no false positive, nor true positive, with the consequence that its
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sensitivity is null and its specificity equals one.

The one-step penalized estimators of Equations (2.9) and (2.10) have almost perfect sensitiv-

ities, but their specificities decrease with the sample size. In our opinion, this is due to the cross

validation, which tends to choose smaller regularization parameters for larger sample sizes. This

choice is consistent with the theoretical values of λn displayed in Theorems 3.1 and 3.2. This

however leads to the classical non-consistency in selection of one-step estimators, as discussed at

the end of Section 3.

To overcome this drawback, we defined in Equations (3.11) and (3.12), two-steps estimators.

They are expected to enhance the sparsity in the estimated successive differences and conse-

quently, produce less false positives and more true negatives. Results indeed show increased

specificities for comparable sensitivities, as compared to the one-step estimators. These two-steps

estimators however are expected to be more biased, this phenomenon can be seen in Table 2 for

example. When the specificities of the one-step and two-steps estimators are of the same order,

the MSE of the latter is greater.

We repeat the simulation study for aW = 0.5 and then for a Gompertz baseline with shape

parameter aG = 1.5 and 0.5 and scale parameter 1. The results are reported in Supplementary

Material. As expected, we observe that a drop in the percentage of individuals experiencing the

fifth event drops affects the performances of all estimators. Other conclusions are similar.

5. Bladder tumour data analysis

In this section we illustrate the behaviour of our estimators on the bladder tumour cancer data

of Byar (1980). These data were obtained from a clinical trial conducted by the Veterans Admin-

istration Co-operative Urological Group. One hundred and eighteen patients were randomised to

one of three treatments: placebo, pyridoxine or thiotepa. For each patient, the time of recurrence

tumours were recorded until the death or censoring times. The number of recurrences ranges from
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0 to 10. Two patients who were censored before the beginning of the study are removed. The

dataset is therefore composed of 116 patients with 47 patients from the placebo group, 38 from

the thiotepa group and 31 from the pyridoxine group. On these patients, since 13.79% experienced

at least five tumour recurrences and only 6.9% patients experienced six tumour recurrences or

more, we set the parameter B to 5. For interpretation purpose, the treatment variable is coded

as two new binary variables, pyridoxine and thiotepa, making placebo the reference. In addition

to these two treatment variables two supplementary covariates were recorded for each patient:

the number of initial tumours and the size of the largest initial tumour.

Tables 3, 4 and figure 1 display the estimates obtained from the constant coefficient, uncon-

strained, total variation and two steps total variation estimators in the multiplicative model. The

unconstrained estimator shows very strong variations and is difficult to interpret as such. On the

other hand, the constant coefficient estimator gives valuable information on the impact of each

covariate, but in turn cannot detect a change in variation. Our total-variation estimators reach

compromise: they are not constant but easily interpretable.

For instance, a remarkable aspect of the pyrodixine treatment can be highlighted from the

total variation estimation: this treatment produces a protective effect for the first three tumour

recurrences but the hazard rate of further recurrences are increased by this treatment. In the

same way, an increase in the effect of the initial number of tumours on recurrences is observed

from the third recurrence. On the opposite, the effects of the thiotepa treatment or the size of the

largest tumour are shown to be constant in the total variation model, the parameter estimates

having values similar to the ones obtained in the constant model.

Our conclusions on the treatments effects are in agreement with previous studies on blad-

der tumours recurrences. For instance, no difference in the rate or time to tumour recurrence

was found from patients using pyrodixine with patients using placebo in Tanaka et al. (2011)

and Goossens et al. (2012). Moreover, Huang & Chen (2003) and Sun et al. (2006) have respec-
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tively studied gap time recurrences in the multiplicative and additive models. The results obtained

from the former showed a small protective effect of this treatment while the latter concluded that

gap times did not seem related to pyridoxine. These examples illustrate the nice features of our

total-variation estimator: it provides sharper results, giving relevant informations on covariates

effect with respect to the number of recurrent events experienced by a subject and it provides the

ability to detect a change of variation. Further details are provided in Supplementary Material.

6. Discussion

In this paper, the Aalen and Cox models were studied to model the effect of covariates on the rate

function. However, such models are not essential in our approach. Penalized algorithms could be

easily derived for other models such as the accelerated failure time model or the semiparametric

transformation model for instance.

Although we have only presented asymptotic theoretical results, the simulation studies show

clear evidence that our estimators outperform standard estimators for small sample sizes. There-

fore, it would be of great interest to study their finite sample properties. However, such results

involve deviation inequalities for non i.i.d. and non martingale empirical processes. To our knowl-

edge, no such results have yet been established in the context of recurrent events.

Another development of the present paper would be to establish results for the estimation

of change-point locations and the number of change-points. Such results can be found for the

change-point detection in the mean of a gaussian signal in Harchaoui & Lévy-Leduc (2010), for

instance.
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Supplementary material contains proofs of Theorems 3.1 and 3.2. They also include comments on

the asymptotic distribution of our estimators, details of the simulation scheme used in Section 4,

an extended simulation study and additional analysis on the bladder tumour data of Byar (1980).
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Tables

Table 1. Simulation results in the multiplicative model for pobs = 14%

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 5576.511 0 1 225.077 1 0 72.732 0.271 0.813 67.697 0.598 0.68
100 64.231 0 1 216.658 1 0 46.484 0.226 0.844 39.562 0.583 0.709
500 12.447 0 1 212.578 1 0 17.232 0.18 0.911 17.998 0.917 0.559
1000 9.06 0 1 213.292 1 0 14.215 0.192 0.9 17.353 0.983 0.512

mse: mean square error, spec: specificity, sens: sensitivity.

Table 2. Simulation results in the additive model for pobs = 14%

n Unconstrained Constant tv two-steps tv
mse spec sens mse spec sens mse spec sens mse spec sens

50 1208.174 0 1 398.849 1 0 367.377 0.312 1 480.105 0.601 0.992
100 534.269 0 1 360.757 1 0 221.454 0.241 1 283.258 0.582 1
500 202.669 0 1 339.446 1 0 139.481 0.154 1 171.794 0.525 1
1000 168.751 0 1 337.813 1 0 133.39 0.103 1 157.899 0.471 1

mse: mean square error, spec: specificity, sens: sensitivity.

Table 3. Unconstrained and constant parameters estimates for the bladder data in the multiplicative model

s Unconstrained Constant
pyridoxine thiotepa size number pyridoxine thiotepa size number

1 -0.497 -0.711 -0.028 0.202 -0.037 -0.374 0.03 0.155
2 0.466 0.013 0.044 0.014 -0.037 -0.374 0.03 0.155
3 -0.211 0.027 0.129 0.250 -0.037 -0.374 0.03 0.155
4 0.717 -0.095 0.064 0.274 -0.037 -0.374 0.03 0.155
5 0.657 -0.283 0.072 0.198 -0.037 -0.374 0.03 0.155

Table 4. Total variation and two-steps total variation parameters estimates for the bladder data in the multiplicative
model

s TV two-steps TV
pyridoxine thiotepa size number pyridoxine thiotepa size number

1 -0.080 -0.373 0.023 0.133 -0.167 -0.387 0.031 0.122
2 -0.080 -0.373 0.023 0.133 -0.167 -0.387 0.031 0.122
3 -0.080 -0.373 0.023 0.133 -0.167 -0.387 0.031 0.265
4 0.241 -0.373 0.066 0.241 0.625 -0.387 0.031 0.265
5 0.241 -0.373 0.066 0.241 0.625 -0.387 0.031 0.265



22 FIGURE CAPTIONS

Figure Captions

Fig. 1. Estimates for the bladder data in the multiplicative model. The crosses represent the

constant estimator, the filled circles the unconstrained estimator, the circles the total variation

estimator and the squares the two steps total variation estimator.
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Fig. 1. Estimates for the bladder data in the multiplicative model. The crosses represent the constant
estimator, the filled circles the unconstrained estimator, the circles the total variation estimator and the
squares the two steps total variation estimator.


