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J. G. Yu · Ch. Zhang · J. E. Lefebvre

Guided wave characteristics in functionally graded
piezoelectric rings with rectangular cross-sections

Abstract For the purpose of design and optimization of functionally graded piezoelectric material (FGPM)
transducers, wave propagation in FGPM structures has received much attention in the past twenty years.
But previous research efforts have been focused essentially on semi-infinite structures and one-dimensional
structures, i.e., structures with a finite dimension in only one direction, such as horizontally infinite flat plates
and axially infinite hollow cylinders. This paper proposes a double orthogonal polynomial series approach to
solving the wave propagation problem in a two-dimensional FGPM structure, namely an FGPM ring with a
rectangular cross-section. By numerical comparison with the available reference results for a purely elastic
homogeneous rectangular rod, the validity of the extended polynomial approach is illustrated. The dispersion
curves and the electric potential distributions of various FGPM rectangular rings with different material gradient
directions, different polarization directions, different radius to thickness ratios, and different width to thickness
ratios are calculated to reveal the guided wave characteristics.

1 Introduction

Compared to traditional piezoelectric material transducers, functionally graded piezoelectric material (FGPM)
transducers can avoid the incompatibilities that exist between the piezoelectric element and the host structure,
i.e., structure under test, such as (i) the residual stress generated during the bonding process, (ii) the interface
defects and the possibility of interface crack growth, (iii) severe stress jumps across the interfaces during
high electrical actuation or mechanical loading, and (iv) debonding resulted from temperature gradients. The
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advantages of FGPM have attracted many researchers’ attention to develop FGPM transducers by various
methods [1–8].

For the purpose of design and optimization of FGPM transducers, many computational models are devel-
oped to solve the wave propagation in various FGPM structures in the past thirty years. The most used are
various layered models. These models divided an FGM structure into a number of homogeneous or inhomo-
geneous thin layers, such as finite layer element [9], linearly inhomogeneous layer elements [10], quadratic
inhomogeneous layer elements [11], finite elements [12], spectral element [13,14] and versatile transfer matrix
approach [15]. There are also some models which took FGM as continuous gradient medium, such as Wentzel–
Kramer–Brillouin (WKB) method [16,17], homotopy analysis method [18], and orthogonal polynomial series
method [19,20] and analytical solutions for SH waves [21].

So far, previous investigations on wave propagation in FGPM structures have been focused essentially on
semi-infinite structures and one-dimensional structures, i.e., structures having a finite dimension in only one
direction, such as horizontally infinite flat plates and axially infinite hollow cylinders. But in practical appli-
cations, many piezoelectric elements have rather a finite dimension in two directions. Thus, one-dimensional
models are not suitable for these structures. This paper presents a double orthogonal polynomial series approach
to solving wave propagation problems in a two-dimensional (2-D) FGPM structure, namely an FGPM ring
with a rectangular cross-section.

The orthogonal polynomial series approach has been used to solve wave propagation for more than forty
years. It has been used to solve wave propagation problems in different structures, from semi-infinite structures
[22] to flat plate [19] and to various curved structures [20,23], from purely elastic structures [23] to various
multi-field coupled structures [19,24–26], from homogeneous structures [23] to various inhomogeneous struc-
tures [22,24–26]. However, the available polynomial series approach can only deal with semi-infinite structures
and one-dimensional structures. In such cases, only one orthogonal polynomial series is sufficient to express the
displacement in the thickness direction. This paper extends the approach to 2-D structures. A double orthogonal
polynomial series is adopted to express the displacements in a rectangular plane, so that the two-dimensional
waveguide problems can be solved.

In this paper, two material gradient directions (radial direction and axial direction) and two polarization
directions (also radial direction and axial direction) are, respectively, considered. The dispersion curves and
the electric potential profiles of various FGPM rectangular rings are presented and discussed. Traction-free
and open-circuit boundary conditions are assumed.

2 Governing equations and problem formulation

We consider an orthotropic FGPM ring with a rectangular cross-section, as shown in Fig. 1. In the cylindrical
coordinate system (θ, z, r), a, b are the inner and outer radii, d is its thickness in the r direction, and h is its
height in the z direction. The radius to thickness ratio is defined as η = b/(b − a). Its polarization direction
is in the r or z direction.

r

z

a

b

o

h

Wave propagation

Fig. 1 Schematic diagram of a ring with a rectangular cross-section
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For the wave propagation problem considered in this paper, the body forces and electric charges are assumed
to be zero. Thus, the dynamic equations of motion for the ring are governed by
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where Ti j , ui and Di are the stress, elastic displacement and electric displacement components, respectively,
and ρ is the density of the material. In this study, a quasi-electrostatic assumption is made.

The relationships between the strain and displacement components can be expressed as
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where εi j , Ei and Φ are the strain components, the electric field and the electric potential, respectively.
In this paper, we consider two kinds of FGPM rings, namely the material gradient direction being, respec-

tively, in the radial direction and in the axial direction. For the FGPM ring with a variation of the material
properties in the radial direction, we denote it as radially functionally graded piezoelectric or short r-FGPM
ring. The elastic parameters of the r-FGPM are dependent on r and can be represented by a polynomial series
of the radial coordinate,

Ci j (r) = C
(0)
i j + C

(1)
i j
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d

)1
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(2)
i j

( r
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)2
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(L)
i j

( r
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)L

.

With implicit summation over repeated indices, Ci j (r) can be written compactly as

Ci j (r) = C
(l)
i j

( r

d

)l

l = 0, 1, 2, . . . , L . (3.1)

The piezoelectric and dielectric coefficients and the mass density can be treated in the same way, i.e.,

e (r) = e
(l)
i j
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d

)l
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(l)
i j

( r

d

)l

, ρ(r) = ρ(l)
( r

d

)l

, l = 0, 1, 2, . . . , L . (3.2)

The FGPM ring with the material properties varying in the axial direction is referred to as the axially
functionally graded piezoelectric or short a-FGPM ring. In this case, the material parameters are functions of
z, which can be expressed as

Ci j (z) = C
(l)
i j

( z

h

)l

, ei j (z) = e
(l)
i j

( z

h

)l
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, ρ (z) = ρ
(l)
i j

( z

h

)l

, l = 0, 1, 2, . . . , L .

(4)
Simultaneously, two different polarization directions, i.e., radially polarized and axially polarized directions,
will be considered. We use ‘rp’ and ‘ap’ to represent these two different polarization directions.

We introduce the function I(r, z)

I(r, z) = π(r)π(z) =

{

1, a ≤ r ≤ b and 0 ≤ z ≤ h

0, elsewhere

where π(r) and π(z) are rectangular window functions (the subtraction of two Heaviside function) π(r) =
{

1, a ≤ y ≤ b

0, elsewhere
and π(z) =

{

1, 0 ≤ z ≤ h

0, elsewhere
. The derivatives along r and z of I(r, z) are delta (r )
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and delta (z). By introducing the function I(r, z), the traction-free and open-circuit boundary conditions, i.e.,
Trr = Trθ = Tr z = Dr = 0 at r = a, r = b and Tr z = Tθ z = Tzz=Dz = 0 at z = 0, z = h, are automatically
incorporated into the constitutive relations of the ring [22]:

Tθθ = C11εθθ + C12εzz + C13εrr − e31 Er ,

Tzz = (C12εθθ + C22εzz + C23εrr − e32 Er ) I(r, z),

Trr = (C13εθθ + C23εzz + C33εrr − e33 Er )I(r, z),

Tr z = (2C44εr z − e24 Ez) I(r, z),

Trθ = (2C55εrθ − e15 Eθ ) I(r, z),

Tθ z = 2C66εθ zI(r, z),

(5.1)

Dθ = 2e15εrθ+ ∈11 Eθ ,

Dz = (2e24εr z+ ∈22 Ez) I(r, z),

Dr = (e31εθθ + e32εzz + e33εrr+ ∈33 Er ) I(r, z).

(5.2)

In the case of an axial polarization (ap), we have

Tθθ = C11εθθ + C12εzz + C13εrr − e21 Ez,

Tzz = (C12εθθ + C22εzz + C23εrr − e22 Ez) I(r, z),

Trr = (C13εθθ + C23εzz + C33εrr − e23 Ez)I(r, z),

Tr z = (2C44εr z − e34 Er ) I(r, z),

Trθ = 2C55εrθ I(r, z),

Tθ z = (2C66εθ z − e16 Eθ ) I(r, z),

(6.1)

Dθ = 2e16εθ z+ ∈11 Eθ ,

Dz = (e21εθθ + e22εzz + e23εrr+ ∈22 Ez) I(r, z),

Dr = (2e34εr z+ ∈33 Er ) I(r, z)

(6.2)

where Ci j , ei j and ∈i j are the elastic, piezoelectric and dielectric coefficients given in the crystallographic
axes, respectively.

For a free time-harmonic wave propagating in the circumferential direction of a ring, we assume the
displacement components to be of the form

ur (r, θ, z, t) = exp(ikbθ − iωt)U (r, z), (7.1)

uθ (r, θ, z, t) = exp(ikbθ − iωt)V (r, z), (7.2)

uz(r, θ, z, t) = exp(ikbθ − iωt)W (r, z), (7.3)

ψ(r, θ, z, t) = exp(ikbθ − iωt)X (r, z) (7.4)

where U (r, z), V (r, z) and W (r, z) represent the mechanical displacement amplitudes in the r, θ, z directions,
respectively, and X (r, z) represents the amplitude of electric potential. Also, k is the magnitude of the wave
vector in the propagation direction, and ω is the angular frequency.

Substituting Eqs. (2), (3)/(4), (5)/(6) and (7) into Eq. (1), the governing partial differential equations in
terms of the mechanical displacement and electric potential components can be obtained. In the case of the
radially polarized (rp) and radially functionally graded piezoelectric (rp-r-FGPM) ring, they are given by
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where a subscript comma indicates partial derivative with respect to spatial coordinates.
To solve the coupled wave equations, U (r, z), V (r, z), W (r, z) and X (r, z) are expanded into products of

two Legendre orthogonal polynomial series as

U (r, z) =

∞
∑

m, j=0

p1
m, j Qm(r)Q j (z), V (r, z) =

∞
∑

m, j=0

p2
m, j Qm(r)Q j (z),

W (r, z) =

∞
∑

m, j=0

p3
m, j Qm(r)Q j (z), X (r, z) =

∞
∑

m, j=0

p4
m, j Qm(r)Q j (z)

(9)

where pi
m, j (i = 1, 2, 3, 4 ) is the expansion coefficients and

Qm(r) =

√

2m + 1

b − a
Pm

(

2r − b − a

b − a

)

, Q j (z) =

√

2 j + 1

h
Pj

(

2z − h

h

)

, (10)

with Pm and Pj being the mth and the j th Legendre polynomials. Theoretically, m and j run from 0 to ∞.
However, in practice, the summation over the polynomials in Eq. (9) can be truncated at some finite values
m = M and j = J , when the effects of higher order terms become negligible.

Equation (8) is multiplied by Qn(r) with n running from 0 to M , and by Q p(z) with p from 0 to J ,
respectively. Then, integrating over z from 0 to h and over r from a to b gives the following system of linear
algebraic equations:

l A
n,p,m, j
11 p1

m, j +
l A

n,p,m, j
12 p2

m, j +
l A

n,p,m, j
13 p3

m, j +
l A

n,p,m, j
14 p4

m, j = −ω2
·

l Mn,p,m, j p1
m, j , (11.1)

l A
n,p,m, j
21 p1

m, j +
l A

n,p,m, j
22 p2

m, j +
l A

n,p,m, j
23 p3

m, j +
l A

n,p,m, j
24 p4

m, j = −ω2
·

l Mn,p,m, j p2
m, j , (11.2)

l A
n,p,m, j
31 p1

m, j +
l A

n,p,m, j
32 p2

m, j +
l A

n,p,m, j
33 p3

m, j +
l A

n,p,m, j
34 p4

m, j = −ω2
·

l Mn,p,m, j p3
m, j , (11.3)

l A
n,p,m, j
41 p1

m, j +
l A

n,p,m, j
42 p2

m, j +
l A

n,p,m, j
43 p3

m, j +
l A

n,p,m, j
44 p4

m, j = 0 (11.4)

where l A
n,p,m, j
αβ (α, β = 1, 2, 3, 4) and l Mn,p,m, j are the elements of the non-symmetric matrices A and M,

which can be obtained by using Eq. (8).
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Equation (11.4) can be written as

p4
m, j = −

(

l A
n,p,m, j
44

)−1 (

l A
n,p,m, j
41 p1

m, j +
l A

n,p,m, j
42 p2

m, j +
l A

n,p,m, j
43 p3

m, j

)

. (12)

Substituting Eq. (12) into Eqs. (11.1)–(11.3) gives
[

l A
n,p,m, j
11 −

l A
n,p,m, j
14

(

l A
n,p,m, j
44

)−1
·

l A
n,p,m, j
41

]

p1
m, j

+

[

l A
n,p,m, j
12 −

l A
n,p,m, j
14

(

l A
n,p,m, j
44

)−1
·

l A
n,p,m, j
42

]

p2
m, j

+

[

l A
n,p,m, j
13 −

l A
n,p,m, j
14

(

l A
n,p,m, j
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)−1
·

l A
n,p,m, j
43

]

p3
m, j = −ω2l Mn,p,m, j p1

m, j , (13.1)

[

l A
n,p,m, j
21 −

l A
n,p,m, j
24

(

l A
n,p,m, j
44

)−1
·

l A
n,p,m, j
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]

p1
m, j

+

[

l A
n,p,m, j
22 −

l A
n,p,m, j
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(

l A
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)−1
·

l A
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+

[

l A
n,p,m, j
23 −
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n,p,m, j
44

)−1
·
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]

p3
m, j = −ω2l Mn,p,m, j p2

m, j , (13.2)

[

l A
n,p,m, j
31 −

l A
n,p,m, j
34

(

l A
n,p,m, j
44

)−1
·

l A
n,p,m, j
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]

p1
m, j

+

[

l A
n,p,m, j
32 −

l A
n,p,m, j
34

(

l A
n,p,m, j
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)−1
·

l A
n,p,m, j
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]
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m, j

+

[
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33 −
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n,p,m, j
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(
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n,p,m, j
44

)−1
·

l A
n,p,m, j
43

]

p3
m, j = −ω2l Mn,p,m, j p3

m, j . (13.3)

Then, Eq. (11) can be rewritten as
⎡

⎢

⎢

⎢

⎢

⎢

⎣

l Ā
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11

l Ā
n,p,m, j
12

l Ā
n,p,m, j
13

l Ā
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l Ā
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l Ā
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l Ā
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l Ā
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⎤
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⎥

⎥

⎥

⎥

⎦

⎧

⎪

⎨

⎪

⎩
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m, j

p3
m, j

⎫

⎪

⎬

⎪

⎭

= −ω2l Mn,p,m, j

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦

⎧

⎪

⎨

⎪

⎩

p1
m, j

p2
m, j

p3
m, j

⎫

⎪

⎬

⎪

⎭

. (14)

So, Eq. (14) forms the eigenvalue problem to be solved. The eigenvalues ω2 give the angular frequency of the
guided wave modes, and the eigenvectors pi

m, j (i = 1, 2 , 3 ) allow the mechanical displacement components

to be calculated, and p4
m, j , which can be obtained from Eq. (12), determines the electric potential distribution.

By using the relation V ph = ω/k, the phase wave velocity V ph can be obtained. In the computing progress, the
obtained eigenvalues are complex, but their imaginary parts are all very small compared to their corresponding
real parts. For one eigenvalue, its imaginary part is less than one millionth of its real part. So, we just think the
real parts are solutions of the system.

3 Numerical results

The Voigt-type model is used in this study to calculate the effective parameters of the FGM ring, which can
be expressed as

C(r) = C1V1(r) + C2V2(r) for r-FGPM rectangular ring, (15.1)

C(z) = C1V1(z) + C2V2(z) for a-FGPM rectangular ring (15.2)

where Vi (r/z) and Ci denote the volume fraction of the i th material and the corresponding property of the i th
material, respectively, and

∑

Vi (r) =
∑

Vi (z) = 1. So, the properties of the FGM can be expressed as
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C(r) = C2 + (C1 − C2) V1(r) for r-FGPM rectangular ring, (16.1)

C(z) = C2 + (C1 − C2) V1(z) for a-FGPM rectangular ring. (16.2)

According to Eqs. (3) and (4), the gradient profile of the material volume fraction can be expressed as a power
series expansion. The coefficients of the power series can be determined using the Mathematica function ‘Fit’.

Based on the mathematical formulation as presented in Sect. 2, computer programs in terms of the extended
polynomial method have been written using Mathematica to calculate the dispersion curves as well as the
mechanical displacement and the electrical potential distributions for the FGM rectangular rings.

3.1 Comparison with the reference solution

So far, no reference results for the guided waves in rings with a rectangular cross-section can be found in the
literature, we consider a homogeneous steel ring of a square cross-section with a very large radius to thickness
ratio η = 1,000 to make a comparison with known results of a straight steel square bar from the semi-analytical
finite element method [27]. For the square steel bar, CL = 5.85 km/s, CT = 3.23 km/s and h = d = 5.08 mm.
Here, CL and CT are, respectively, the longitudinal and the transverse wave velocities. Figure 2 shows the
corresponding dispersion curves, where dotted lines are from Hayashi et al. [27] and solid lines are obtained
from the present polynomial approach. As can be seen, the results from the extended polynomial approach
agree well with the reference data, which verifies the correctness and the accuracy of the present method.

3.2 Dispersion curves for FGPM rectangular rings

The FGPM rings are composed of PZT-4 (bottom surface for a-FGPM rectangular ring and inner surface for
r-FGPM rectangular ring) and BSN. The corresponding material parameters are given in Table 1. Here, the

Fig. 2 Dispersion curves for the steel structures with square cross-sections (dotted lines the results from the semi-analytical FEM
[27] for the straightly steel rod, solid lines the results of the presented method for the steel ring with a very large radius to thickness
ratio (η = 1,000))

Table 1 Physical parameters of the two piezoelectric materials

Property C11 C12 C13 C22 C23 C33 C44 C55 C66

PZT-4 13.9 7.4 7.4 13.9 7.4 11.5 2.56 2.56 3.05
BSN 23.9 10.4 5 24.7 5.2 13.5 6.5 6.6 7.6

r -polarization e15 e24 e31 e32 e33 ε11 ε22 ε33 ρ

PZT-4 12.7 12.7 −5.2 −5.2 15.1 650 650 560 7.5
BSN 2.8 3.4 −0.4 −0.3 4.3 196 201 28 5.3

a-polarization e34 e16 e23 e21 e22 ε33 ε11 ε22 ρ

PZT-4 12.7 12.7 −5.2 −5.2 15.1 650 650 560 7.5
BSN 2.8 3.4 −0.4 −0.3 4.3 196 201 28 5.3

Units: Ci j (1010 N/m2), εi j (10−11 F/m), ei j (C/m2), ρ (103kg/m3)
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Fig. 3 Phase velocity dispersion curves for linearly FGPM square rings (solid lines r-polarized r-FGPM ring, dashed lines
a-polarized r-FGPM ring, dotted lines r-polarized a-FGPM ring): a with η = 10, b with η = 2
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Fig. 4 Phase velocity dispersion curves for r-polarized and linearly a-FGPM square rings (solid lines η = 10, long-short lines
η = 5, dashed lines η = 3, dotted lines η = 2)
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Fig. 5 Phase velocity dispersion curves for r-polarized and linearly a-FGPM square rings with η = 10 (solid lines linearly FGPM
ring, dashed lines quadratically FGPM ring, dotted lines cubically FGPM ring)
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Fig. 6 Phase velocity dispersion curves for r-polarized linearly FGPM rectangular rings with η = 10: a linearly a-FGPM ring
with d/h = 2, b linearly r-FGPM ring with d/h = 0.5
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Fig. 7 Mechanical displacement and electric potential profiles of the first wave mode for the r-polarized and linearly a-FGPM
square ring with η = 10 at kd = 90.1
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Fig. 8 Mechanical displacement and electric potential profiles of the first wave mode for the r-polarized and linearly r-FGPM
square ring with η = 10 at kd = 90.1
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Fig. 9 Mechanical displacement and electric potential profiles of the first wave mode for the r-polarized and linearly r-FGPM
square ring with η = 2 at kd = 90.1

elastic constants of a radially polarized (rp) and axially polarized (ap) r-FGPM ring are taken the same in order
to make appropriate comparisons.

Firstly, three linearly (V1(r) = [(r − a) / (b − a)] for r-FGPM rings and V1(z) = z/h for a-FGPM rings)
FGPM square rings with η = 10 are considered. They are: (a) r-polarized r-FGPM ring, (b) a-polarized
r-FGPM ring, (c) r-polarized a-FGPM ring. Their phase velocity dispersion curves are shown in Fig. 3a,
and the phase velocity dispersion curves for rings of their correspondingly small radius to thickness ratio
(η = 2) are shown in Fig. 3b. Rings (a) and (b) just have different polarization directions, and rings (a) and (c)
just have different gradient directions. When radius to thickness ratio is large, the polarization direction has
considerable influences on the dispersion curves, but the gradient direction just has weak influences. When
radius to thickness ratio is small, both the polarization direction and the gradient direction have significant
influences. In fact, the material volume fractions of the linearly r-FGPM ring and the linearly a-FGPM ring
are different. In the linearly r-FGPM ring, the volume fraction of PZT-4 is smaller than that of BSN. But in
a linearly a-FGPM ring, the volume fraction of PZT-4 equals that of BSN. And the wave speed of PZT-4 is
lower than that of BSN. So, the phase velocities of a linearly a-FGPM ring are lower than those of a linearly
r-FGPM ring. Furthermore, as the radius to thickness ratio decreases, the volume fraction of PZT-4 in a linearly
r-FGPM ring becomes smaller, but the volume fraction of PZT-4 in a linearly a-FGPM ring does not change.
So, as η decreases, the difference of the phase velocity between linearly a-FGPM ring and linearly r-FGPM
ring becomes larger.

Next, the influence of radius to thickness ratio is discussed. The material volume fractions in a-FGPM
rings do not change as the radius to thickness ratio changes. So, the r-polarized and linearly a-FGPM square
rings with η = 10, 5, 3 and 2 are calculated, respectively. Their phase velocity dispersion curves are shown in
Fig. 4. It can be seen that as the radius to thickness ratio decreases, the dispersion becomes more serious and
the phase velocity becomes higher.

Then, three r-polarized and a-FGPM square rings with η = 10 are considered. Their gradient shapes
are V1(z) = (z/h)n, n = 1, 2, 3 , i.e, linear, quadratic and cubical. The corresponding dispersion curves are
shown in Fig. 5. Figure 5 illustrates that the gradient shapes can significantly influence the dispersion curves.
As n increases, the volume fraction of PZT-4 increases, which results in the wave velocity becoming lower.

11



The above structures all have square cross-sections. Next, two r-polarized (rp) linearly FGPM rectangular
rings with η = 10 are considered. They are on a-FGPM ring with d/h = 2 and on r-FGPM ring with
d/h = 0.5. The corresponding phase velocity dispersion curves are shown in Fig. 6. We can see that the
thickness to height ratio may also influence the dispersion curves significantly.

3.3 Mechanical displacement and electric potential profiles for FGPM rectangular rings

This section discusses the guided wave characteristics by analyzing the mechanical displacement and electric
potential profiles. Firstly, the mechanical displacement and the electric potential profiles at kh = 90.1 for the
first wave mode of the ring (b) are illustrated in Fig. 7. It can be seen that the mechanical displacements and the
electric potential mainly distribute near the bottom and outside edges. Then, Fig. 8 shows the case of the ring
(a). It can be seen that the mechanical displacements and the electric potential are mainly concentrated near
the edges except on the outside edge, and the mechanical displacements mostly distribute near the inner edge.
According to a comprehensive analysis of the two figures, we can conclude that the high-frequency guided
waves mainly distribute on the side with more PZT-4 phase because of the fact that the bulk wave speed of
the PZT-4 is lower than that of the BSN. Simultaneously high-frequency guided waves approach four edges
(mostly outside edges). Finally, the result for the case of a small radius to thickness ratio η = 2 of the ring
(a) is illustrated in Fig. 9. It can be seen that the mechanical displacements and the electric potential do not
distribute near the side with more PZT-4 phase but mostly near the outside edge. This is due to the fact that for
rings with small radius to thickness ratios the mechanical displacements and the electric potential approach
outside edges.

4 Conclusions

This paper presents a double orthogonal polynomial approach to analyzing wave propagation in 2-D FGPM
rectangular rings. Numerical comparison of the obtained dispersion curves with reference solutions shows
that the present extended orthogonal polynomial method is appropriate to solve the guided wave propagation
problems in 2-D FGPM structures. The dispersion curves, the displacement and electric potential distributions
of various FGPM rectangular rings are presented and discussed. According to the present numerical results,
we can conclude that the material gradient shapes, the width to height ratio, the gradient direction, the radius
to thickness ratio and the polarization direction may all influence the guided wave characteristics significantly.
High-frequency guided waves propagate predominantly in the side with more material phase having lower
wave speed, and simultaneously, they approach the outside edges, especially for rings with small radius to
thickness ratios.
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