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Abstract: The work focuses on the state feedback synthesis of hybrid mechanical systems
under unilateral constraints. The problem of robust control of mechanical systems is addressed
under unilateral constraints by designing a nonlinear state feedback H∞-controller developed in
the hybrid setting, covering impact phenomena. Performance issues of the developed nonlinear
H∞-tracking controller are illustrated with numerical tests on a seven-link biped robot.
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1. INTRODUCTION

The study of hybrid dynamical systems has recently at-
tracted a significant research interest, basically, due to
the wide variety of applications and the complexity that
arises from the analysis of this type of systems. See, e.g.,
the relevant works by Hamed and Grizzle [2013], Goebel
et al. [2009], and references quoted therein. Particularly,
the disturbance attenuation problem for hybrid dynamical
systems has been addressed by Haddad et al. [2005], Nešić
et al. [2008], where impulsive control inputs were admitted
to counteract/compensate disturbances/uncertainties at
time instants of instantaneous changes of the underlying
state. It should be noted, however, that even in the state
feedback design, a pair of independent Riccati equations,
separately coming from continuous and discrete dynam-
ics, was required to possess a solution that satisfies both
equations, thus yielding a restrictive condition on the fea-
sibility of the proposed synthesis. Moreover, the physical
implementation of impulsive control inputs was impossible
in many practical situations, e.g., while controlling walking
biped robots.

Thus motivated, the present investigation introduces a
new control strategy, which is feasible under certain con-
ditions and which avoids using impulsive control inputs
while ensuring the asymptotic stability of the undisturbed
hybrid system of interest and possessing the L2-gain of
its disturbed version to be less than an appropriate dis-
turbance attenuation level. The work focuses on impulse
hybrid systems, which are recognized as dynamical sys-
tems under unilateral constraints (Brogliato [1999]). The
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H∞ approach, that has recently been developed by Orlov
and Aguilar [2014] towards nonsmooth mechanical appli-
cations, is now generalized in the presence of unilateral
constraints. An essential feature, adding the value to the
present investigation, is that in contrast to the existing
literature where the perfect knowledge of the restitution
rule at the collision time instants is assumed, not only
standard external disturbances but also their discrete-time
counterparts are attenuated.

The paper is outlined as follows. Section 2 presents the
hybrid model of interest subject to an unilateral constraint
and the H∞-control problem is then stated. Section 3
derives sufficient conditions for a global/local solution of
the problem in question to exist, and a state feedback con-
troller is synthesized and developed for n-DOF mechanical
manipulators. Capabilities of the developed state feedback
synthesis are illustrated in Sect. 4 in a numerical study of
the orbital stabilization of a seven-link biped robot with
feet required to track a walking gait composed of single
support phases separated by impacts. Finally, conclusions
of this work are presented in Sect. 5.

2. PROBLEM STATEMENT

Given a scalar unilateral constraint F(x1) ≥ 0, consider
a nonlinear system, evolving within the above constraint,
which is governed by continuous dynamics of the form

ẋ1 = x2

ẋ2 = Φ(x1,x2, t) +Ψ1(x1,x2, t)w +Ψ2(x1,x2, t)u
(1)

z = h1(x1,x2, t) + k12(x1,x2, t)u (2)

beyond the surface F(x1) = 0 when the constraint is
inactive, and by the algebraic relations



x1(t
+

i ) = x1(t
−
i )

x2(t
+

i ) = µ0(x1(ti),x2(t
−
i ), ti) + ω(x1(ti),x2(t

−
i ), ti)w

i

d

(3)

zdi = x2(t
+

i ) (4)

at a priori unknown collision time instants t = ti, i =
1, 2, . . . , when the system trajectory hits the surface
F(x1) = 0. In the above relations, x⊤ = [x⊤

1 ,x
⊤
2 ] ∈ R

2n

represents the state vector with components x1 ∈ R
n and

x2 ∈ R
n; u ∈ R

n is the control input of dimension n;
w ∈ R

l and wi

d
∈ R

q collect exogenous signals affecting
the motion of the system (external forces, including im-
pulsive ones, as well as model imperfections). The variable
z ∈ R

s represents a continuous time component of the
system output to be controlled whereas the post-impact
value of the only state component x2(t) subjected to the
instantaneous change is pre-specified as a discrete compo-
nent zd

i
of the to-be-controlled output. The overall system

in the closed-loop should be dissipative with respect to the
output thus specified. Throughout, the functions Φ, Ψ1,
Ψ2, h1, k12, F, µ0, and ω are of appropriate dimensions,
which are continuously differentiable in their arguments
and uniformly bounded in t. The origin is assumed to be
an equilibrium of the unforced system (1)-(4), which is
located beyond the unilateral constraint, i.e., F (0) 6= 0,
Φ(0, 0, t) = 0, h1(0, 0, t) = 0, for all t and µ0(0, 0, 0) = 0.

If interpreted in terms of mechanical systems, equation (1)
describes the continuous dynamics before the underlying
system hits the reset surface F(x1) = 0, depending on the
position only, whilst the restitution law, given by equation
(3), is a physical law for the instantaneous change of
the velocity when the resetting surface is hit. Thus, the
position is not instantaneously changed at the collision
time instants whereas the post-impact velocity x2(t

+) is a
function of both the pre-impact state (x1(t),x2(t

−)) and
a discrete perturbation wd accounting for inadequacies
of the restitution law. In order to deal with systems
dissipating the energy during the collision, only motions of
the finite sort (Mabrouk [1998]) are admitted throughout
with the restitution function µ meeting the condition

‖µ0(x1,x2)‖ ≤ ‖x2‖ (5)

for all (x1,x2) ∈ R
2n. The inequality

‖x2(t
+

i )‖ ≤ ‖x2(t
−
i )‖ (6)

is thus ensured for all collision time instants ti, i = 1, 2, . . .
for the undisturbed system with wd = 0. For later use,
the notion of an admissible controller is specified for the
underlying system. Consider a causal feedback controller

u = κ(η) (7)

with the function κ(η) of class C1 such that κ(0) = 0. Such
a controller is said to be a locally (globally) admissible con-
troller iff the undisturbed (w,wi

d
= 0) closed-loop system

(1)–(4) is uniformly (globally) asymptotically stable.

The H∞-control problem of interest consists in finding
an admissible global controller (if any) such that the L2-
gain of the disturbed system (1)–(4) is less than a certain
attenuation level γ > 0, that is the inequality

∫ T

t0

‖z‖2dt+
NT
∑

i=1

‖zdi ‖
2 ≤

γ2

[

∫ T

t0

‖w‖2dt+
NT
∑

i=1

‖wi

d‖
2

]

+
N
∑

j=0

βj(x(t
−
j ), tj)

(8)

locally holds for some positive definite functions βj(x, t),
j = 0, . . . , NT , for all segments [t0, T ] and a natural NT

such that tNT
≤ T < tNT+1, and for all piecewise continu-

ous disturbances w(t) and discrete ones wi

d
, i = 1, 2, . . . .

In turn, a locally admissible controller (7) is said to be a
local solution of the H∞-control problem if there exists a
neighborhood U ∈ R

2n of the origin, validating inequal-
ity (8) for some positive definite functions βj(x, t), j =
0, . . . , NT , for all segments [t0, T ] and a natural NT such
that tNT

≤ T < tNT+1, for all piecewise continuous
disturbances w(t) and discrete ones wi

d
, i = 1, 2, . . . ,

for which the state trajectory of the closed-loop system
starting from an initial point (x(t0) = x0) ∈ U remains in
U for all t ∈ [t0, T ].

It is worth noticing that the above L2-gain definition
is consistent with the notion of dissipativity introduced
by Willems [1972] and Hill and Moylan [1980], and it
represents a natural extension to hybrid systems (see, e.g.
the works by Nešić et al. [2008], Yuliar et al. [1998] and
Lin and Byrnes [1996]).

3. NONLINEAR H∞-CONTROL SYNTHESIS

For later use, the continuous dynamics (1) are rewritten
in the form

ẋ = f(x, t) + g1(x, t)w + g2(x, t)u (9)

whereas the restitution rule is represented as follows

x(t+i ) = µ(x(t−i ), ti) + Ω(x(t−i ), ti)w
i

d, i = 1, 2, . . . (10)

with x⊤ = [x⊤
1 ,x

⊤
2 ], f⊤(x, t) = [x⊤

2 ,Φ
⊤(x, t)],

g1
⊤(x, t) = [0,Ψ⊤

1 (x, t)], g⊤
2 (x, t) = [0,Ψ⊤

2 (x, t)],
µ⊤(x, t) = [x⊤

1 , µ
⊤
0 (x, t)], and Ω⊤(x, t) = [0, ω(x, t)]. In

order to simplify the synthesis to be developed and to
provide reasonable expressions for the controller design,
the following assumptions

h1
⊤k12 = 0, k12

⊤k12 = I (11)

which are standard in the literature (see, e.g., Orlov [2009])
are made. Relaxing these assumptions is indeed possible,
but it would substantially complicate the formulas to be
worked out.

3.1 Global state-space solution

Below we list the hypotheses under which a solution to the
problem in question is derived. Given γ > 0, in a domain
x ∈ B2n

δ , t ∈ R, where B2n
δ ∈ R

2n is a ball of radius δ > 0,
centered around the origin,

H1) The norm of the matrix function ω is upper bounded

by
√
2

2
γ, i.e.,

‖ω(x, t)‖ ≤
√
2

2
γ. (12)

H2) there exist a smooth, positive definite, decrescent
function V (x, t) and a positive definite function R(x)
such that the Hamilton–Jacobi–Isaacs inequality



∂V

∂t
+

∂V

∂x
(f(x, t) + g1(x, t)α1 + g2(x, t)α2) +

h1
⊤h1 + α2

⊤α2 − γ2α1
⊤α1 ≤ −R(x) (13)

holds with

α1 =
1

2γ2
g⊤
1 (x, t)

(

∂V

∂x

)⊤
, α2 = −1

2
g⊤
2 (x, t)

(

∂V

∂x

)⊤

H3) Hypotheses H1 is satisfied with the function V (x, t)
which decreases along the direction µ in the sense that
the inequality

V (x, t) ≥ V (µ(x), t) (14)

holds in the domain of V .

The main result of the present work is as follows.

Theorem 3.1. Consider system (1)-(4) subject to (5).
Given γ > 0, suppose Hypotheses H1) and H2) are satisfied
in a domain {x ∈ B2n

δ , t ∈ R}. Then, the closed-loop
system (1)-(4), driven by the controller

u = α2(x, t), (15)

locally possesses a L2-gain less than γ. Moreover, the
disturbance-free closed-loop system (1)-(4), (15) is uni-
formly asymptotically stable provided that Hypothesis
H3) is satisfied as well. If in addition, Hypotheses H1)–H3)
remain in force globally with V (x, t) radially unbounded,
then the results hold true globally.

Proof. Since the proof follows the same line of reasoning
as that in the book by Orlov [2009] for the impact-
free case here we provide only a sketch. Similar to the
proof of [Orlov, 2009, Theorem 7.1], let us consider the
function V (x, t) whose time derivative, computed along
the disturbed closed-loop system (1)-(4) between collision
time instants t ∈ (tk, tk+1), k = 0, 1, . . . , is estimated as
follows [Orlov, 2009, p.138]:

dV

dt
≤ −‖z‖2 + γ2‖w‖2 −R(x). (16)

Then integrating (16) from tk to tk+1, k = 0, 1, . . . , yields
∫ tk+1

tk

[γ2‖w‖2 − ‖z‖2]dt ≥
∫ tk+1

tk

R(x(t))dt+

∫ tk+1

tk

dV (x(t), t)

dt
dt > 0.

(17)

Skipping positive terms in the right-hand side of (17), it
follows that

∫ T

t0

(γ2‖w‖2 − ‖z‖2)dt ≥ V (x(T ), T )

+

NT
∑

i=1

[V (x(t−i ), ti)− V (x(t+i ), ti)]− V (x(t0), t0).

(18)

Since the function V is smooth by Hypothesis H2), the
following relation

|V (x(t−i ), ti)− V (x(t+i ), ti)| ≤ LV
i |x(t−i )− x(t+i )| (19)

holds true with LV
i > 0 being a local Lipschitz constant

of V , in the ball of radius ‖x(t+i )‖, centered around x(t−i ).
Relations (18) and (19), coupled together, result in

∫ T

t0

(γ2‖w‖2 − ‖z‖2)dt ≥ −
NT
∑

i=1

[2(LV
i )‖x(t−i )‖

−V (x(t0), t0)

(20)

Apart from this, inequality
NT
∑

i=1

‖zdi ‖
2
=

NT
∑

i=1

‖x2(t
+

i )‖
2 ≤

NT
∑

i=1

[2‖µ0‖2]

+2

NT
∑

i=1

[‖ωwi

d‖2] ≤ γ2

NT
∑

i=1

‖wi

d‖2 +
NT
∑

i=1

[2‖µ0‖2]
(21)

is ensured by H1. Thus, combining (20)-(21), one derives
∫ T

t0

‖z‖2dt+
NT
∑

i=1

‖zdi ‖
2 ≤ V (x(t0), t0) +

NT
∑

i=1

[2‖µ0‖2]

+γ2

[

∫ T

t0

‖w‖2dt+
NT
∑

i=1

‖wi

d‖
2

]

+

NT
∑

i=1

[(2LV
i )‖x(t−i )‖,

(22)

i.e., the disturbance attenuation inequality (8) is estab-
lished with

β0(x(t0), t0) = V (x(t0), t0),

βi(x(ti), ti) = (2LV
i )‖x(t−i )‖+ 2‖µ0(x(t

−
i ), ti)‖2

(23)

with i = 1, . . . , N. To complete the proof it remains
to establish the asymptotic stability of the undisturbed
(w = 0, wi

d
= 0, i = 1, 2, . . . ) version of the closed-

loop system (1)-(4),(15). In order to do that, we can use
[Haddad et al., 2006, Theorem 2.4] specified to the present
case with x1 = x and x2 = t. Indeed, according to this
result, Hypothesis H1 and the negative definiteness (16) of
the time derivative of the Lyapunov function V (x, t) be-
tween the collision time instants ensure that the system is
uniformly asymptotically stable. If in addition, Hypotheses
H1–H3 hold globally with the radially unbounded function
V (x, t) then the results of the theorem hold globally. �

3.2 Local state-space solution

To present a local solution to the problem in question the
underlying system is linearized to

ẋ = A(t)x+B1(t)w +B2(t)u, (24)

z = C1(t)x+D12(t)u, (25)

within impact-free time intervals (ti−1, ti) where t0 is the
initial time instant and ti, i = 1, 2, . . . are the collision

time instants, whereas A(t) =
∂f

∂x

∣

∣

∣

∣

x=0

, B1(t) = g1(0, t),

B2(t) = g2(0, t), C(t) =
∂h

∂x

∣

∣

∣

∣

x=0

, D12(t) = k12(0, t).

By the time-varying strict bounded real lemma [Orlov and
Aguilar, 2014, p.46], the following condition is necessary
and sufficient for the linear H∞ control problem (24)-(25)
to possess a solution: given γ > 0,

C) there exists a positive constant ε0 such that the
differential Riccati equation

−Ṗε(t) = Pε(t)A(t) +A⊤(t)Pε(t) +C1
⊤(t)C1(t)

+Pε(t)[
1

γ2
B1B1

⊤ −B2B2
⊤](t)Pε(t) + εI (26)

has a uniformly bounded symmetric positive definite
solution Pε(t) for each ε ∈ (0, ε0);

As shown below, this condition, if coupled to Hypothesis
H1 and a certain monotonicity condition, is also sufficient



for a local solution to the nonlinear H∞ control problem
to exist under unilateral constraints.

Theorem 3.2. Let condition C be satisfied with some γ >
0. Then Hypothesis H2 hold locally around the equilibrium
(x = 0) of the nonlinear system (1)-(4) with

V (x, t) = x⊤Pε(t)x, R(x) =
ε

2
‖x‖2 (27)

and the closed-loop system driven by the state feedback

u = −g2(x, t)
⊤
Pε(t)x (28)

locally possesses a L2-gain less than γ provided that
Hypothesis H1 holds as well. If in addition, Hypothesis
H3 is satisfied with the quadratic function V (x, t), given
in (27), then the disturbance-free closed-loop system (1)-
(4), (28) is uniformly asymptotically stable.

Proof. Due to [Orlov and Aguilar, 2014, Theorem 24],
Hypothesis H2 locally holds with (27). Then by applying
Theorem 3.1, the validity of Theorem 3.2 is concluded.

4. A CASE STUDY: ORBITAL STABILIZATION OF A
BIPED ROBOT

4.1 Model of a biped with feet

The bipedal robot considered in this section is walking
on a rigid and horizontal surface. It is modeled as a
planar biped, which consists of a torso, hips, two legs
with knees and feet (see Fig. 1). The walking gait takes
place on the sagittal plane, and is composed of single
support phases separated by impacts. The complete model
of the biped robot consists of two parts: the differential
equations describing the dynamics of the robot during
the swing phase, and an impulse model of the contact
event (the impact between the swing leg and the ground
is modeled as a contact between two rigid bodies like that
of Chevallereau et al. [2003]).

Fig. 1. Seven-link bipedal robot

Dynamic model in a single support In the single support
phase, considering a flat foot contact of the stance foot
with the ground (i.e. there is no take off, no rotation, and
no sliding during this phase), the dynamic model of the
biped can be written as follows:

D(q)q̈+H(q, q̇) = DΓΓ+w1 (29)

with q = (q1, q2, q3, q4, q5, q6)
⊤ the 6 × 1 vector of gen-

eralized coordinates, D is the symmetric, positive definite
6×6 inertia matrix, DΓ is a 6×6 constant and nonsingular

matrix; Γ = (Γ1,Γ2,Γ3,Γ4,Γ5,Γ6)
⊤ is the 6× 1 vector of

joint torques (see Fig. 1); the term H(q, q̇) is the 6 × 1
vector of the centrifugal, coriolis and gravity forces; and
w1 is the 6× 1 vector of external disturbances.

Impact model Now, assuming a flat foot contact, the
double support phase is instantaneous and it can be
modeled through passive impact equations, i.e. impulsive
torques are applied in the interlink joints (Formalskii
[2009]). An impact appears at a time t = TI when the
swing leg touches the ground. We shall assume that the
impact is passive, absolutely inelastic, and that the legs do
not slip (Tlalolini et al. [2010]). Given these conditions, the
ground reactions can be viewed as impulsive forces. The
algebraic equations, allowing one to compute the jumps of
the velocities, can be obtained through integration of the
dynamic equations of the motion, taking into account the
ground reactions during an infinitesimal time interval from
T−
I to T+

I around an instantaneous impact. The torques
supplied by the actuators at the joints, the centrifugal,
Coriolis and gravity forces have finite values, thus not
influencing an impact.

The impact is assumed to be with complete surface of the
foot sole touching the ground. This means that the velocity
of the swing foot impacting the ground is zero after impact.
After an impact, the right foot (previous stance foot) takes
off the ground, so the vertical component of the velocity of
the taking-off foot just after an impact must be directed
upwards and the impulsive ground reaction in this foot
equals zeros. Thus, the impact dynamic model can be
represented in the form (Haq et al. [2012]):

q̇+ = φ(q)q̇− +wd (30)

where q̇− is the velocity of the robot before the impact
and q̇+ is the velocity after the impact; φ(q) represents a
restitution law that determines the relations between the
velocities before and after the impacts; q is the position at
the impact. The additive term wd is introduced to account
for inadequacies in this restitution law.

The unilateral constraint can be defined as F(q), which
represents the height of swing foot, as a function of
the generalized coordinates of the implicit-contact model
(29). In the next section, a specific trajectory invoked to
generate a cyclic motion of the undisturbed model (29)-
(30), is designed so it can be used in our tracking problem
as a reference trajectory.

4.2 Motion Planning

The walking gait, which is composed of single support
phases and impacts, has been defined by qd(t) and q̇d(t)
satisfying the conditions of contact using an off-line opti-
mization (Haq et al. [2012]).

The control task is in driving the biped in such a manner
that each joint angle follows its own reference trajectory.
The reference walking minimizes the integral of the norm
of the torque vector for a given distance. The walking
velocity is selected to be 0.5 m/s. The duration of one step
is 0.53 s. Since the impact is instantaneous and passive,
the control law is defined only during the single support
phase. The restitution law during the impact phase is given
by:

q̇d(t
+

k ) = φ(qd(tk))q̇d(t
−
k ), k = 1, 2, . . . . (31)



4.3 Pre-feedback desing

Our objective is to design a pre-feedback controller of the
form

Γ = DΓ
−1[D(q̈d + u) +H] (32)

that imposes on the undisturbed biped motion desired
stability properties around qd while also locally attenuat-
ing the effect of the disturbances. Thus, the controller to
be constructed consists of the feedback linearizing terms
of (32) subject to u = 0, which are responsible for the
trajectory compensation, and a disturbance attenuator u,
internally stabilizing the closed-loop system around the de-
sired trajectory. In what follows, we confine our research to
the trajectory tracking control problem where the output
to be controlled is given by

z =

[

0
ρp(qd − q)
ρv(q̇d − q̇)

]

+

[

1
0
0

]

u (33)

zd = qd(t
+

k )− q(t+k ) (34)

with positive weight coefficients ρp, ρv.

Now, let us introduce the state deviation vector x =

(x1,x2)
⊤
, where x1(t) = qd(t) − q(t) is the position

deviation from the desired trajectory, and x2(t) = q̇d(t)−
q̇(t) is the velocity deviation from the desired velocity.

Then, rewriting the state equations (29)-(34) in terms of
the errors x1 and x2, we obtain an error system in the
form (1)-(4), being specified with

f(x, t) =

[

x2

0

]

, g1(x, t) =

[

0

D−1(qd − x1)

]

, (35)

g2(x, t) =

[

0
1

]

, h(x) =

[

0
ρpx1

ρvx2

]

, k12(x) =

[

1
0
0

]

, (36)

µ(x, t) =

[

x1

φ(qd)q̇d − φ(qd − x1)(q̇d − x2)

]

, (37)

ω(x, t) = −I (38)

where as a matter of fact, the zero symbols and unit
ones, among the matrix entries, stand for zero and identity
matrices of appropriate dimensions.

4.4 H∞-Control Synthesis

In this section, we involve the results of Sect. 3.2 to
robustly track the time-reference trajectory qd(t), con-
structed in Sect 4.2 for the error system given in terms
of the angular deviations of the biped from the reference.

The parameters in (33), required to design the Riccati
equation (26), were selected by specifying certain values
of ρp and ρv. Then by iterating on γ in (26), a minimum
value γmin was found, such that (26) had a periodic,
symmetric and positive definite solution. The value of γ
to subsequently be used in simulations was chosen slightly
bigger than the minimum one for avoiding a high gain
controller design. The controller parameters, solving (26)
were thus selected as ǫ = 0.01, ρp = 500 and ρv = 1, and
γ = 1.45. That value of γ was straightforwardly verified to
meet Hypothesis H1 with ω being an identity matrix.

In order to find a uniformly bounded solution of the
differential Riccati equation (26), variables t and Ṗε were

set to zero, and the resulting algebraic Riccati equation
was solved to specify an initial condition P0

ε of (26) under
which we were able to numerically arrive at a periodic
positive definite symmetric solution of (26). Hypothesis
H3 was also numerically verified in simulations.

Thus, Theorem 3.2 proved to be applicable to the error
system (1)-(4), specified with (35)-(38). By applying The-
orem 3.2, the control law (15) was carried out to render a
local solution to the robust tracking problem for the biped
with the desired trajectory qd(t) to follow.

4.5 Numerical study

The model (29)-(30) is used in this section to show
numerical simulations of a stable walking gait by achieving
robust tracking via the H∞-controller designed in Sect.
4. The biped parameters are taken from (Haq et al.
[2012]). The contact constraints presented in section 4.1,
are verified online in order to confirm the validity of
(29)-(30). The robustness of the tracking control (15)
is verified by introducing a resultant disturbance force
Fxw = 80 N in the horizontal plane, applied to the hip of
the robot. Such a force is used for the duration of 0.07 s to
simulate a disturbance effect. The effect of Fxw represents
a disturbance in the continuous phase of the dynamics (29)
as it starts from 0.8 s in the first cycle of the biped which
belongs to the continuous phase of the trajectory.

For the impact phase, instead of using equation (30), the
contact with the ground is stated as a linear complemen-
tary constraint problem (Rengifo et al. [2011]). This ap-
proach belongs to the family of time-stepping approaches.
Let the vector R ∈ R

4 be the reaction force vector,
which is obtained by stacking the reaction force vectors
of the two edges of each foot. Vector Rk at t = tk is
expressed at each sampling period as a function of the
augmented generalized position vector qk(9×1) composed
of the variable orientation of each link and the Cartesian
coordinates x, y of the hips, the associate velocity vector
q̇k(9× 1) for the biped and Γk with an algebraic equation
G(Rk,qk, q̇k),Γk) = 0. Let vector vk+1 be the Cartesian
velocities of the corners in contact with the ground at t =
tk. The normal components must be non negative to avoid
interpenetration. The identity vk+1 = 0 means that the
contact remains and the inequality vk+1 > 0 means that
the contact vanishes. The normal components rk > 0 of
Rk, when contact occurs, are also subject to non negative
constraints. These components can avoid interpenetration
but they cannot avoid the stance foot take-off. It is clear
that the variables vk+1 and rk are complementarity quan-
tities (vk+1 ≥ 0 ⊥ rk ≥ 0). Furthermore, the variables
vk+1 and rk are subject to constraints imposed by friction
which leads to a linear complementarity condition. The
valid cases of contact for each edge can be determined
using constrained optimization (Rengifo et al. [2011]).
The difference between these two methods for solving the
contact (the above mentioned complementarity approach
and equation (30)) represents a discrete disturbance in our
simulation runs.

Figure 2 shows the heights of the feet for six consecutive
steps. The corresponding velocities of the feet in vertical
direction are depicted in Fig. 3. Legends ”P1” and ”P3”
represent the ”toe” of the right and left foot, respectively.



Fig. 2. Feet height in the walking gait

Fig. 3. Feet velocities in vertical direction in the walking
gait

Fig. 4. Torque appearing in joint 5, where the effect of the
disturbance is more evident

Similarly, ”P2” and ”P4” represent the ”heel” of the right
and left foot, respectively. The disturbance effect and its
attenuation can readily be concluded from Fig. 3 where
impact instants are pointed out by arrows, as well as
from the torque 5, presented in Fig. 4, where one can see
that the torque remains between the actuator limitations
(+/ − 100 Nm). Clearly, the biped returns to its desired
gait after the discrete disturbance disappears.

5. CONCLUSION

In this paper, the state feedback H∞-control problem for
orbital stabilization of n-DOF, fully actuated mechani-
cal systems subject to unilateral constraints is solved.
Sufficient conditions for the existence of a global (local)
solution of the tracking problem in question are car-
ried out in terms of two coupled inequalities: a standard
Hamilton-Jacobi-Isaacs inequality (perturbed differential
Riccati equation) for the continuous dynamics, and a novel
inequality, imposed on the corresponding solutions of the
Hamilton-Jacobi-Isaacs inequality (perturbed differential
Riccati equation) at the impact time instants. The pro-
posed robust synthesis constitutes the contribution the
paper makes to the existing literature. Effectiveness of the
resulting design procedure is supported by numerical tests
on a seven-link biped, exhibiting the desired disturbance
attenuation in the presence of disturbances in the single
support phase and uncertainty in the impact phase.
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