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Abstract

Freeze-drying (lyophilization) offers an attractive dehydration method for valu-
able food and biological products, as it is capable of preserving product quality and
biological activity while extending their shelf life. However, despite these benefits
in terms of product quality, freeze-drying is also a notoriously energy-intensive and
time-consuming process. This requires an expensive operation to construct an ef-
ficient optimal decision-making tool able to drive the operation through the most
effective paths, that minimize time and maximize product quality. Here we propose
an integrated approach to operational design and control of the freeze-drying pro-
cess that combines dynamic modelling with efficient optimized off-line and on-line
control. The required mass and energy balance equations still contain inherent non-
linearity, even in their lumped parameter version. This results in a set of complex
dynamic, computationally-costly optimization problems solved by selected global
stochastic optimization algorithms. Real-time disturbances and model uncertainties
are addressed via the proposed hierarchical multi-level approach, allowing recalcula-
tion of the required control strategies. The framework developed has been revealed
as a useful tool to systematically define off-line/on-line optimal operation policies
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for many food and biological processing units.

Keywords: Freeze Drying, Modelling, Dynamic Optimization, Control Profiles,
Real Time Optimization.
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1 Introduction

Freeze-drying is a stabilization process typically used in food and biological industries.
It provides the highest quality dried product by freezing the material and heating it to
force the frozen water to transition directly from solid to gas phase (sublimation), produc-
ing an interconnected porous structure that can be rehydrated very quickly. Sublimation
is an endothermic phase transition that, for pure substances, occurs at temperatures and
pressures below the triple point. Compared to classical thermal drying methods, freeze-
drying better preserves the biological activity of thermosensitive components as well as
the organoleptic and nutritional properties of the material. Lyophilized products have a
longer shelf-life and are more convenient for transport and storage. The main disadvan-
tage of this process stems from slow drying rates due to working conditions that require
low pressure and temperature, making freeze-drying a very expensive process in terms
of time, energy, and therefore economic costs. This limits the use in the food industry,
being only viable for dehydration of high added-value products such as pharmaceuticals
and living cells.

The end-to-end freeze-drying process comprises three main steps: freezing, primary
drying, and secondary drying. The principal function of the freezing process is to separate
the solvent from the solutes. In an aqueous system, the water will form ice crystals while
the solutes will be confined to the interstitial region between ice crystals. Once the product
has reached a completely frozen state, the pressure in the freeze-dryer is reduced, and
heat is applied to the product to initiate sublimation of the ice crystals. The sublimation
process gradually creates a moving interface between frozen zone and dried zone. During
primary drying, which is the longest part of the process, product temperature needs to
be kept below the collapse temperature. Primary drying is complete once all ice crystals
have been removed from the product, and the volume occupied by the resulting cake
is equivalent to that of the frozen matrix. On completion of sublimation, there will be
some water adsorbed onto the cake surface. This moisture can constitute up to 5-10%
of the dried product depending on the temperature and nature of the cake components.
In many cases, these moisture values may prove too high, and the final product may not
have the desired stability. The desired stability is obtained during secondary drying by
desorbing the moisture from the cake without reducing its interstitial volume. Removal of
the unfrozen water is usually accomplished by increasing the product temperature while
reducing the pressure. Typical figures for final moisture level are less than 3%.

As cited in [1], various process variables affect the efficiency of the freeze-drying
process. Product temperature is a determinant factor for both productivity and product
quality. Indeed, sublimation is generally faster at higher temperatures, but drying at ex-
cessive temperatures results in a loss of the pore structure obtained by freezing, which in
[2] is defined as the collapse phenomenon and therefore in rejection of the batch. The
collapse temperature is usually about 2 °C higher than the glass transition temperature
of the maximally freeze-concentrated phase (T ′

Glass) or equal to the eutectic temperature
if solutes are crystallized in the frozen solution. As presented by [3], the appropriate
shelf temperature and chamber pressure conditions are frequently established empirically
in a trial-and-error experimental way. In this framework, the simplest approach to deter-
mine optimal operation policies consists in considering constant values of these variables,
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which are generally set on the basis of results obtained in previous runs carried out with
the same product. As a result, this approach usually leads to non-optimal conditions for
the freezing, sublimation and desorption steps [4]. Significant advantages can be obtained
if shelf temperature and chamber pressure are varied during the operation [5]. Therefore,
several methodologies proposed in the literature are based on employing process sim-
ulation to determine the operating conditions over the shelf temperature and chamber
pressure that minimize drying time while satisfying the glass transition constraint [6]-[9].
Proper definition of the mathematical model provides a better understanding of process
dynamics and their influence on cycle time and product temperature history [10]-[16],
which is crucial for obtaining truly optimal process operation that delivers high quality
product at minimal cost [19].

A systematic procedure to optimally determine time-varying operating profiles is one
of the scopes of recent research on freeze-drying [17] - [21], [5]. In this context, the
present work aims to go a step further by considering dynamic optimization to define a
multi-level integrated approach for optimal control of food and biotechnological process-
ing units.

The tool developed distinguishes between an a priori (off-line) optimization level
based on the defined model and a real time (on-line) optimisation level. The off-line op-
timization level will set up nominal optimal operation policies for the process, while the
on-line level takes into account unpredicted disturbances and unavoidable model uncer-
tainties that might affect the process in order to recalculate valid the operational profiles.
These profiles are introduced into a low level regulatory layer (actuators) which forces
plant states to evolve accordingly.

The aim of the approach presented in this paper is to systematically determine op-
timal operation policies for freeze-drying processes, while attempting to overcome the
disadvantages detected in previous approaches. Several studies have reported one stage
off-line optimization strategies, producing a fixed process operation recipe [3], [9], [12],
[22]. Their main drawback is the sub-optimal character of the resulting operation policies,
either because of unexpected disturbances, model parameter uncertainty or equipment
variability [5]. Sub-optimal policies can violate important process constraints as pointed
out in [12],[18]. For example, they may lead to product collapse (local melting) which in
turn can put at risk the entire batch. In contrast, the proposed multi-level optimisation ap-
proach can efficiently prevent those violations by re-computing optimal operating policies
in real time based on actual process measurements.

The off-line level used here to analyze different processing scenarios defined as a
function of product moisture content, is described in Section 2. The main results ob-
tained for the different control configurations are summarized in Section 3. Finally, Sec-
tion 4 presents the principle of the hierarchical approach based on implementing the pre-
computed policies in a real-time optimization (RTO) framework designed to react to pos-
sible disturbances and minimize the adverse effects of final product variability.
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2 The off-line level: The freeze-drying optimal control
problem

The aim of this level is to set up optimal operation policies in time (t) over considered
controlled variables (u) by solving an optimization problem of the form:

min
u

J

s.t.

f(ż, z, p, u, t) = 0
h(z, p, u, t) = 0
g(z, p, u, t) ≥ 0
ul ≤ u ≤ uu

(1)

where J is a given performance index, z ∈ Rα is the state vector; ż is the time deriva-
tive of z; p ∈ Rnp is a set of possible process parameters; u ∈ Rnu is the control vector; f
is the set of differential and algebraic equations describing the system’s dynamics and h
and g are possible path, point or end point constraints (equality and/or inequality), which
represent further special conditions governing process operation. The search space for the
control variables u is delimited through upper and lower bounds (uland uu).

For the freeze-drying case considered in this work (schematized in Figure 1), the
objective is to define process operation policies which minimize cycle duration, i.e. J =
tcycle, by varying the defined control variables u= [Tshelf , Ptchamb

, Tcond, Tchamb] in order to
attain a given final average moisture content in the product (Cave) while meeting product
stability conditions, which in this case means that product temperature (T ) has to remain
below the glass transition temperature (TGlass) at any point in the entire freeze-drying
cycle. Mathematically:

min
u

J = tcycle

s.t.

f(ż, z, p, u, t) = 0
CAve(tfinal) = 0.03 kgwater/kg

T ≤ TGlass

−50 ≤ Tshelf ≤ 30(°C); 0 ≤ Ptchamb
≤ 50(Pa);−90 ≤ Tcond ≤ −50; 5 ≤ Tchamb ≤ 50

(2)
where the target average moisture content of the product (CAve) is considered as an end-
point constraint while the quality requirements (T ≤ TGlass) are managed as path con-
straints. Present work integrates the one-dimensional dynamic model (f ) of heat and
mass transfer with associated product quality indicators developed by [1] for the freeze-
drying process of PS product (4% of polyvinylpyrrolidone (PVP), 1% of sucrose, and 10
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mM Tris-HCl). The complete differential-algebraic model equations (f ) considered are
reproduced in full in Appendix 1.

It should be stressed that in practice Tcond and Tchamb are not usually considered as ma-
nipulated variables, but the aim of our work is to explore all control alternatives/strategies
available that could potentially help improve freeze-drier design and performance. There-
fore, different control scenarios based on the definition of vector u will be analyzed:

1. One control variable: u = [Tshelf ].

2. Two control variables: u = [Tshelf , Ptchamb
].

3. Four control variables: u = [Tshelf , Ptchamb
, Tcond, Tchamb].

Furthermore, note that the lower bound for the controlled variable Ptchamb
(0 Pa) is not

physically possible, but this limiting case has been examined in order to see whether
lowering this bound would result in a significant improvement in terms of freeze-drying
cycle duration. Later in this work, a more realistic bound of 10 Pa will be introduced for
this variable.

These different process configurations will be translated in particular versions of the
previously defined dynamic optimization problem (2). To solve them, a Control Vector
Parametrisation approach ([23], [24] - Figure 2) is used to transform the original dynamic
optimization problem of infinite dimension into a non-linear optimization problem (NLP)
of finite dimension. For this purpose, the considered time interval is divided into ρ con-
stant time intervals and the controls are approximated in each interval generally by low-
order polynomials, as depicted in Figure 2. This new problem can be solved by employing
different optimization algorithms considering that process dynamics need to be integrated
on each internal iteration in order to evaluate both the objective function and constraints
(if any). In this framework, considering high ρ values would entail substantial computa-
tional costs without significantly improving the final solution of the performance index
J [25]. On top of these important solving requirements associated to higher-dimension
problems (these problems used to be NP-Hard, meaning that the computation time re-
quired to solve them increases exponentially with their dimension), higher discretization
levels lead most optimization approaches to suboptimal solutions with very noisy control
profiles [26], [27]. In the other hand, overly low ρ values could result in significantly
sub-optimal profiles as it would become impossible to obtain sufficient curvature for the
control profiles.

Therefore, in this work, the number of time intervals considered for approximating the
control variables using the CVP approach is ρ = 10 and 20. Larger values of this parameter
could be chosen, approximating the control variable to a real continuous profile. However,
and as mentioned, the computation time associated to solving an optimization problem of
higher dimension could be unaffordable. Moreover, there are many cases to show that
global solutions obtained at selected levels of discretization have a very low margin of
error (for the case of problems with known solutions) when compared to more refined
solutions [25], [26]. In this context, the influence of the control discretization (ρ) in the
optimum freeze-drying cycle duration will be analyzed later in this work.
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From what has been discussed so far, it can be concluded that the complexity of the
NLP problems defined for each operational scenario is intimately related to:

1. The highly non linear nature of the freeze drying process and its associated math-
ematical model which involves a high number of parameters and exhibits a rich
dynamics.

2. The existence of constraints over the process states and controls.

3. The number of selected controls.

what in many instances may lead to local optima. Strongly zigzagging control profiles
were found for this problem when using non-robust optimizers (FMINCOM, DIRECT,
etc.) what can be considered as an evidence of sub-optimal solutions (note that usually,
global optimal profiles are expected to be smooth).

As a consequence, optimal control problems are computationally costly as they re-
quire:

• A numerical integration scheme to solve the set of ordinary differential equations
within each objective function evaluation.

• To apply methods to approximate the selected controls by polynomial functions
(as the CVP approach considered in this work) in order to transform the original
dynamic optimization problem of infinite dimension into a non-linear optimisation
problem (NLP) of finite dimension.

In this off-line framework , and to overcome the above mentioned drawbacks, three
global stochastic optimisation algorithms have been considered for solving the low-dimension
resulting NLP problems (derived from 2):

• DE: Differential Evolution [28]. This is a heuristic algorithm for the global op-
timization of nonlinear and (possibly) non-differentiable continuous functions. It
is a population-based method which, starting with a randomly generated popula-
tion, computes new candidate solutions by calculating differences among popula-
tion members. It handles stochastic variables by means of a direct search method
which outperforms other popular global optimization algorithms, and it is widely
used by the evolutionary computation community.

• G-CMA-ES: Covariance Matrix Adaptation Evolutionary Strategy [29]. This is
an evolutionary algorithm that makes use of the covariance matrix in a similar
way to the inverse Hessian matrix in a quasi-Newton method, and it is particularly
interesting for solving ill-conditioned and non-separable problems. This method
was ranked in the first place in the Conference of Evolutionary Computation 2005
(CEC’05).
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• eSS-SSm: Enhanced Scatter Search [30]. This method was recently developed
for solving nonlinear dynamic optimization problems, outperforming other state-
of-the-art methods. It is based on the use and combination of a reference set of
good solutions, maintaining an appropriate level of diversity.

The rationale for these selections is that stochastic methods usually provide excellent
solutions in affordable computation times. The state-of-the-art in deterministic methods
for dynamic optimization problems is currently unsatisfactory, as in practice, methods
exploiting the model structure can only be used for very small problems, otherwise the
computational times to achieve the global solutions become unaffordable.

Regarding deterministic methods, several of them can be employed (e.g., a multistart
procedure using a SQP -Sequential Quadratic Programming, method, a branch and bound
method or similar). However, if the problem is multimodal, multistart SQP may fail to
locate the global optimum (as shown in next Section), whereas the use of a branch and
bound method is again restricted to small problems. Research comparing stochastic and
deterministic methods has shown that the stochastich algorithms are more efficient in
terms of computation time [30], [31] and [32].

In order to select which of these algorithms leads to the best results, it is necessary
to perform an efficiency analysis. For this purpose, convergence curves are constructed
showing the evolution of the best value obtained by each solver as a function of CPU
time. With these representations, both the robustness (the capability of the solver to attain
consistently good final solutions) and the efficiency (the speed to converge to the final so-
lution) can be evaluated, allowing the user to select the appropriate algorithm for solving
a given optimization problem, as presented later in this work.

3 Results on dynamic optimization of freeze-drying

This Section presents the solutions of the resulting dynamic optimization problem (2) for
the different control scenarios considered. These solutions have been obtained by using
the selected optimization algorithms.

3.1 One control variable: Tshelf profile

As a first step, the same scenario discussed in previous works on freeze-drying optimiza-
tion [1] is considered by solving problem (2) when only one control variable is taken into
account (u= [Tshelf ]). In this case, Ptchamb

= 10 Pa, Tcond = -65 °C and, Tchamb = 25 °C
are constant along the equidistant ρ=20 intervals in which the considered time interval (t
= 40 h) has been split.

In order to demonstrate the complexity of the defined optimal control problem as well
as the inability of local deterministic algorithms to attain the global optimum, a multistart
strategy with a SQP method (FMINCON from MATLAB© [33]) has been performed by
considering 30 random vectors for Tshelf with a control discretization of ρ = 20.
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As shown in the histogram of achieved solutions given in Figure 3 for the multistart
strategy, the problem is non-convex (multiple different solutions are obtained depending
on the Tshelf profile considered) and, therefore, stochastic global optimization algorithms
are required to properly solve it.

It needs to be pointed out that when using stochastic optimization methods like the
ones considered in this study, it is necessary to perform several runs to increase the proba-
bility of finding the global optimum. Depending on the computational cost of the problem,
the literature usually cites numbers between 10 and 30. Therefore, and as a consequence
of the high complexity and computational cost associated to the defined optimal control
problem, a number of 10 independent runs for each algorithm tested (performed on a In-
tel Core2 Quad 2.40 GHz CPU with a fixed maximum computation time of 8 hours) was
chosen. We will consequently obtain an average on the freeze-drying cycle time.

The results achieved for the optimum cycle duration when using eSS-SSm (hereafter
denoted SSm), DE and G-C-MAES are presented in Table 1. As shown on this Table, all
average values for the selected objective function (freeze-drying cycle duration) are fairly
similar, with the one obtained by SSm being slightly better (JAve = 25.067 h) than the
ones reached by DE and C-MAES (JAve = 25.076 h and 25.180 h, respectively). In a
real-world process, these differences would not be significant when compared to other
operations such as freeze-drier loading, sterilization, freezing, etc. Note that Table 1 also
shows that C-MAES exhibits a higher (but not very significant) variability (measured
through the standard deviation) on the final value of J obtained for each run. Either way,
all these optimizations obtain better solutions than the best one achieved by the multistart
strategy with FMINCON (J = 27.02 h).

As previously cited in Section 2, deterministic global algorithms will fail to reach
the global optimum due to the highly non-linear multimodal nature of problem (2). To
illustrate this fact, this simplest optimal control problem has been solved with DIRECT
(DIviding RECTangles, [34]), which is an algorithm based on a modification of the Lip-
schitzian optimization scheme. It operates by systematically dividing the optimization
domain in hyper-rectangles and evaluating the objective function in their centres. The
optimum freeze-drying cycle time obtained by DIRECT is J = 28.02 h, which is close to
8% higher than the best value obtained by SSm. As a consequence, this type of algorithms
is no longer considered in this work.

As stated above, in order to properly select a reference solver, it is necessary to per-
form an efficiency analysis based on the constructed convergence curves (Figure 4). First
of all, we can check that all the runs performed for each solver converge to substantially
similar final J valued. In Figure 5, solvers efficiencies are compared by considering the
convergence curve corresponding to the best run obtained by each (Run 6 for SSm and DE
and 2 for C-MAES). The so-called best run is the one that provides the best solution in
terms of objective function within the maximum computation time allowed. It obviously
provides a high-quality solution even if it is impossible to demonstrate that it is certainly
the global optimum. Stochastic methods such as those employed in this work do not pro-
vide proofs for convergence, but they usually provide excellent solutions in affordable
computation times.

For this scenario, the optimum control profile (corresponding to Tshelf ) obtained by
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the different algorithms are shown in Figure 6. It can be concluded from this figure that
the achieved solutions are almost identical, leading to fairly similar cycle durations.

Comparing the presented results against those reported in [1] (optimum cycle dura-
tion - Jbest = 24.4 h), it can be seen that this value is lower than the best solution
(Jbest = 25.067 h) obtained by solving the considered dynamic optimization problem
(2). This difference could be due to the fact that in [1], the product top temperature is
higher than the corresponding glass transition temperature at the beginning of the freeze-
drying cycle, thus violating the product quality requirement, as shown in Figure 7. In
this setting, when the optimum Tshelf profile obtained in [1] (Figure 7) is compared with
those obtained in this work via dynamic optimization with a path constraint (Figure 6),
the main difference between them is the Tshelf value in the second control discretization
point. Such difference guarantees, for the proposed optimal profile, that Ttop ≤ T top

Glass

throughout the cycle (since Tshelf is lower), preventing the system from collapsing but
also slightly increasing the freeze-drying process duration.

3.2 Two control variables: Tshelf and Ptchamber
profiles

This part of the work analyzes the influence of changes on chamber pressure over the
freeze-drying cycle and its duration, this time considering two control variables to define
the NLP problem presented in (2): u = [Tshelf , Ptchamb

]. Once again, Tcond = -65 °C,
Tchamb = 25 °C are constant during the defined time interval (t = 40 h).

As with one-control variable case, several runs were carried out for the three algo-
rithms selected to solve the NLP problem presented in (2) considering the new defined
vector u. The results obtained using SSm, DE and C-MAES are presented in Table 2.
In this particular case, and as explained in Section 2, two levels of control discretization
have been considered (ρ = 10 , 20) in order to determine the influence of this parameter on
the optimum freeze-drying cycle time. The reason for this selection has been already put
forward in Section 2: high ρ values would entail substantial computational costs without
significantly improving J , while overly low discretization levels could result in signifi-
cantly sub-optimal profiles as it would be impossible to obtain sufficient curvature for the
control profiles. In order to maintain a reasonable compromise between both extremes,
affordable discretization levels of 10 and 20 can be selected.

In order to experimentally prove these statements, a set of tests have been carried out
by solving (2) with SSm for different values of ρ = [5, 10, 20, 30, 40, 50]. For each
discretization level, ten runs were performed with a fixed maximum computation time of
24 hours. Such limit was selected to be of the order of the optimal freeze-drying cycle
time. The reason is that in order for the algorithm to be applicable in real time, what im-
plies re-calculation (and implementation) of optimal policies in the event of disturbances
affecting the process, computation cannot take longer than the duration of the real process
itself. As a result, we obtain the JAve as a function of ρ, as depicted in Figure 8. This Fig-
ure shows how the average freeze-drying cycle time quickly decreases when increasing ρ
up to values between 20 and 30, at which point JAve reaches a minimum before starting
to slightly increase for higher values of control discretization. Therefore, it can be con-
cluded that the computational effort tied to high ρ values does not significantly improves
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the final solution. In fact, medium levels of discretization (ρ = [10, 20]) can be considered
representative for optimal control and real time optimization purposes.

From the results presented in Table 2, it can be concluded that:

1. A higher control discretization (ρ = 20) leads to better J values, i.e to lower lyophiliza-
tion cycle times, for all the solvers considered but entails a strong increase in com-
putational effort to achieve the optimum. This can be expected since with a higher
discretization level, the parametrized control profile becomes a better approxima-
tion of the theoretical continuous profile.

2. The final values of J obtained for ρ = 20 clearly improve (by a 5-6%) the values
obtained by all solvers under the one-control-variable case. This means that the
freeze-drying cycle duration is cut by almost an hour and a half (from JAve = 25.067
h. to JAve = 23.506 h.). Note that these values correspond to the best solutions
obtained by SSm. As a result, the influence of changes in Ptchamber

profiles over the
cycle duration is demonstrated.

3. The average J values obtained by SSm are better than those obtained by DE and
C-MAES for both levels of discretization considered.

Focusing back on the efficiency of the solvers, Figure 9 shows that the different runs
performed by the solvers considered only converge to fairly similar final J values for the
SSm case, while C-MAES and especially DE lead to higher dispersion in final solutions,
revealing a low robustness of these solvers when solving (2) for this two-control variable
scenario. This fact is corroborated by the high values for the standard deviation of the
mean value presented in Table 2 for CMAES and DE (σ=[0.227,0.4649], respectively)
compared to SSm (σ=0.060).

In Figure 10, the efficiencies of the solvers are compared by considering the conver-
gence curve corresponding to the best run (leading to the minimum J) obtained by each.
This aspect will prove to be very important when the on-line optimization level is defined.
In this context, the solvers employed should be "sufficiently fast" to react against possible
disturbances and to minimize the adverse effect of final product variability but in lower
computational times, as detailed later. In this framework, it can be seen from Figure 10
that CMAES and SSM are revealed as good options for real time optimization purposes.

Finally, the optimum control profiles (corresponding to Tshelf and Ptchamb
) obtained

are shown in Figure 11. It is concluded that, for this case, the profiles are quite different,
with evident deviations for the total pressure chamber case. This situation might indicate
the existence of a number of local minima that are very similar in terms of the objec-
tive function value but somewhat different in terms of decision variables. However, the
global shape of the control profiles is similar, indicating that the algorithms converged to
physically meaningful profiles.
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3.2.1 Two control variables: Ramps in Tshelf and steps in Ptchamber
profiles

Practical considerations for the operation of freeze-dryers on real food and biotech pro-
cessing plants make it necessary to introduce a new operational issue regarding the em-
ployment of step changes (piecewise constant intervals for control discretization) over
Ptchamber

. This is due to the fact that this variable is difficult to modify/manipulate a real
scale, making it necessary to implement profiles based on step changes.

From this concrete operational scenario, and as a result of what has been stated in the
previous cases, SSm has been considered as the most suitable algorithm for solving the
resulting dynamic optimization problem. Once again, two levels of control discretization
have been considered (ρ = 10 , 20) in order to analyze the influence of this parameter on
the cycle duration. When comparing the values presented in Table 2 for step profiles in the
chamber pressure (Table 2, fourth column) to the values obtained when considering ramps
in both manipulated variables (Table 2, third column), it can be concluded that the average
of the cycle duration (J) is slightly increased when using steps in the Ptchamber

profile,
while reducing the standard deviation of the mean value of J and, therefore, variability in
the solutions attained in different runs.

Regarding the influence of ρ, Figure 12 compares the convergence curves for the best
runs performed for each control discretization level, showing, as in Table 2, that the ab-
solute minimum for the freeze-drying cycle duration is obtained for a higher level of
discretization (ρ = 20), but at the price of a higher (around one order of magnitude)
computational effort. Once again, a compromise between robustness and efficiency is
needed when defining the real time optimization (RTO) level, since the J value obtained
for ρ = 10 could be good enough and the time needed to achieve it much lower (around
one order of magnitude) than for the ρ = 20 case.

The optimum control profiles (corresponding to Tshelf and Ptchamb
) obtained with SSm

are depicted in Figures 11, 13 and 14. These Figures make possible to check that the
temperature profiles for the control discretization levels considered (ρ) are smoother than
those obtained when ramps are used for both control variables, as shown in Figure 11a.
This makes easier to translate/apply these profiles into real-world operation of the freeze-
drying process.

Finally, it must be pointed out that real equipment limitations make it impossible
to achieve in-chamber pressures under 7-8 Pa to generate total vacuum. As a conse-
quence, the lower bound for the Ptchamb

control variable has been modified from 0 to
10 Pa (Ptchambu

≥ 10) with a discretization level ρ = 10. The average value of the cycle
duration is almost the same as the one obtained for the case of considering unconstrained
Ptchamb

(JAve = 24.681 h versus JAve = 24.671 h, value extracted from Table 2, ρ = 10).

These optimum profiles obtained when solving the constrained Ptchamb
two-control-

variables DO problem are presented in Figure 14 and compared with the previous no-
lower-bound case solution. As shown in this Figure, the temperature profile for this
constrained scenario is almost the same as that obtained for the unconstrained pressure
case, while the pressure profile varied as expected when compared to the unconstrained
case due to the new set of the lower bound for Ptchamb

,. The penalization on the final
freeze-drying cycle time is almost negligible.
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3.3 Four control variables: Tshelf and Ptchamber
profiles, Tcond and Tchamb

The last configuration analyzed for the freeze-drying process considers four control vari-
ables: Tshelf and Ptchamber

profiles, Tcond and Tchamb. Note that only Tshelf and Ptchamb
are

parametrized along the homogeneous partition of the time interval [0, 40] into ρ subinter-
vals.

As mentioned earlier, this operational scenario can not be practically implemented on
most of the current real freeze-driers, but the aim of this work is to investigate and analyze
possible advantages that could shape future equipment design.

The results obtained when solving the complete NLP problem presented in Equa-
tion (2) using SSm, which has been revealed as the more appropriate solver (in terms
of efficiency-robustness), conclude that the average value achieved for the freeze-drying
cycle duration is JAve = 23.332 h. This means that the effect of changes on Tcond and
Tchamb only slightly modify optimal operation time, since a reduction of only 0.17 h (a
0.074%) is attained when compared to the two-control-variables scenario (for the higher
control discretization level considered - ρ = 20). In short, the gain is minor given the
effort of modifying freeze-dryer design, thus reinforcing current real-scale freeze-drying
equipment configurations.

Figure 15 presents the optimum control profiles (corresponding to Tshelf and Ptchamb
)

for this four-control variables case. In addition to these profiles, optimum values for non-
discretized decision variables have been obtained. Optimal values for Tcond and Tchamb

are Tcondopt = -87.219 °Cand Tchambopt = 26.347 °C, respectively.

To summarize this Section, a comparison among the optimum profiles obtained for all
cases considered (one, two and four-control variables) is presented in Figure 16. It can be
concluded that the trend in the optimum Tshelf profiles is the same to the trend reported in
[1], since during primary drying, shelf temperature has to be decreased because the self-
cooling effect due to ice sublimation decreases when mass transfer resistance through
the dry layer increases. Subsequently, and during secondary drying, the product moisture
content decreases and the glass transition temperature increases throughout in the product.
This leads to the possibility of significantly increasing the shelf temperature. Looking at
the chamber pressure profiles, the trend along the considered time interval is similar for
both considered cases (only ramp variations have been compared).
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4 Re-computing control profiles on disturbed freeze-drying
processes: a first step to define a RTO level

Many food and biotech industries use time-constant control profiles on their processes,
but allowing the control profiles to change in time can improve process performance. As
described earlier in this paper, dynamic optimization (DO) uses mathematical models of
the processes to compute optimal control profiles that maximize/minimize a predefined
performance index such as productivity or other economic indexes.

Usually, these control profiles are computed off-line and implemented in the plant.
However, when an unpredicted disturbance (for instance, changes in the external temper-
ature, input/output fluid pump failure, etc.) enters the plant, the control profiles computed
using the DO scheme are no longer optimal. A possible framework to over- come this
limitation is real-time optimization (RTO), in which the control profiles are re-computed
a number of times throughout the process.

The general scheme of RTO is presented in Figure 17. Sensors collect information
on the state variables of the real plant. This information is fed into the optimization
software which, via the simulation environment (mathematical model), computes new
optimal control profiles. Finally, these profiles are introduced into a low-level regulatory
layer (actuators) which will force the states of the plant to evolve accordingly.

In Section 2, we saw that the objective of dynamic optimization of freeze-drying is
to minimize the cycle duration by varying the defined control variables in order to attain
a given average moisture content in the final product while satisfying product stability
conditions related to glass transition temperature.

However normal operation of freeze-drying process could still be affected by different
disturbances or uncertainties (both in the model parameters as well as in the measured or
manipulated variables). To overcome their negative effects on the process dynamics, an
RTO level can be defined to repeatedly re-compute the control profiles obtained through
dynamic optimization (and which are no longer optimal).

With the aim of defining a proper and reliable RTO environment, a set of simulation
tests have been carried out to represent typical operation scenarios under the existence
of disturbances. The objective is to determine how fast the selected optimization solvers
(the core of the RTO level) can lead the system to a new optimal operation point by re-
calculating control profiles. Mathematically, the resulting problem is like (4), but now
including the vector of possible disturbances affecting the process during the entire time
interval considered (d), and using off-line optimum profiles (u∗) as starting point.

This work considered three step disturbances affecting the system dynamics in order
to define the freeze-drying operation case studies proposed:

1. A +10% step on Tcond (From -65 to -58.5 °C)

2. A +10% step on Tchamb (From 25 to 27.5 °C)

3. A -10% step on Tchamb (From 25 to 22.5 °C)
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From the analysis of the results achieved for dynamic optimization of freeze-drying
cycles, global solvers emerged as the best alternatives to re-computing control profiles.
Once again, three selected global NLP solvers have been employed to solve this new
optimization problem: SSm, DE and CMAES.

In addition, and with the aim of possibly improving RTO level efficiency, we also
considered hybrid strategies, methods that combine global stochastic and local optimiza-
tion algorithms by taking advantage of both the robustness of stochastic solvers and the
efficiency of local methods when started in the optimum neighbourhood. Here, three hy-
brid strategies were: a) SSm+FMINCON (local gradient-based method included in the
Matlab Optimization toolbox - [33]); b) SSm+MISQP (an extention of the well-known
SQP method to mixed-integer programmes - [36] ; and c) SSm+IPOPT (interior point
optimizer for large-scale nonlinear optimization - [35]).

To avoid overloading the reader with an array of numerical and graphical results, Ta-
ble 3 simply presents the best, worst and mean values of J (freeze-drying cycle duration)
achieved for each solver for the operation scenarios considered under the presence of a
step disturbance on Tcond (+10%). All solvers attain good solutions for the new optimum
J (in the neighbourhood of 25 h) in the interval 0.15-0.40 h. (≈ 10-25 min.), the best
value of the objective function being obtained by SSm (JbesteSS

= 24.665 h.) while DE
posted the worst performance of all algorithms considered. To verify these results, Fig-
ure 18 presents the convergence curves corresponding to the best run (in terms of final
value of J) for each solver/hybrid strategy considered. These results indicate that the pro-
posed algorithms, which constitute the basis of the RTO level, are able to re-compute the
disturbance-rejecting control profiles that alter optimum process operation in a time that
can be considered minimal given the global freeze-drying cycle duration (≈ 1 − 2% of
the total FD cycle time).

If this on-line level is not considered, and the optimal profiles obtained off-line (as
presented in Figure 14) are used to try to reject the considered disturbance in condenser
temperature, then we get a violation of the glass transition temperature constraint. This is
due to the fact that the disturbance knocks process operation away from the optimal point
determined off-line, making it an unfeasible operating scenario with an associated cycle
time that increases up to J = 31.14 h. Clearly, re-computing control profiles via RTO is
a justified measure for overcoming this drawback.

It is also stated in Figure 18 that, for this specific case study, employing hybrid strate-
gies does not actually increases the efficiency of the global solvers since no better solu-
tions are found in shorter times compared to global solvers such as CMAES or SSm. It
can be also concluded that SSm, whether as a global solver or as part of an hybrid strat-
egy, consistently achieves high-quality solutions (best J value) and thus present the best
compromise between efficiency and robustness.

Finally, Figure 19 presents the comparison between the off-line optimum control pro-
files and the re-computed control profiles when a step on Tcond is considered. It shows
that the profiles for the shelf temperature are almost the same for the process with and
without disturbance, while pressure profiles reflect significant changes designed to reject
the disturbance. Similar results are obtained when other considered disturbances affect
the process, as stated in Figure 20.
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5 Conclusions

This work presents a multi-level integrated approach that defines operation conditions
for minimizing freeze-drying cycle time while preserving product quality (final water
content) by solving a dynamic optimization problem. The high dimensionality and non-
linearity inherent to the model equations describing the full freeze-drying dynamics result
in a set of computationally-involved control problems which justify this two-level hierar-
chical approach.

The off-line level is responsible for analyzing different processing scenarios. In this
framework, several scenarios have been considered based on the decision variables se-
lected. This kind of assessment will be formally stated as a dynamic optimization (DO)
problem to provide the given average moisture content in the product while satisfying
both process dynamics and product stability and quality conditions. By solving the differ-
ent DO problems with the global stochastic solvers considered (SSm, DE and CMAES),
it was clearly stated that by considering two control variables (Tshelf and Ptchamb

) makes it
possible to achieve a reduction of up to 1.5 h in the freeze-drying cycle duration compared
to the one-control-variable scenario with Tshelf . The non-practical four-control-variables
DO problem helped us to show that the major effort required to potentially modify and
improve the design of today’s freeze-driers by also manipulating Tcond and Tchamb will be
not translated into significant process time reduction (no more than a 0.1% gained).

Furthermore, it was also verified that higher levels of control discretization (ρ) leads to
better values of cycle times values, achieving a minimum of Jave in the interval between
ρ= 20 and ρ=30 before starting to slightly increase at higher values of control discretiza-
tion. Therefore, it is concluded that the computational effort associated to high values of
ρ does not significantly improves the final solution. In fact, medium levels of discretiza-
tion (ρ = [10, 20]) can be considered representative for optimal control and real time
optimization purposes.

We saw that the on-line level consists of implementing the pre-computed policies on
a real time optimization (RTO) framework designed to react to possible disturbances and
to minimize the adverse effects of end-product variability by re-computing the off-line
control profiles. In this framework, and in order to define the fundamentals of this level,
several tests were performed to re-optimize the freeze-drying operation under the presence
of a step disturbance on Tcond (+10%). It was shown that all solvers achieve good solutions
(SSm giving the best performance) for the new optimum J (in the neighbourhood of
25 h) in the 0.15-0.40 h time interval (≈ 10-25 min.) following the application of the
disturbance. At this point, it can be concluded that a RTO level based on the considered
optimization algorithms will be able to re-compute the control profiles (which reject the
disturbance) in a short time when compared to total freeze-drying cycle duration (≈ 1 −
2% of the total freeze drying cycle time).

The authors are currently engaged in research aimed at completing the results pre-
sented here by: a) analyzing model uncertainty and its effects on the solution of the op-
timal control problem; b) defining and implementing a robust RTO level to re-compute
these control profiles at given time intervals under disturbances and model uncertainty,
and c) implementing off-line computed profiles and the proposed multi-level approach at
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pilot/real scale.
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Appendix 1: Heat and mass transfer model equations for
the freeze-drying process

This research considers the model described in [1]. It consists of a system of four differ-
ential equations (for the front position and the residual moisture contents at the product
bottom, front, and top) and one algebraic equation for the front temperature. Note that
the product and the dryer state are described by relevant state variables at six key points,
as shown in Figure 1: shelf, product bottom, sublimation front, product top, freeze-drying
chamber, and condenser. The heat and mass transfers are assumed to take place between
these points.

Primary drying (I) Secondary drying (II)

Control variables Tshelf , Tchamb, Tcond, Ptchamb

State variables Zfront, Tfront, Cbottom, Cfront, Ctop

Mass transfer

Mass transfer coef-
ficients

KF To = kF To A
Zt−Zfront

KTo Ch = kTo ChA
1

KF Co = 1
KF To + 1

KTo Ch + 1
KCh Co

Fixed pressures PCo
w = P Sat

w (Tcond)
P F

w = P Sat
w (Tfront) P F

w = PCo
w

Mass flux F F Co = KF Co
(
PCo

w − P F
w

)

Pressures P To
w = P F

w + 1
KF To F

F Co P To
w = PCo

w

PCh
w = PCo

w − 1
KCh Co F

F Co PCh
w = PCo

w

Heat transfer

Heat transfer coef-
ficients

HS B = hS B(Ptchamb
, H2O)A HS B = hS B(Ptchamb

, N2)A

HB F = hB F A
Zfront

HF To = hF To(P F
w +P To

w

2
, H2O) A

Zt−Zfront
HF To = hF To(P F

w +P To
w

2
, N2)

A
Zt

HTo Ch = hTo ChA
1

HS F = 1
HS B + 1

HB F
1

HS Ch = 1
HS B + 1

HF To + 1
HTo Ch

1
HF Ch = 1

HF To + 1
HTo Ch

Heat fluxes QS F = HS F (Tfront − Tshelf ) QS Ch = HS Ch (Tchamb − Tshelf )
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QF Ch = HF Ch (Tchamb − Tfront)

Temperatures Tbottom = Tshelf + 1
HS B QS F Tbottom = Tshelf + 1

HS B QS Ch

Tfront = Tbottom

Ttop = Tfront +
1

HF To Q
F Ch

Product quality

Glass transition TB
Glass = TGlass (CB)

T F
Glass = TGlass (CF )

T To
Glass = TGlass (CTo)

Sorption
isotherms

CB
Equ = CEqu (1) CB

Equ = CEqu

(
P B

w

P Sat
w (Tbottom)

)

CF
Equ = CEqu (1) CF

Equ = CEqu

(
P F

w

P Sat
w (Tfront)

)

CTo
Equ = CEqu

(
P To

w

P Sat
w (Ttop)

)

State evolution equations

Front position dZfront

dt
= F F C

DIceA

dZfront

dt
= 0

Front temperature 0 =
(
QS F −QF Ch

)− LSublF
F C 0 = Tbottom − Tfront

Residual water
content

dCbottom

dt
= 1

τDes

(
CB

Equ − Cbottom

)

dCfront

dt
= 1

τDes

(
CF

Equ − Cfront

)

dCtop

dt
= 1

τDes

(
CTo

Equ − Ctop

)

Additional outputs

Neutral gas press PCh
n = Ptchamb

− PCh
w

Average water con-
tent

CAve = ZF (Cbottom+Cfront)/2+(Zt−ZF r)(Cfront+Ctop)/2
Zt

CAve = Cbottom+Ctop

2

Product mass in a
vial

MV ial = MDry + CAve

1−CAve
MDry + ZF

Zt
M Ice

Ini MV ial = MDry + CAve

1−CAve
MDry

Functions

20



Sorption isotherm CEqu(aw) = min
{

CMax, max
{

CMin, qSorp 1 (aw − qSorp 2)
} }

Transition from
primary to sec-
ondary drying

f(I)(Z) =

{
sin

(
π
2

Z
ZTrans

)
if Z < ZTrans

1 if Z ≥ ZTrans

Glass transition TGlass(C) = max
{

T Fr
Glass,

(1−C)T Dry
Glass+qGordonCT Ice

Glass

(1−C)+qGordonC

}

Heat transfer be-
tween shelf and
product bottom

hS B(P, gas) = hS B
Contact+Rad + qS B

gas hS B
Cd

P
1+P/P S B

Trans

Heat transfer be-
tween sublimation
front and product
top

hF To(P, gas) = hF To
Walls+Rad + qF To

gas hF To
Cd

P
1+P/P F To

Trans

Saturated vapour
pressure

P Sat
w (T ) = exp

(−6139.6
T

+ 28.8912
)
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NOMENCLATURE

A Product cross area [m2]
aw Water activity [Pa/Ps]
C Moisture content, wet basis [kg/kg]
D Density [kg/m3]
F Mass flux [kg/s]
H Heat transfer coefficient [kg/m3]
h Unitary heat transfer coefficient [W/(Km2)]
h Heat conductivity [W/(Km)]
K Mass transfer coefficient [kg/(sPa)]
k Mass conductivity [kg/(sPam)]
k Unitary mass transfer coefficient [kg/(sPa)]
Lsubl Specific sublimation heat [kg/(sPam2)]
M Mass for one vial kg
N Number
P Pressure [Pa]
Q Heat flux [W ]
q Empirical model coefficient
R Radius [m]
T Temperature [K]
Z Position in the product layer [m]

Greek letters
τ Time constant [s]

Subscripts/Superscripts
(I) Primary drying stage
(II) Secondary drying stage
Ave Average
B Bottom (Superscript)
bottom Bottom (Subscript)
Cd Conduction
Ch Chamber (Superscript)
chamb Chamber (Subscript)
Coll Collapse
Co Condenser (Superscript)
cond Condenser (Subscript)
Contact By contact
Des Desorption
Dry Dry product layer
Equ Equilibrium
F Sublimation front (Superscript)
front Sublimation front (Subscript)
Fr Frozen product layer
gas Dominant gas composition: either water vapour (H2O) or nitrogen (N2)
Glass Glass transition
Gordon Gordon-Taylor formula gor glass transition temperature
Ice Ice
Ini Initial
Max Maximum
Min Minimum
n Neutral gas (nitrogen)
opt Optimum
Rad By radiation
S Shelf temperature (Superscript)
shelf Shelf temperature (Subscript)
Sat Saturation
Sorp Sorption isotherm
t Total
To Product top (Superscript)
top Product top (Subscript)
Trans Transition
V ial Product vial
Walls Conduction trough vial walls
w Water vapor
water Water (Liquid)
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Table A.1. Formulation-specific model parameters

Glass Transition

TFr
Glass -28 [°C]

TDry
Glass 124 [°C]

qGordon 8.5

Sorption and desorption

CMin 0.0167 [kg/kg]

CMax 0.144 [kg/kg]

qSorp1 0.459

qSorp2 0.188

τDes 10600 [s]

Mass Transfer

kFTo 12e−9 [kg/(smPa)]
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Table A.2. Formulation-independent model parameters

Vials and filling

NV ial 213

RV ial 7.12e−3 [m]

MDry 0.05e−3 [kg]

M Ice
Ini 0.95e−3 [kg]

Zt 6.82e−3 [m]

ZTrans 1.70e−3 [m]

Ice properties

T Ice
Glass -135 [°C]

DIce 920 [kg/m3]

LSubl 2.83e6 [J/kg]

hBF 2.4 [W/(mK)]

Mass Transfer

kFTo 1.2e−8 [kg/(smPa)]

kToCh 8e−6 [kg/(sm2Pa)]

kChCo 5e−7 [kg/(sPa)]

Heat transfer between shelf and product bottom

qSB
H2O 1

qSB
N2

0.625

hSB
Co 0.6 [W/(m2KPa)]

PSB
Trans 100 [Pa]

Heat transfer between sublimation front and product top

hFTo
Walls+Rad 50e−3 [W/(mK)]

qFTo
H2O 1

qFTo
N2

0.813

hFTo
Co 327e−6 [W/(mKPa)]

PFTo
Trans 100 [Pa]

Heat transfer between product top and chamber

hToCh 5 [W/(m2K)]24



Bottom

Front

Top

Figure 1: Simplified scheme of a freeze-drier. The controlled variables considered in
this work are chamber temperature and pressure (Tchamb and Ptchamb

) , shelf temperature
(Tshelf ) and condenser temperature (Tcond).

Figure 2: Schematic view of the control vector parametrization applied to a given nonlin-
ear function using zero (steps) and first order (ramps) polynomials.
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Figure 3: Histogram of solutions attained for the freeze-drying cycle time by the multistart
procedure with FMINCON for the one control variable scenario (Tshelf )
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Figure 4: Convergence curves obtained with the different solvers considered by solving
the dynamic optimization of a freeze-drying cycle. One control variable (Tshelf ) and
ρ = 20.
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Figure 5: Convergence curves for the best run obtained with each solver by solving the
dynamic optimization of a freeze-drying cycle. One control variable (Tshelf ) and ρ = 20.
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Figure 7: Optimum Tshelf profile obtained by Trelea et al. [1]
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Figure 8: Variation of the average cycle duration JAve for different control discretization
levels (ρ)
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Figure 9: Convergence curves obtained with the different solvers considered by solving
the dynamic optimization of a freeze-drying cycle. Two control variables: Tshelf and
Ptchamber

; ρ = 20.

30



10
1

10
2

10
3

10
4

10
5

22

24

26

28

30

32

34

36

38

Log CPU
time

J b
e

st
 (

h
)

Convergence Curves for Best Runs − Two Control Variables: T
´shelf

 , Pt
chamb

 ; ρ = 20

DE

CMAES

SSm

Figure 10: Convergence curves for the best run obtained with each solver for the dynamic
optimization of a freeze-drying cycle. Two control variables: Tshelf and Ptchamber

; ρ = 20.
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Figure 11: Optimum profiles obtained for the dynamic optimization of a freeze-drying
cycle. Two control variables: Tshelf and Ptchamber

; ρ = 20.

31



10
1

10
2

10
3

10
4

10
5

22

24

26

28

30

32

34

36

38

Log CPU
time

J
b

e
s
t (

h
)

Convergence Curves obtained with SSm (2 Control Var. − Step in P
t
) 

ρ = 10

ρ = 20

Figure 12: Convergence curves obtained with SSm for the dynamic optimization of a
freeze-drying cycle. Two control variables: Ramps in Tshelf and Steps in Ptchamber
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Figure 13: Optimum control profiles obtained with SSm for the dynamic optimization
of a freeze-drying cycle. Two control variables case with ramps in Tshelf and steps in
Ptchamber

and ρ = 20.
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Figure 14: Optimum control profiles obtained with SSm for the dynamic optimization
of a freeze-drying cycle. Two control variables case with ramps in Tshelf and steps in
Ptchamber

and ρ = 10.
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Figure 15: Optimum profiles obtained with SSm for the dynamic optimization of a freeze-
drying cycle. Four control variables: Tshelf and Ptchamber

Profiles, Tcond and Tchamb ;
(ρ = 20). The optimum values obtained for Tcond and Tchamb are Tcondopt = -87.219
°Cand Tchambopt = 26.347 °C
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Figure 16: Optimum profiles obtained for the dynamic optimization of a freeze-drying
cycle when different number of control variables are considered (ρ = 20).

Figure 17: General structure of the real time optimization framework
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ρ = 10
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Figure 19: Re-computed profiles obtained by using SSm to solve the operation scenario
of a freeze-drying cycle with a step disturbance of +10% on Tcond. ρ = 10
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Figure 20: Re-computed profiles obtained by using SSm to solve the operation scenarios
of a freeze-drying cycle under different step disturbances. ρ = 10
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Table 1: Results of solving optimal control problem (2) representing the opera-
tional scenario with one control variable: Tshelf Profile

NLP Solver

Discret. Level CMAES DE SSm

Best 25.073 25.057 25.051
ρ = 20 Mean (σ) 25.180(±0.112) 25.076(±0.008) 25.067(±0.011)

Worst 25.411 25.083 25.083

Table 2: Results of solving optimal control problem (2) representing the operational scenario with
two control variables: Tshelf and Ptchamber

Profiles

NLP Solver

Discret. Level CMAES DE SSm SSm-Steps in Ptc

Best 24.317 24.400 24.297 24.603
ρ = 10 Mean (σ) 24.662(±0.244) 24.462(±0.038) 24.362(±0.094) 24.671(±0.024)

Worst 25.068 24.522 24.568 24.684
Best 23.771 23.599 23.391 23.525

ρ = 20 Mean (σ) 24.045(±0.223) 24.104(±0.465) 23.506(±0.060) 23.569(±0.094)
Worst 24.312 24.896 23.596 23.834

Table 3: Results for the re-computing of control profiles for the considered freeze-drying process under
a step on Tcond (+10%)

NLP Solver

Discret. Level CMAES DE SSm SSm+MISQP SSm+IPOPT SSm+FMINCON

Best 24.761 25.267 24.665 24.862 25.098 25.096
ρ = 10 Mean (σ) 25.014(±0.268) 25.337(±0.105) 24.672(±0.006) 24.872(±0.007) 25.100(±0.002) 25.100(±0.004)

Worst 25.294 25.458 24.680 24.894 25.102 25.106
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