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Why may reduced order models based on global modes not
work for closed loop control ?
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Resune :

Pour un nombre de Reynolds suffisamnédaté, I'écoulement au dessus d’une cawst instable. Pour supprimer ces
perturbations, un conéile en boucle fer@e avec un mae réduit ba€ sur les modes globaux est corési En connais-
sant I'eétat du sysgtme compled chaque instant, les perturbations sontattees. En revanche, lorsqu’un estimateur est
incorporé dans la boucle de coritle, celle-ci devient instable. Il est moatgque ce comportement est@wne mauvaise
reproduction de la loi en&e-sortie du sous-espace stable par notre @®deduit. Un criere est alors dfini pour classer
les modes globaux stables selon leur importance dans lankoge-sortie. Les modes retenus €sentétre des modes
tres atenwes, dont le calcul nuérique est rendu impossible par la non-normilite I'oerateur de Navier-Stokes. Nous
en concluons que les mélés eduits baés sur les modes globaux sont inadegpau contble en boucle ferie.

Abstract :

In this article, we use a reduced model based on global mazstabilize a globally unstable cavity flow. We show that
although the full-state control is successful, the parsitte controller cannot stabilize the perturbations. Weaduce

the notion of full-state measurement control to analyze thilure and show that it is due to a lack of information of
the reduced model about the stable subspace. In particlarinput-output behavior is identified as the key parameter
to be captured by the reduced model. A criterion is then @erivn order to select the stable global modes which are
likely to contribute to the input-output behavior. Thesiical modes are found to be impossible to compute because of
the non-normality of the Navier-Stokes operator, whictdteas to the conclusion that global modes are not suitable for
control based reduced models.

Mots clefs : Optimal control, Model reduction, Global modes

1 Introduction

Because of their high industrial interest, cavity flows hagerbextensively studied. For sufficiently high Rey-
nold numbers, a self-sustained perturbation developssargponsible for high noise emission (up to 160 db),
additional drag and structures damages. Although, the amsim and modelisation of this instability is well
known (Rossiter (1), Tam and Block (2)), its control is sthiallenging.

To control flow instabilities, a lot of attention was recerftigused on optimal control. Flow stabilization was
obtained for a channel flow by Bewley and Liu (3). This flow casefiesrithe Orr-Sommerfeld equation which
is one dimensional. As a result, the number of unknowns ofltberetized problem is rather smadt (300 in
their case) and the LQG control formalism can be used. Howéwehigh dimensional discretizations arising
from 2D or 3D configurations¥ 10° — 109 unknowns), LQG control is not computationally affordable an
reduced model of the flow is needed.

Because of their ability to model flow instabilities, globabdes are a good candidate for control based model
reduction (Akervik et al. (4), Ehrenstein and Gallaire (%))Barbagallo et al. (6), using the same configuration,
areduced model based on global modes was successfullyimapted using full-state information control (the
complete flow is known) . We will show here that this is not traegartial state control (where an estimate of
the flow is required).

2 Configuration and mathematical modelisation
2.1 Configuration

We consider the flow over an open square cavity (see figure I@@)flow is incompressible and the Reynolds
number based on the cavity depth and the inflow velocity is 7305 flow is subject to a low frequency
unsteadiness which can be modeled by a global instabilipyceeh (see Sipp and Lebedev (7)). According to



19©MeCongrs Francais de Mcanique Marseille, 24-28 a@it 2009

the global stability theory, we study the linear growth oftpebations. The base flow, solution of the steady
Navier-Stokes equations, is computed using a Newton methddkown on figure 1(b). For this Reynolds
number, the base flow is globally unstable. A feedback costrategy is implemented to suppress the instabi-
lities, using a normal blowing and suction actuator locatethe leading edge of the cavity and a shear-stress
sensor at the trailing edge.

(a) (b)
actuator sensor
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FIGURE 1 — (a) Squetch of the cavity. (b) Base flow.
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The linearized Navier-Stokes equations are discretized fiviilte elements using P2 (resp. P1) elements for

the velocity components = (u, v)T (resp. the pressure compon@htThis results in approximately 900 000
degrees of freedom. The discretized problem can be written as

dX
QE = AX+Ce )
m = MX 2)
whereX = (u, p)T, A is the linearized Navier-Stokes operat0iis the control matrixM is the measurement

matrix andQ stands for the weight matrix arising from the finite elemernssrmtization. The use of a Single
Input Single Output (SISO) framework imply th@t(resp.M) is of dimension(8 x 1) (resp.(1 x 8)), cis a

scalar control law aneh a scalar measure. Note that QY represent the energy based scalar product between
Xandy.

2.2 Global mode analysis
We consider global modes of the following form :

X(z,y,t) = X(z, y)eM with A =0 +iw 3
which are solution of the eigenvalue problef@X = AX. This equation is solved with a shift-invert Arnoldi
algorithm, important care was taken to assess the validithe modes. The least-stable part of the global

spectrum is displayed on figure 2(a), four unstable mode# (pagsitive growth rater > 0) are visible in red.
The most unstable global mode is displayed on figure 2(b).

(@) (b)
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FIGURE 2 — (a) Least-stable part of the global spectrum. Unstable modes are shoathand stable modes
are shown in black. (b) Most unstable global mode (longitudinal velocity).

2.3 Model reduction and LQG control

Because of the high number of dof in our problem, the direptieation of the LQG control to the full system
is computationnaly not feasible and the size of the systesdsi1&0 be reduced. This is achieved by a Petrov-
Galerkin projection onto the global modes, retaining a ceduset of them. For this projection, we use the

adjoint global modes which are solution of the adjoint eigéme problem :AQX = A*X. Note that we
will consider reduced models based only on the four unstatddes. The reduced system can be cast in
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the following form :

dX S
- = M+l (4)
m = MX (5)

whereX is the reduced variable of dimensi¢# x 1), A is a diagonal8 x 8) matrix, C is (8 x 1) andM is
(1 x 8); 8is the size of the reduced model.

We consider a Linear Quadratic Gaussian (LQG) control styatdtere the controller and the estimator are
designed separately according to the separation prindipkecontroller is computed assuming that the variable

X is know for all time. It links the control law and the reduced field according to a linear relatioa KX.
When the entire state is not known and only a measure of tkeistavailable (so-called partial state control),

the estimator yields an approximati¥of the reduced fiel. In this case, the control law is computed using

¢ = KY (see details in Bewley and Liu (3)). We remind the reader thatbntroller and estimator are based
on the reduced model (eq. (4)) and not on the full system.

3 Why is the stable subspace important ?
3.1 Full-state control

In a full-state control framework, we assume that we knowrdithiced state for all time. As shown on figure

3(a), we extract from the entire staethe components on the reduced moXeThis is directly cast into the
controller to obtain the control law. W is the (n x 8) matrix which columns contains the unstable adjoint
global modes.

@ Ze=0. Plant| X M (b) ZRi=0.f Plant}X - M
Y [
¢ A WQ A M Lm o L wa X m L m
K |« % K | %
Estim. Estim. |
f 4

FIGURE 3 — Block diagrams demonstrating (a) full-state information control and (b) pata#d-information
control. Only the shaded blocks and the red lines are active in each didgsém. stands for Estimator.

On figure 4(a) is shown the evolution of the perturbation kinenhergy (in black) when the control loop
is introduced in a linearized Direct Numerical SimulatiorN®). The initial condition is the most unstable
mode. Compared to the uncontrolled case (in red) the enargedses after t=1, showing the success of the
controller. More details about this result can be found i (6

3.2 Partial-state control

In this case (see figure 3(b)), the entire skaie not known and only a measureis available. This measure is

cast into the estimator which will give an approximated fié|dised to compute the control law. This is again
implemented in a linearized DNS and the perturbation ensrgysplayed on figure 4(a) in blue. Aftéer~ 2

the energy starts to decrease and then blows up. This shotthihanodel is not able to stabilize the flow.
However, since the full-state control worked properly wadade that the matter comes from the introduction
of the estimator. To analyze the failure of the compensatebl@m with partial state control, we introduce the
notion of full-state measurement control .

3.3 Full-state measurement control

We first recall that, since the estimator is based on the redouedel, the full measure is not the appro-
priate quantity to introduce in the estimator, the propeardity being the measure arising from the modes
composing the reduced model (so-calteduced measurgé: in eq. (5)). This statement is verified using the
full-measurement control strategy where the reduced nneasus considered as the input of the estimator
instead of the full measure (see figure 5). The results in the linearized DNS are shown iergoa figure

3
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FIGURE 4 — (a) Perturbation kinetic enerdy as a function of time. (red) uncontrolled case, (blue) partial-
state information control, (green) full-state measurement control, and jlfldektate information control. (b)
Measurement as a function of time. Total measuréred line) for the uncontrolled case, total measure
(green line) and reduced meastutgblack dashed line) using full-state measurement control.

4(a). Fromt ~ 2 the energy decreases, which demonstrates that when thepaipje measure is given to the
estimator, the controller is able to stabilize the flow. In fegd(b), the measure of the entire state, so-called
total measure (in green) is compared to the reduced meddak dashed line). While the total measure is
superposed to the uncontrolled case (in red) until1.7, the reduced measure is affected by the control from
the beginning. Thus, there is a measure coming from the stattkes to compensate the loss on the reduced
measure and reconstitute the full measure. This quantitysieebe captured by the reduced model. Note that,
since the initial condition is the most unstable global madeich is dynamically independent of the stable
subspace, the stable modes are all triggered by the actuatio

éEQ—» Plant X » M
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FIGURE 5 — Block diagram demonstrating the full-measurement information control. Onlyhtwed blocks
and the red lines are active. Estim. stands for Estimator.

We are now able to describe the sequence of events leadihg testability of the partial-state simulation : the
actuator acts on the complete flow and thus triggers not oelytistable modes but also stable modes. These
stable modes (not taken into account in the estimator) poithe measurement signal leading to a wrong
estimation which in turns contaminates the control acfidns is corroborated by Ehrenstein and Gallaire (5)
where the action of the actuator is restricted to the modegpdsing the reduced model. Doing so, structures
out of the model are not excited and the control is successfam now on, we can state that modeling the
stable subspace is of pivotal importance, in particulacapture the structures triggered by the control and
measured by the sensor, i.e. the input-output behavior.
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4 A criterion to select stable global modes

Since the input-output behavior of the stable subspace Haes ¢aptured, the simplest idea is to include in the
reduced model as many global modes as necessary. This adhatiobeen tested, including a few thousands
stable modes ranked by decreasing growth rate but did netajiy satisfying results. On top of that, the
computation of an arbitrary number of stable modes is nosiptesdue to the non-normality of the Navier-
Stokes operator. Another idea is to only include the globall@sowhich are important for the input-output
behavior of the stable subspace. In the following, we intcada criterion to select such modes.

For simplicity and without loss of generality, we considgraaticular control law in the form

c(t) = cos(wt) (6)

wherew is a given (real) frequency. We then determine the forceparese of the dynamical system expressed
in terms of the measurement and omitting the initial tramsiesponse. We obtain

1~ - 1.~ .
m = §M (iwl — A)~* Cexpliwt) + §I\/| (—iwl — A)~! Cexp(—iwt)
from which we may extract the contribution of thh global mode as
M;C; 1 MG

! (iwt) +
J— e ——
2iw —N\; *plaw 2 —iw — N

m; = exp(—iwt).

The forced response is the sum of waves of frequendylaximizing over all forcing frequencies, we can
see that the contribution of theth eigenmode is proportional to the quantity

alle,
[Re(Ad)]

I; = (7)
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FIGURE 6 — Global spectrum of flow over an open square cavitR@at= 7500 color-coded byl';, a measure
of each global mode’s contribution to the input-output relation.

This criterion takes into account three different physiaaiables to quantify if a stable global mode should
or should not be retained in the reduced-order model bagiseoéstimator : (a) the measurement coefficient

M;, which is closely related to the observability of the respeaglobal mode, (b) the control coefficie@f, a
measure of controllability of the associated global mode, @) the decay ratgt(A;)| of the global mode. In
short, the criterion based dn selects global modes that are observable, controllablevea#ly damped.

For our present case, we observe thatloes not decrease with the decay &té\;)| of the global modes. In
Figure 6, which shows the global spectrum in {hew)-plane, the coloring of the eigenvalues corresponds to

5
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T';. The eigenvalues that appear in warm (cold) colors displaly fiiyv) values off*; a logarithmic color map
has been used here aligis meaningful only for damped eigenmodes. We observe tedtitihest values df
appear for strongly damped eigenmodes ; moreover, the nuofile@genmodes with high values Bfappears

to increase as the damping increases since nearly all yalolwed colored eigenvalues appear on the left side
of the figure. Since there is no theoretical argument for anteaédecrease df as the damping rate increases,
we conclude that the damping rate is a poor and inappropmatesure for the judicious inclusion of global
modes into the reduced-order model or for the truncatioh@&ixpansion basis.

The disadvantageous behavior of the composite coeffifiaran be traced back to the controllability coeffi-

cient C; which increases with the damping rate. This property is aepmsnce of the non-normality of the
Navier-Stokes operator and is the limiting factor for the pamation of stable global modes. Since the relevant
global modes cannot be computed, we conclude that globa¢soahnot be successfully used as a projection
basis for closed-loop control. Note that non-normality leé lamped global mode basis is linked to physical
properties of the base flow and has also been identified by Lauy@ewley (8) as the reason for loss of
stabilizability in their study of the controlled linear Ginurg-Landau model.

5 Conclusions

In this work, the closed-loop control of a cavity flow using alueed model based on global modes was
investigated with partial-state information. It was fouthht the compensated problem was always unstable
whatever the number of selected global modes. This stemstfreriack of information of the reduced order
model about the stable subspace. More specifically, theael@uantity of the stable subspace to be captured
was identified as the input-output behavior. A criterion was\wd in order to select such stable global modes.
Unfortunately, these modes were found to be highly dampeédfars impossible to compute due to the non-
normality of the Navier-Stokes operator. We conclude thdticed order models based on global modes are
not suitable for closed-loop control.

We propose to use other basis for the reduction of the staibigpace, such as Balanced Proper Orthogonal
Decomposition modes (see Rowley (9)). This basis which ig g#icient in capturing the input-output beha-
vior of stable systems was able to suppress the instabifitiepartial state control in the present configuration
(see Barbagallo et al. (10)).
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