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Abstract

In this note, we bridge a gap between two descriptions of metastatic growth. The first is a deterministic model

introduced by Iwata et al. and includes secondary metastatic emission, the other is a stochastic description without

secondary metastatic emission. Here we propose a stochastic model with secondary metastatic emission, described

in terms of a cascade of Poisson point processes. We show that the Iwata model describes the mean behaviour of

our stochastic model. Furthermore, the variation due to the stochasticity of emission is evaluated for published

clinical parameters. To cite this article: N. Hartung, C. Gomez, C. R. Acad. Sci. Paris.

Résumé

Un cadre stochastique décrivant l’émission métastatique secondaire. Dans cette note, nous faisons le

lien entre deux déscriptions de croissance métastatique. Le premier est un modèle déterministe introduit par Iwata

et al. prenant en compte les émissions métastatiques secondaires, l’autre un modèle stochastique sans émission

secondaire. Ici nous proposons un cadre stochastique décrit par une cascade de processus ponctuels de Poisson

qui tient compte de l’émission secondaire. Nous montrons que le modèle Iwata décrit le comportement moyen de

notre modèle stochastique. De plus, les fluctuations produites par les émissions aléatoires sont évaluées pour un

jeu de paramètres cliniques publié. Pour citer cet article : N. Hartung, C. Gomez, C. R. Acad. Sci. Paris.

1. Introduction

Metastasis is the extension from a localised cancer to a systemic disease, caused by cancerous cells able
to detach from a tumour and to colonise distant tissues. This capacity is acquired through a number
of advantageous genetic modifications [5]. Both the selection of a metastatic phenotype and the passage
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from the primary to a secondary site involve randomness and are thus amenable for stochastic modelling.
In this note, we will concentrate on the emission rate.
Several authors have proposed to describe metastatic emission by means of a nonhomogeneous Poisson

process (e.g. [2,6]), assuming that metastases are emitted independently of one another. Further, they
assumed that the emission intensity depended on the tumour size, which has been shown to be linked
to the probability of metastatic disease [11]. In these models, metastatic emission by the metastases
themselves was neglected. Model predictions have been confronted to data on one patient with multiple
bone metastases.
A deterministic model introduced by Iwata et al. [9] features a similar dependence of metastatic emission

on primary tumour size. In this approach, the size distribution of metastases is modelled by a structured
population equation and secondary metastatic emission is taken into account. While model behaviour
on short timescales is similar with and without secondary metastatic emission, a considerable divergence
has been shown for long-time behaviour [4]. The model accurately reproduced the number and size of
metastases in a patient with metastatic liver cancer [9], was fitted to data on the probability of metastatic
disease [1] and to kinetic data on the metastatic burden in preclinical experiments [8].
In this note, we bridge the gap between these two approaches by extending the stochastic model to

account for secondary emission. Assuming independence of all emission processes, we characterise the
expected value and variance of this process using Volterra integral equations. These computations yield
the Iwata model as the mean-field equation of the stochastic model with secondary emission. Furthermore,
the fluctuations around this model due to random emissions are computed in a clinical scenario.

2. Metastatic models

2.1. Iwata model

The evolution of the size-structured metastatic density ρ is described by

X ′(t) = g(X(t)), X(0) = 1,

∂tρ(x, t) + ∂x[g(x)ρ(x, t)] = 0, (x, t) ∈ (1, b)× (0,+∞),

g(1)ρ(1, t) = β(X(t)) +

∫ b

1

β(x)ρ(x, t)dx, t ∈ (0,∞),

ρ(x, 0) = 0, x ∈ [1, b],

where
– X(t) is the primary tumour size (in number of cells) at time t, b = lim

t→+∞
X(t) ∈ (1,∞],

– Metastatic growth is described by “transport in size” at a rate g > 0
– Metastatic emission is modelled by a non-linear boundary condition: both primary tumour and
metastases emit metastases at a rate β depending on their size. Newborn metastases are monocellular.

For small ∆x, the expression ρ(x, t)∆x may be interpreted as the number of metastases with size between
x and x+∆x. It will be useful to introduce the family of model observables

Ff (t) =

∫ b

1

f(x)ρ(x, t)dx,

which includes the number of metastases (f ≡ 1) and the total metastatic biomass (f(x) = x). The
following is an equivalent characterisation of the Iwata model in terms of model observables.
Theorem 2.1 (see [7]) The model observables solve the following renewal equations:
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Ff (t) =

∫ t

0

β(X(s))f(X(t− s))ds+

∫ t

0

β(X(s))Ff (t− s)ds.

2.2. Stochastic model without secondary emission

Reducing the model studied by Hanin and colleagues [2,6] to growth and emission, the number of
metastases is described by a nonhomogeneous Poisson process with intensity λ(t) = β(X(t)). More
generally, the model observables can be defined via a Poisson point process (Tl)l≥1 with intensity λ (i.e.
the arrival times of the Poisson process; see next section for a definition):

F f,1
t :=

∑

n≥1

1(Tn≤t)f
(

X(t− Tn)
)

,

which, as before includes the number of metastases in the case f ≡ 1 and the total biomass with f(x) = x.
For this process, the expectation and the variance are given by

E(F f,1
t ) =

∫ t

0

f(X(t− s))λ(s)ds, var(F f,1
t ) =

∫ t

0

f(X(t− s))2λ(s)ds. (1)

3. Stochastic model with secondary metastatic emission

3.1. Formalisation

Now consider the following situation. In addition to metastatic emission by the primary tumour, each
emitted metastasis has the capacity to emit metastases at a rate depending on its size. Secondary emission
shall be described by independent nonhomogeneous Poisson processes, that is, a metastasis emitted at
time s sheds metastasis with a rate λ(t−s) for any t > s. In what follows, we describe the model in terms
of a cascade of Poisson point processes on R

+ [10].
Definition 3.1 (Poisson Point Process on R

+) Let Π be a random variable on a probability space (Ω,F ,P)
with values into the set of all countable subsets of R+. Let us also consider the family P = (P (A))A∈B(R+)

defined by
P (A) = Card(Π ∩A)

for all Borel set A ∈ B(R+) of R+. We say that Π is a Poisson point process (PPP) with intensity µ if

(i) for all A ∈ B(R+), the random variable P (A) has a Poisson distribution with parameter µ(A),

(ii) for all n ≥ 2 and disjoint subsets A1, . . . , An ∈ B(R+), the random variables P (A1), . . . , P (An) are
independent.

Moreover, P is called the Poisson random measure associated to Π.
Using the basic properties of Poisson random variables and integration with respect to a positive measure
we have the following result [3, Chap. 6 p. 251].
Proposition 3.2 Let Π be a PPP and P the corresponding random measure. We have for (g, h) ∈
L1(R+, µ) ∩ L2(R+, µ)

E[P (g)] = µ(g), and E[P (g)P (h)] = µ(g)µ(h) + µ(gh).

Let us remark that the model described in Section 2.2 can be simply expressed as

F f
t =

∫ t

0

f(X(t− s))P (1)(ds),
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where P (1) is the Poisson random measure associated to a PPP denoted by Π(1) with intensity µ = λ(s)ds.

As a result, (1) can be derived directly from Proposition 3.2. The PPP Π(1) = (T
(1)
n1 )n1≥1 describes the

times for which a metastasis is emitted by the primary tumour. Now, to consider the secondary emission
we have to take care of the level in the generational hierarchy (the primary tumour, the metastases
emitted from the primary tumour, the metastases emitted from the metastases emitted from the primary
tumour, etc.). To this end, let us introduce the cascade of independent PPP on R

+ defined by
(

Π(k)
n1...nk−1

= (T (k)
n1...nk−1nk

)nk≥1, k ≥ 1, and n1, . . . , nk ≥ 1
)

,

where the subscript n1 . . . nk−1nk describes the filiation of the metastasis of the k-th generation. Therefore,

Π
(k)
n1...nk−1 gives the time it takes for the offspring with filiation n1 . . . nk−1 to give birth to its nk-th

offspring (see Figure 1).
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Figure 1. Illustration of the first two generations in the Poisson point process (PPP) cascade. Each emission event starts
a new PPP. Emission times are counted from the start of the respective PPP (and not from zero). / Illustration des
deux premières génération de la cascade de processus ponctuels de Poisson (PPP). Chaque évènement d’émission initie un
nouveau PPP. Les temps d’émission sont comptés à partir du début du PPP corréspondant (et non de zero).

Consequently, the observables for the k-th generation can be expressed by

F f,k
t =

∑

n1,...,nk≥1

1(∑k

l=1
T

(l)
n1...,nl

≤t

)f
(

X
(

t−
k

∑

l=1

T (l)
n1...,nl

)

)

, (2)

and we have the following definition.
Definition 3.3 (Biological observables with secondary emission) The observables with secondary emis-
sion are given by

F f
t =

+∞
∑

k=1

F f,k
t .

Following the proof of Theorem 3.4 and an iteration procedure, one can show that the observables are
well defined since we have

E

[

|F f
t |
]

≤ ‖f(X)‖L1(0,t)‖λ‖L∞(0,t)e
t‖λ‖L∞(0,t) . (3)

A consequence of (2) is that all the observables can be expressed as

F f
t =

∑

n1≥1

1
(T

(1)
n1

≤t)

[

f(X(t− T (1)
n1

)) +Gf,n1

t−T
(1)
n1

]

with law(F f
t ) = law(Gf,n1

t ) ∀n1 ≥ 1, (4)

where (Gf,n1

t )n1≥1 are independent, but also independent of Π(1). The Gf,n1

t are the contributions com-
ing from the n1-th offspring of the primary tumour. This expression is very useful to characterise the
expectation as well as the variance of the observables.
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3.2. Expectation and variance

Theorem 3.4 (Expectation of observables) The expected value ef (t) = E(F f
t ) of the observables

defined in (3.3) satisfies

ef (t) =

∫ t

0

λ(s)f(X(t− s))ds+

∫ t

0

λ(s)ef (t− s)ds. (5)

Proof. Taking the expectation of (4) and using Proposition 3.2, we have

ef (t) = E

[

∫ t

0

f(X(t− s))P (1)(ds)
]

+ E

[

∑

n1≥1

1
(T

(1)
n1

≤t)
E
[

Gf,n1

t−T
(1)
n1

∣

∣Π(1)
]

]

=

∫ t

0

λ(s)f(X(t− s))ds+ E

[

∫ t

0

ef (t− s)P (1)(ds)
]

,

with gives the desired result. ✷

The observables may also be seen as integrals w.r.t the random measure

Mt :=
∑

k≥1

∑

n1,...,nk≥1

δ
X

(

t−
∑

k

l=1
T

(l)
n1...,nl

).

This description permits us to bridge the gap to the Iwata model.

Corollary 3.5 (Link to the Iwata model) The measure µt = E

[

Mt

]

is σ-finite, absolutely continu-

ous and its Radon-Nikodýn density is given by ρ(·, t), where ρ is the solution of the Iwata model.
Proof. (3) implies σ-finiteness and absolute continuity of µt. Integrating an arbitrary f ∈ C0[1, b] w.r.t
µt, the Radon-Nikodýn density is obtained via Theorems 3.4 and 2.1. ✷

Theorem 3.6 (Variance of observables) The variance of the observables vf (t) = var(F f
t ) satisfies

vf (t) =

∫ t

0

λ(s)
(

f(X(t− s)) + ef (t− s)
)2
ds+

∫ t

0

λ(s)vf (t− s)ds,

where ef is the solution of (5).
Proof. Using (4) and Proposition 3.2, we have

E[
(

F f
t

)2
] = E

[

∑

n1≥1

1
(T

(1)
n1

≤t)
E
[(

f(X(t− T (1)
n1

)) +Gf,n1

t−T
(1)
n1

)2∣
∣Π(1)

]

]

+ E

[

∑

m1 6=n1

1
(T

(1)
m1

≤t)
1
(T

(1)
n1

≤t)
E
[

f(X(t− T (1)
n1

)) +Gf,n1

t−T
(1)
n1

∣

∣Π(1)
]

E
[

f(X(t− T (1)
m1

)) +Gf,m1

t−T
(1)
m1

∣

∣Π(1)
]

]

=E

[

∫ t

0

(

f(X(t− s)) + ef (t− s)
)2
P (1)(ds)

]

+ E

[

∫ t

0

E

[

(F f
u )

2
]

|u=t−s
−

(

ef (t− s)
)2
P (1)(ds)

]

−E

[

∫ t

0

(

f(X(t− s))ds+ ef (t− s)
)2
P (1)(ds)

]

+ E

[(

∫ t

0

f(X(t− s)) + ef (t− s)P (1)(ds)
)2]

,

with gives the desired result. ✷

4. Numerical illustration

With the link established here, we can evaluate the impact of a stochastic emission w.r.t deviations
from the Iwata model. We take up the clinical case study conducted by Iwata et al. with the number
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of metastases of size greater than c as the observable (f(x) = 1x>c) and the parametrisation obtained
from fitting the data with the Iwata model, i.e. g(x) = ax log(b/x) and β(x) = mxα with a = 0.00286
1/day, b = 7.3 ·1010 cells, m = 5.3 ·10−8 1/(day · cellsα) and α = 0.663. We stress that no information on
variability has been used for determining these parameters. The standard deviation of our stochastic model
parametrised as above is taken as a measure of variation around the Iwata dynamics. The deviations of the
data from mean-field behaviour are within the range of fluctuation explainable with stochastic emission
(see Figure 2).
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Figure 2. Comparison of the variability of our stochastic model with the residuals of the clinical data when fitting the Iwata
model. / Comparaison de la variabilité de notre modèle stochastique avec les résidus des données cliniques obtenus avec le
fit du modèle d’Iwata.

References

[1] D. Barbolosi, F. Verga, B. You, A. Benabdallah, F. Hubert, C. Mercier, J. Ciccolini, C. Faivre, Modélisation du risque
d’évolution métastatique chez les patients supposés avoir une maladie localisée, Oncologie 13:8 (2011), 528–533.
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