Spatio-temporal Analysis of Dynamic Origin-Destination Data Using Latent Dirichlet Allocation: Application to Vélib' Bike Sharing System of Paris - Archive ouverte HAL
Communication Dans Un Congrès Année : 2014

Spatio-temporal Analysis of Dynamic Origin-Destination Data Using Latent Dirichlet Allocation: Application to Vélib' Bike Sharing System of Paris

Résumé

This paper deals with a data mining approach applied on Bike Sharing System Origin-Destination data, but part of the proposed methodology can be used to analyze other modes of transport that similarly generate Dynamic Origin-Destination (OD) matrices. The transportation network investigated in this paper is the Vélib’ Bike Sharing System (BSS) system deployed in Paris since 2007. An approach based on Latent Dirichlet Allocation (LDA), that extracts the main features of the spatio-temporal behavior of the BSS is introduced in this paper. Such approach aims to summarize the behavior of the system by extracting few OD-templates, interpreted as typical and temporally localized demand profiles. The spatial analysis of the obtained templates can be used to give insights into the system behavior and the underlying urban phenomena linked to city dynamics.

Mots clés

Fichier principal
Vignette du fichier
doc00018518.pdf (4.58 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-01052951 , version 1 (29-07-2014)

Identifiants

  • HAL Id : hal-01052951 , version 1

Citer

Etienne Come, Njato Andry Randriamanamihaga, Latifa Oukhellou, Patrice Aknin. Spatio-temporal Analysis of Dynamic Origin-Destination Data Using Latent Dirichlet Allocation: Application to Vélib' Bike Sharing System of Paris. TRB 93rd Annual meeting, Jan 2014, France. 19p. ⟨hal-01052951⟩
991 Consultations
624 Téléchargements

Partager

More