
HAL Id: hal-01052934
https://hal.science/hal-01052934

Submitted on 29 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Supporting End-to-end Scalability and Real-time Event
Dissemination in the OMG Data Distribution Service

over Wide Area Networks
Akram Hakiri, Pascal Berthou, Andrew Gokhalec, D.C. Schmidtc, Thierry

Gayraud

To cite this version:
Akram Hakiri, Pascal Berthou, Andrew Gokhalec, D.C. Schmidtc, Thierry Gayraud. Supporting End-
to-end Scalability and Real-time Event Dissemination in the OMG Data Distribution Service over
Wide Area Networks. Journal of Systems and Software, 2013, 86 (10), pp.2574-2593. �hal-01052934�

https://hal.science/hal-01052934
https://hal.archives-ouvertes.fr


Supporting End-to-end Scalability and Real-time Event Dissemination in the

OMG Data Distribution Service over Wide Area Networks

Akram Hakiria,b, Pascal Berthoua,b, Aniruddha Gokhalec, Douglas C. Schmidtc, Gayraud Thierrya,b

aCNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France
bUniv de Toulouse, UPS, LAAS, F-31400 Toulouse, France

cInstitute for Software Integrated Systems, Dept of EECS

Vanderbilt University, Nashville, TN 37212, USA

Abstract

Assuring end-to-end quality-of-service (QoS) in distributed real-time and embedded (DRE) systems is hard due to

the heterogeneity and scale of communication networks, transient behavior, and the lack of mechanisms that holisti-

cally schedule different resources end-to-end. This paper makes two contributions to research focusing on overcoming

these problems in the context of wide area network (WAN)-based DRE applications that use the OMG Data Distri-

bution Service (DDS) QoS-enabled publish/subscribe middleware. First, it provides an analytical approach to bound

the delays incurred along the critical path in a typical DDS-based publish/subscribe stream, which helps ensure pre-

dictable end-to-end delays. Second, it presents the design and evaluation of a policy-driven framework called Velox.

Velox combines multi-layer, standards-based technologies—including the OMG DDS and IP DiffServ—to support

end-to-end QoS in heterogeneous networks and shield applications from the details of network QoS mechanisms by

specifying per-flow QoS requirements. The results of empirical tests conducted using Velox show how combining

DDS with DiffServ enhances the schedulability and predictability of DRE applications, improves data delivery over

heterogeneous IP networks, and provides network-level differentiated performance.

Keywords: DDS services, Schedulability, QoS Framework, DiffServ.

1. Introduction

Current trends and challenges. Distributed real-time

and embedded (DRE) systems, such as video surveillance,

on-demand video transmission, homeland security, on-

line stock trading, and weather monitoring, are becom-

ing more dynamic, larger in topology scope and data vol-

ume, and more sensitive to end-to-end latencies [1]. Key

challenges faced when fielding these systems stem from

Email addresses: hakiri@laas.fr (Akram Hakiri),

berthou@laas.fr (Pascal Berthou), a.gokhale@vanderbilt.edu

(Aniruddha Gokhale), d.schmidt@vanderbilt.edu (Douglas C.

Schmidt), gayraud@laas.fr (Gayraud Thierry)

how to distribute a high volume of messages per sec-

ond while dealing with requirements for scalability and

low/predictable latency, controlling trade-offs between la-

tency and throughput, and maintaining stability during

bandwidth fluctuations. Moreover, assuring end-to-end

quality-of-service (QoS) is hard because end-system QoS

mechanisms must work across different access points,

inter-domain links, and within network domains.

Over the past decade, standards-based middleware has

emerged that can address many of the DRE system chal-

lenges described above. In particular, the OMG’s Data

Distribution Service (DDS) [2] provides real-time, data-

centric publish/subscribe (pub/sub) middleware capabil-

ities that are used in many DRE systems. DDS’s rich

Preprint submitted to Elsevier February 6, 2013



QoS management framework enables DRE applications

to combine different policies to enforce desired end-to-

end QoS properties.

For example, DDS defines a set of network schedul-

ing policies (e.g., end-to-end network latency budgets),

timeliness policies (e.g., time-based filters to control data

delivery rate), temporal policies to determine the rate at

which periodic data is refreshed (e.g., deadline between

data samples), network priority policies (e.g., transport

priority is a hint to the infrastructure used to set the pri-

ority of the underlying transport used to send data in the

DSCP field for DiffServ), and other policies that affect

how data is treated once in transit with respect to its relia-

bility, urgency, importance, and durability.

Although DDS has been used to develop many scal-

able, efficient and predictable DRE applications, the DDS

standard has several limitations, including:

• Lack of policies for processor scheduling. DDS

does not define policies for processor-level packet

scheduling i.e., it provides no standard means to des-

ignate policies to schedule IP packets. It therefore

lacks support for analyzing end-to-end latencies in

DRE systems. This limitation makes it hard to assure

real-time and predictable performance of DRE sys-

tems developed using standard-compliant DDS im-

plementations.

• End-to-end QoS support. Although DDS poli-

cies manage QoS between publisher and subscribers,

its control mechanisms are available only at end-

systems. Overall response time and pubsub laten-

cies, however, are also strongly influenced by net-

work behavior, as well as end-system resources. As

a result, DDS provides no standard QoS enforce-

ment when a DRE system spans multiple different

interconnected networks, e.g., in wide-area networks

(WANs).

Solution approach→ End-system performance model-

ing and policy-based management framework to ensure

end-to-end QoS. This paper describes how we enhanced

DDS to address the limitations outlined above by defin-

ing mechanisms that (1) coordinate scheduling of the host

and network resources to meet end-to-end DRE applica-

tion performance requirements [3] and (2) provision end-

to-end QoS over WANs composed of heterogeneous net-

works comprising networks with different transmission

technologies over different links managed by different ser-

vice providers that support different technologies (such as

wired and wireless network links). In particular, we focus

on the end-to-end timeliness and scalability dimensions

of QoS for this paper, while referring to these properties

simply and collectively as “QoS.”

To coordinate scheduling of host and network re-

sources, we developed a performance model that calcu-

lates each node’s local latency and communicates it to the

DDS data space. This latency is used to model each end-

system as a schedulable entity. This paper first defines a

pub/sub system model to verify the correctness and effec-

tiveness of our performance model and then validates this

model via empirical experiments. The parameters found

in the performance model are injected in the framework

to configure the latency budget DDS QoS policies.

To provision end-to-end QoS over WANs composed

of heterogeneous networks, we developed a QoS policy

framework called Velox to deliver end-to-end QoS for

DDS-based DRE systems across the Internet by support-

ing QoS across multiple heterogeneous network domains.

Velox propagates QoS-based agreements among hetero-

geneous networks involving the chain of inter-domain ser-

vice delivery. This paper demonstrates how those differ-

ent agreements can be used together to assure end-to-end

QoS service levels: : the QoS characterization is done

from the application, and notifies the upper layer about

its requirements, which adapt the middleware’s service to

them using the DDS QoS settings. Then, the middleware

negotiates the network QoS with Velox on behalf of the

application. Figure 1 shows the high-level architecture of

our solution.

We implemented the two mechanisms described above

into the Velox extension of DDS and then used Velox to

evaluate the following issues empirically:

• How DDS scheduling overhead contributes to pro-

cessing delays, which is described in Section 3.2.2.

• How DDS real-time mechanisms facilitate the devel-

opment of predictable DRE systems, which is de-

scribed in Section 3.2.4.

• How DDS QoS mechanisms impact bandwidth pro-

tection in WANs, which is described in Section 3.3.2.

2



Figure 1: End-to-end Architecture for Guaranteeing

Timeliness in OMG DDS

• How customized implementations of DDS can

achieve lower end-to-end delay, which is described

in Section 3.3.3.

The work presented in this paper differs from our prior

work on QoS-enabled middleware for DRE systems in

several ways. Our most recent work [4, 5] only focused on

bridging OMG DDS with the Session Initiation Protocol

(SIP) to assure end-to-end timeliness properties for DDS-

based application. In contrast, this paper uses the Velox

framework to manipulate network elements to use mecha-

nisms, such as DiffServ, to provide QoS properties. Other

earlier work [6] described how priority- and reservation-

based OS and network QoS management mechanisms

could be coupled with CORBA-based distributed object

computing middleware to better support dynamic DRE

applications with stringent end-to-end real-time require-

ments in controlled LAN environments. In contrast, this

paper focuses on DDS-based applications running WANs.

We focused this paper on DDS and WANs due to our

observation that many network service providers allow

clients to use MPLS over DiffServ to support their traf-

fic over the Internet, which also is also the preferred ap-

proach to support QoS over WANs. We expect our Velox

technique is general enough to support end-to-end QoS

for a range of communication infrastructure, including

CORBA and other service-oriented and pub/sub middle-

ware. We emphasize OMG DDS in this paper since prior

studies have showcased DDS in LAN environments, so

our goal was to extend this existing body of work to eval-

uate DDS QoS properties empirically in WAN environ-

ments.

Paper organization. The remainder of this paper is or-

ganized as follows: Section 2 conducts a scheduling anal-

ysis of the DDS specification and describes how the Velox

QoS framework manages both QoS reservation and the

end-to-end signaling path between remote participants;

Section 3 analyzes the results of experiments that evaluate

our scheduling analysis models and the QoS reservation

capabilities of Velox; Section 4 compares our research on

Velox with related work; and Section 5 presents conclud-

ing remarks and lessons learned.

2. The Velox Modeling and End-to-end QoS Manage-

ment Framework

This section describes the two primary contributions of

this paper:

• The performance model of DDS scheduling. This

contribution describes the end-system that hosts the

middleware itself and analyzes its capabilities and

drawbacks in terms of scheduling capabilities and

timeliness used by DDS on the end-system and

across the network.

• The Velox policy-based QoS framework. This

contribution performs the QoS negotiation and the

resource reservation to fulfill participants QoS re-

quirements across WANs.

This performance model is evaluated according the

queuing systems and the values provided this analytical

model are used to configure the QoS DDS Latency pol-

icy in XML file at end-system (shown later in Figure 20).

Those values are used by Velox to configure the session

initiation at setup phase. Together, these contributions

help analyze an overall DRE system from both the user

and network perspectives.

2.1. An Analytical Performance Model of the DDS End-

to-end Path

Below we present an analytical performance model that

can be used to analyze the scheduling activities used by

DDS on the end-system and across the network.

3



2.1.1. Context: DDS and its Real-time Communication

Model

To build predictable DDS-based DRE systems devel-

opers must leverage the capabilities defined by the DDS

specification. For completeness we briefly summarize the

OMG DDS standard to outline how it supports a scal-

able and QoS-enabled data-centric pub/sub programming

model. Of primary interest to us are the following QoS

policies and entities defined by DDS:

• Listeners and WaitSets receive data asynchronously

and synchronously, respectively. Listeners provide a

callback mechanism that runs asynchronously in the

context of internal DDS middleware thread(s) and al-

lows applications to wait for the arrival of data that

matches designated conditions. WaitSets provide

an alternative mechanism that allows applications

to wait synchronously for the arrival of such data.

DRE systems should be able to control the schedul-

ing policies and the assignments of the scheduling

policies, even for threads created internally by the

DDS middleware.

• The DDS deadline QoS policy establishes a con-

tract between data writers (which are DDS entities

that publish instances of DDS topics) and data read-

ers (which are DDS entities that subscribe to in-

stances of DDS topics) regarding the rate at which

periodic data is refreshed. When set by datawrit-

ers, the deadline policy states the maximum dead-

line by which the application expects to publish new

samples. When set by data readers, this QoS pol-

icy defines the deadline by which the application ex-

pects to receive new values for the Topic. To en-

sure a datawriter’s offered value complies with a

data reader’s requested value, the following inequal-

ity should hold:

o f f ered deadline ≤ requested deadline (1)

• The DDS latency budget QoS policy establishes

guidelines for acceptable end-to-end delays. This

policy defines the maximum delay (which may be

in addition to the transport delay) from the time the

data is written until the data is inserted in the reader’s

cache and the receiver is notified of data’s arrival. It

is therefore used as a local urgency indicator to op-

timize communication (if zero, the delay should be

minimized).

• The DDS time based filter QoS policy mediates ex-

changes between slow consumers and fast producers.

It specifies the minimum separation time for applica-

tion to indicate it does not necessary want to see all

data samples published for a topic, thereby reducing

bandwidth consumption.

• The DDS transport priority QoS policy specifies

different priorities for data sent by datawriters. It

is used to schedule the thread priority to use in the

middleware on a per-writer basis. It can also be

used to specify how data samples use DiffServ Code

Point (DSCP) markings for IP packets at the trans-

port layer.

We consider these QoS policies in our performance

model described in Section 2.1.3 since they meet the DDS

request/offered framework for matching publishers to sub-

scribers. These policies can also be used to control the

end-to-end path by simultaneously matching DDS data

readers, topics, and data writers.

2.1.2. Problem: Determining End-to-end DDS Perfor-

mance at Design-time

The OMG DDS standard is increasingly used to deploy

large-scale applications that require scalable and QoS-

enabled data-centric pub/sub capabilities. Despite the

large number of QoS policies and mechanisms provided

by DDS implementations, however, it is not feasible for

an application developer to determine at design-time the

expected end-to-end performance observed by the differ-

ent entities of the application. There are no mechanisms

in standard DDS to provide an accurate understanding of

the end-to-end delays and predictability of pub/sub data

flows, both of which are crucial to application operational

correctness.

These limitations stem from shortcomings in DDS to

control the following scheduling and buffering activities

in the end-to-end DDS path:

• Middleware-Application interface. DDS provides

no mechanisms to control and bound the overhead on

4



the activities at the interface of the DDS middleware

and the application. This interface is used primarily

by (1) data writers to publish data from the applica-

tion to the middleware and (2) data readers to read

the published data from the middleware into the ap-

plication space. Developers of DDS application have

no common tools to estimate the performance over-

head at this interface.

• Processor scheduling. When application-level data

is transiting through the DDS middleware layer, it

must be (de)serialized, processed for the QoS poli-

cies, and scheduled for dispatch over the network

(or read from the network interface card). Since

DDS does not dictate control over the scheduling of

the processor and I/O resources during this part of

the critical path traversal, it is essential to analyze

scheduling performance and effectiveness of a DDS-

based system, particularly where real-time commu-

nication is critical.

• Network scheduling. Although DDS provides

mechanisms to control communication-related QoS,

these mechanisms exist only at an end-system. Con-

sequently, there is no mechanism to bound the delay

incurred over the communication channels.

The consequence of these limitations is that developers

of DDS applications have no common analysis techniques

or tools at their disposal to estimate the expected perfor-

mance for their DDS-based applications at design-time.

2.1.3. Solution Approach: Developing an Analytical Per-

formance Model for DDS

One approach to resolving the problems outlined in

Section 2.1.2 would be to empirically measure the perfor-

mance of the deployed system. Depending on the deploy-

ment environments and QoS settings, however, different

performance results will be observed. Moreover, empiri-

cal evaluation requires fielding an application in represen-

tative deployment environment. To analyze DDS capabil-

ities to deliver topics in real-time, therefore, we present

a stochastic performance model for the end-to-end path

traced via a pub/sub data flow within DDS. This model

is simple but powerful to express the performance con-

strains without adding complexity to the system. In more

complicated models, one common solution is to look for

a canonical form to reduce the complexity and hold the

power of the expression of the model to permit powerful

analysis techniques for validating the quality of service.

The model presented in this paper is well suited for the

context of LAN as well as WAN context and does not re-

quire any additional complexity because it can express the

behavior of the system easily and allows powerful metrics

to evaluate the performance of the system.

Figure 2 shows the different data timeliness QoS poli-

cies described below, along with the time spent at different

scheduling entities in the critical path.

Model Assumptions. We assume knowledge of the fol-

lowing system parameters to assist the analysis of proces-

sor scheduling:

• Each job requires some CPU processing to execute

in the minimum possible time ti, meaning that a jobi

can be executed at the cost of a slower execution rate.

• There is sufficient bandwidth to support all data

transfer at the defined rate without losing data pack-

ets.

• The CPU scheduler can preempt jobs that are cur-

rently being executed and resume their execution

later.

• The service times for successive messages have the

same probability distribution and all are mutually in-

dependent.

• The publish rate λ (which is the rate at which mes-

sages are generated) is governed by a Poisson pro-

cess and events occur continuously and indepen-

dently at a constant average arrival rate λ, having ex-

ponential distribution with average arrival time 1
λ
.

• The service rate µ (which is the rate at which pub-

lished messages arrive at the subscriber) has an expo-

nential distribution and is also governed by a Poisson

process.

• The traffic intensity per CPU ρ (which is the normal-

ized load on the system) defines the probability that

the processor is busy processing pub/sub messages.

The utilization rate of the processor is defined as the

ratio ρ = λ
µ
.

5



Figure 2: End-to-End Data Timeliness in DDS

• Pub/Sub notification cost per event message Tam:

cost required by the application to provide event pub-

lish message or retrieve event subscribe message.

This parameter is divided into two parts:(1) Tappmid:

amount of time for even source application to pro-

vide the message to the middleware even broker sys-

tem, and (2) Tmidapp: amount of time required by ap-

plication to retrieve message from the reader’s cache

to relay the messages to the displayer. Those param-

eters are experimentally evaluated using high perfor-

mance time stamp included within the application

source code.

• The pub/sub cost per event message Tps(λ) (which is

the store and forward cost required for pub/sub mes-

sages). This parameter is divided into two parts: (1)

Tpub(λ), which is the store and forward cost for DDS

to send data from the middleware to the network in-

terface, and (2) Tsub(λ), which is the cost to retrieve

data after CPU processing at the subscriber’s mid-

dleware. These parameters are evaluated using the

Gilbert Model [7] (one of the most-commonly ap-

plied performance evaluation models), as shown in

Figure 2.

• The effective processing time for pub/sub message

for a given DDS message Pps(µ) (which is the time

cost required by processes executing on a CPU, pos-

sibly being preempted by the scheduler, until they

have spent their entire service time on a CPU, at

which point they leave the system). We assume that

P(µ) has the same value on the publisher as on the

subscriber and we note them P(µ) and P1(µ), respec-

tively, as shown in Figure 2.

• The Network time delay D (which is the packet de-

livery time delay from the first bit leaves the network

interface controller of the transmitter until the least

is received). The network delay is measured using

high-resolution timer synchronization based on NTP

protocol [8]. This parameter is shown by T in Fig-

ure 2.

Analytical Model. Having defined the key scheduling ac-

tivities along the pub/sub path, we need a mechanism to

model these activities. If the CPU scheduler is limited

by a single bottleneck node, job processing can be mod-

eled in terms of a single queuing system. As shown in

Figure 3, the DDS scheduler shown is a single queuing

system that consist of three components: (1) an arrival

process for messages from N different data writers with

specific statistics, (2) a buffer that can hold up to K mes-

sages, which are received in first-in/first-out (FIFO) order,

and (3) the output of the CPU (process complete) with a

fixed rate fs bits/s. We assume that discarded messages

are not considered in this model, a message is ready for

delivery to the network link when processing completes,

and messages can have variable length, all of which apply

6



Figure 3: Single Processor Queuing System Model

for asynchronous data delivery in DDS.

Although these assumptions may not apply to all DRE

systems, they enable us to derive specific behaviors via

our performance model since jobs frequently arrive and

depart (i.e., are completed or terminated) at irregular in-

tervals and have stochastic processing times, thereby al-

lowing us to obtain the empirical results presented in Sec-

tion 3.2.2. As mentioned above, our performance model

is based on the Gilbert Model due to its elegance and

the high-fidelity results it provides for practical applica-

tions [9]. This model simplifies the complexity of the

schedulability problem by providing a first-order Markov

chain model, shown in Figure 4.

Figure 4: The Markov Model for Processor Scheduling

The Markov model shown in Figure 4 is characterized

by two states of the system with random variables that

change through time: State 0 (“waiting”), which means

that data are being stored in the DDS middleware mes-

sage queue, and State 1 (“processing”), which means that

the job is being processed on the CPU scheduler. In addi-

tion, two independent parameters, P01 and P10, represent

state transition probabilities. The steady-state probabili-

ties for the “waiting” and “processing” states are given,

respectively, by 2, as follows:

π0 =
P10

P10 + P01

; π1 =
P01

P10 + P01

(2)

Recall that P01 and P10 are the derived from the Markov

transition matrix, which the general format is given by

equation 3. As described in Figure 4, because we have an

ergodic process, P00 = 0, P01 = λ, P10 = µ, and P11 =

0, therefore we also can note that π0 =
λ
λ+µ

; π1 =
µ

λ+µ
.

P =

[

0 P01

P10 0

]

(3)

From the expectation of the overall components de-

scribed above, the overall time delay for the performance

model is described by the following relation 4:

T = Tappmid+Tpub(λ)+P(µ)+D+P1(µ)+Tsub(λ)+Tmidapp

(4)

Where, π0 = Tpub(λ) = Tsub(λ) and π1 = P(µ) = P1(µ).

T =
N

λ
=

1

λ
×
ρ

1 − ρ
(5)

According to Little formula, (Tpub(λ)) can be written as 1
λ
,

because the general form as is given by equation 5 and we

consider the waiting for only one message per DDS topic,

the number of messages in each Topic is N = 1 (T = 1
λ
) is

considered for only one DDS topic including one message

(with variable size).

Costs of Publish/Subscribe Network Model. The

stochastic performance modeling approach described in

Section 2.1.3 has lower complexity than a deterministic

approach that strives to schedule processor time optimally

for DDS-based applications. Since the service time for

DDS messages is independent, identically distributed,

and exponentially distributed, the scheduler can be

modeled as a standard M/M/1 queuing system, such as

the Little inter-arrival distribution [10].

We assume the time cost for communication between

the application and the DDS middleware can be evalu-

ated experimentally. In particular, the Tps(λ) cost can be

evaluated using a stochastic Markov model. In this case,

Tpub(λ) is the store-and-forward cost for data writers to

publish DDS messages to a CPU scheduler and Tsub(λ) is

the cost for the DDS middleware to retrieve these mes-

sages at the subscriber.

Network latency is comprised of propagation delay,

node delay, and congestion delay. DDS-based end-

systems also add processing delays, as described above.

7



We therefore assume the following network parameters

Figure 5: Timing Parameters in Datagram Packet Switch-

ing

shown in Figure 5 to analyze the network scheduling:

• M: number of hops

• P: Per-hop processing delay (s)

• L: link propagation delay (s)

• T: packet transmission delay (s)

• N: message size (packets)

• The total delay Ttot = total propagation + total trans-

mission + total store and forward + total processing,

as described relation by the following 6:

Ttot = M× L + N ×T + (M−1)×T + (M−1)×P (6)

The parameters described in relation 6 are used to-

gether with the delay parameters in the relation 4 to cal-

culate the end-to-end delay. Our focus is on the delay

elapsed from the time the first bit was sent by the network

interface on the end-system to the time the last bit was re-

ceived, which corresponds to the Ttot delay, as shown by

T2 ([D]) in Figure 2.

Note that the performance analysis involves gathering

formal and informal data to help define the behavior of

a system. Its power does not reside in the complexity of

the model, but in its power to express the system con-

straints. The model presented here allows expressing all

of the constraints without adding complexity to the sys-

tem. In more complicated models, one common solution

is to look for a canonical form to reduce the complexity

and hold the power of the expression of the model to per-

mit powerful analysis techniques for validating the qual-

ity of service. The model presented in this paper is well

suited for the context of LAN as well as WAN context and

does not require any additional complexity because it can

express the behavior of the system easily and allows pow-

erful metrics to evaluate the performance of the system.

2.2. Architecture of the End-to-end Velox QoS Frame-

work

Below we describe the architecture of the Velox QoS

management framework, which enhances DDS to support

QoS provisioning over WANs by enabling DRE systems

to select an end-to-end QoS path that fulfills applications

requirements. Requirements supported by Velox include

per-flow traffic differentiation using DDS QoS policies,

QoS signaling, and resource reservation over heteroge-

neous networks.

2.2.1. Context: Supporting DDS over WANs

Implementations of DDS have predominantly being de-

ployed in local area network (LAN) environments. As

more DRE systems become geographically distributed,

however, it has become necessary for DDS to operate

over wide area networks (WANs) consisting of multiple

autonomous systems that must be traversed by published

messages. In turn, the WAN topologies imply that DDS

traffic must be routed over core network routers in ad-

dition edge routers, as well as support multiple different

type of network technologies and links with different ca-

pacities.

Integrated Services (IntServ) [11] are viable in small-

to medium-size LANs, but have scalability problems

in large-scale WANs. Differentiated Services (Diff-

Serv) [12] provide diverse service levels for flows hav-

ing different priorities requiring lower delays under vari-

able bandwidth. Moreover, various network technologies

composing an end-to-end path have different capabilities

in terms of bandwidth, delay, and forwarding capabilities,

which makes it hard to apply a single unified solution for

all network technologies.

Any technique for assuring end-to-end QoS for DDS-

based DRE systems must optimize the performance and

scalability of WAN deployments over fixed and wire-

less access technologies and provide network-centric QoS

8



provisioning. It is therefore necessary to reserve net-

work resources that will satisfy DRE system require-

ments. Likewise, traffic profiles must be defined for each

application within a DRE system to ensure they never ex-

ceed the service specification while ensuring their end-to-

end QoS needs are met.

2.2.2. Problem: Dealing with Multiple Systemic Issues to

Support DDS in WANs

Challenge 1: Heterogeneity across WANs. To operate

over WANs—and support end-to-end QoS—DDS appli-

cations must be able to control network resources in

WANs. DDS implementations must therefore shield ap-

plication developers from the complexity of communica-

tion mechanisms in the underlying network(s). This com-

plexity is amplified due to different network technologies

(e.g., wired and wireless) that comprise the WANs.

Each technology exposes different QoS management

mechanisms for which QoS allocation is performed dif-

ferently; their complexity depends on resource reservation

mechanisms for the underlying network technology (e.g.,

Ethernet, Wimax, WiFI, Satellite, etc.). DDS application

developers need an approach that encapsulates the details

of the underlying mechanisms. Likewise, they need a uni-

form abstraction to manage complexity and ensure DDS

messages can be exchanged by publishers to subscribers

with desired QoS properties.

Challenge 2: Signaling and Service Negotiation Re-

quirements. Even if there is a uniform abstraction that

encapsulates heterogeneity in the underlying network el-

ements (e.g., links and routers), when QoS mechanisms

must be realized within the network the underlying net-

work elements require specific signaling and service ne-

gotiations to provision the desired QoS for the applica-

tions. It is therefore important that any abstraction DDS

provides to application developers also provides the ap-

propriate hooks needed for signaling and service negotia-

tions.

Challenge 3: Need for Admission Control. Signaling

and service negotiation alone is insufficient. In particu-

lar, care must be taken to ensure that data rates/sizes do

not overwhelm the network capacity. Otherwise, applica-

tions will not achieve their desired QoS properties, despite

the underlying QoS-related resource reservations. A call

setup phase is therefore useful to prevent oversubscrip-

tion of user flow, protect traffic from the negative effects

of other competent traffic, and ensure there is sufficient

bandwidth for authorized flows.

Challenge 4: Satisfying Security Requirements. Ad-

mission control cannot be done for all transmitted traffic,

which means that user traffic must be identified and al-

lowed to access some restricted service. Only users that

have registered for the service are allowed to use it (Au-

thentication). Moreover, available resources may be over-

provisioned due to their utilization by unauthorized users

that are not granted to require and receive a specific ser-

vice (Authorization). Even if a particular authenticated

user should have to secured resources controlled by the

system, the system should be able to verify the correct

user is charged for the correct session, according to the

resources reserved and delivered (Accounting).

2.2.3. Solution Approach: A Layer 3 QoS Management

Middleware

Figure 6 shows Velox, which provides an end-to-end

path for delivering QoS assurance across heterogeneous

autonomous systems build using DDS at the network

layer (which handles network routing and addressing is-

sues in layer 3 of the OSI reference model). Each

path corresponds to a given set of QoS parameters—

called classes of services—controlled by different service

providers. The Velox framework is designed as session

service platform over DiffServ-based network infrastruc-

ture, as shown in Figure 6. The remainder of this section

explains how Velox is designed to address the challenges

described in Section 2.2.2.

Resolving Challenge 1: Masking the Heterogeneity via

MPLS tunnels. Challenge 1 in Section 2.2.2 stemmed

from complex QoS management across WANs due to het-

erogeneity across network links and their associated QoS

mechanisms. Ideally, this complexity can be managed if

there exists a uniform abstraction of the end-to-end path,

which includes the WAN links. Figure 7 depicts how

Velox implements an end-to-end path abstraction using

a Multi Protocol Label Switching (MPLS) tunnel [13].

This tunnel enables aggregating and merging different au-

tonomous systems from one network domain (AS1 in Fig-

ure 7) to another (AS5 in Figure 7), so that data crosses

core domains more transparently.

9



Figure 6: Velox Framework Components

Figure 7: End-to-end path with MPLS tunnel

To ensure the continuity of the per-hop behavior

along a path, Network Layer Reachability Information

(NLRI) [14] is exchanged between routers using an NLRI

field to convey information related to QoS. The Velox

computation algorithm determines a path based on QoS.

Resolving Challenge 2: Velox Signaling and Service Ne-

gotiation. Challenge 2 in Section 2.2.2 is resolved using

the Velox Signaling and Service Negotiation (SSN) capa-

bility. After an end-to-end path (tunnel) is established, the

Velox SSN enables the sending of a QoS request from the

service plane using a web interface to the first resource

manager via a service-level agreement during session es-

tablishment. This resource manager performs QoS com-

mitment and checks if there is a suitable end-to-end path

fulfilling the QoS requirements in terms of classes of ser-

vices.

The Velox SSN function coordinates the use of the

various signaling mechanisms (such as end-to-end, hop-

by-hop, and local) to establish QoS-enabled end-to-end

sessions between communicating DDS applications. To

ensure end-to-end QoS, we decompose the full multi-

domain QoS check into a set of consecutive QoS checks,

as shown in Figure 6. The QoS path on which the global

behavior will be based therefore establishes the transfer

between the remote entities involved, which must be con-

trolled to ensure end-to-end QoS properties.

Figure 8 shows the architecture for the caller applica-

tion trying to establish a signaling session. The caller

sends a “QoSRequest” (which includes the required band-

width, the class of service, the delay, etc.) to the SSN, as

shown in Figure 8. In turn, the callee application uses the

establishSession service exposed by the web service inter-

face. The following components make up the Velox SSN

capability:

• AQ-SSN (Application QoS) allows callers to contact

the callee side and negotiate the session parameters.

• Resource Manager (RM) handles QoS requests so-

licited by the control plane and synchronizes those

requests with the service plane for handshaking QoS

10



Figure 8: Velox Signaling Model

invocation among domains using the IPsphere Ser-

vice Structuring Stratum (SSS) 1 signaling bus with

the Next Steps in Signaling (NSIS) [15] protocol to

establish, invoke, and assure network services.

After the QoSRequest has been performed, the per-

formReservation service exposed by AQ-SSN attempts

to reserve network resources. AQ-SSN requests network

QoS using the EQ-SAP (Service Access Point) interface

on top of the resource manager. After QoS reservation

has completed at the network level, the response will be

notified to AQ-SSN, which returns a QoSAnswer to the

caller. Since there is one reserveCommit request for each

unidirectional flow, if the reserveCommit operation fails,

the AQ-SSN must trigger the STOP request for the rest of

the flows belonging to the same session that were reserved

previously.

Resolving Challenge 3: Velox Call Admission Con-

trol and Resources Provisioning. Challenge 3 in Sec-

1http://www.tmforum.org/ipsphere

tion 2.2.2 is addressed by the Velox Connection Admis-

sion Control (CAC) capability. The CAC functionality is

split into

• A domain CAC that manages the admission in each

domain, and is called accordingly as the Inter-

domain CAC, Intra-domain CAC, and Database

CAC.

• An End-to-end CAC that determines a path with a

specified QoS level.

When the resource manager receives the reserveCommit

request from AQ-SSN it checks whether the source IP ad-

dress of the flow belongs to its domain. The AQ-SSN

then performs resource reservations for the new submit-

ted call to the system in either a hop-by-hop manner or

a single-hop related to a domain, as shown in the control

plane in Figure 9. During the setup phase of a new call,

therefore, the associated QoS request will be sent via the

signaling system to each domain (more precisely to each

resource manager) being on the path from source to des-

tination. Not all requests will be serviced due to network

overload. To solve the resulting problems, the end-to-end

11

http://www.tmforum.org/ipsphere


Figure 9: Velox Resource Reservation Model

Velox connection admission control (CAC) capability is

used for intra-domain, inter-domain, and end-to-end path.

For the intra-domain CAC, the existence of a QoS path

internal to the domain (i.e., between the ingress router and

the egress router) is then checked by the Velox resource

manager. If the QoS parameters are fulfilled, the intra-

domain call is accepted, otherwise it is rejected. For the

intra-domain CAC, the resource manager checks whether

the QoS requirements in the inter-domain link (between

the two BR routers of two different autonomous systems)

can be fulfilled. If the link can accept the requested QoS,

the call is accepted, otherwise it is rejected. For the end-

to-end CAC, Velox first checks the existence of the end-

to-end path via the Border Gateway Protocol table. If this

check does not find an acceptable QoS path, the CAC re-

sult is negative.

Finally, if the three CACs accept the call, the first re-

source manager forwards the call to the subsequent re-

source manager in the next domain. This manager is de-

duced from the information given when the first resource

manager selects the appropriate path. The network re-

sources of each domain are fully available by each call

passing the domain. As a result, no a priori resource

reservations are required. To reserve the resources for a

new call, therefore, Velox needs to reserve the resources

inside the MPLS end-to-end tunnel and need not perform

per-flow resource reservations in transit domains.

Resolving Challenge 4: Security, Authentication, Au-

thorization, and Accounting. Challenge 4 in Sec-

tion 2.2.2 is addressed by the Velox Security, Authenti-

cation, Authorization, and Accounting (SAAA) capabil-

ity. Velox’s SAAA manages user access to network re-

sources (authentication), grant services and QoS levels to

requesting users (authorization), and collects accounting

data (accounting). AQ-SSN then checks user authentica-

tion and authorization using SAAA and will optionally

filter some QoSRequests according to user rights via the

Diameter protocol [16], which is an authentication, au-

thorization, and accounting (AAA) protocol for computer

networks.

The Velox SSN module coordinates the session among

end-users. The SSN module asks CAC whether or not

the network can provide enough resources to the request-

ing application. It manages the session data, while CAC

stores the session status, and it links events to the relevant

12



session, translating network events (faults, resource short-

age, etc) into session events. The Velox SSN notifies its

CAC of user authorizations, after having authenticated the

user with AAA. The SSN is also responsible for shutting

down the session if faults have occurred. These CAC de-

cisions are supported by knowledge of the network con-

figuration and the current monitoring measurements and

fault status.

3. Analysis of Experimental Results

This section presents experimental results that evalu-

ate the Velox framework in terms of its timing behavior,

overhead, and end-to-end latencies observed in different

scenarios. We first use simulations to evaluate how the

performance model described in Section 2.1 predicts end-

system delays and then compare these simulation results

with those obtained in an experimental testbed. We also

evaluate the impact of increasing the number of topics

on DDS middleware latency and then evaluate the client-

perceived latency with the increasing size of topic data,

where the number of topics is fixed. We next evaluate

the latency incurred when increasing the number of sub-

scribers involved in communication and compare the re-

sults with the empirical study. Finally, we demonstrate

how the network QoS provisioning capabilities provided

by the Velox framework described in Section 2.2 signifi-

cantly reduce end-to-end delay and protect end-to-end ap-

plication flows.

3.1. Hardware and Software Testbed and Configuration

Scenario

The performance evaluations reported in this paper

were conducted in the Laasnetexp testbed shown in Fig-

ure 10. Laasnetexp consists of a server and 38 dual-

core machines that can be configured to run different op-

erating systems, such as various versions of Windows

and Linux [17]. Each machine has four network in-

terfaces per machine using multiple transport protocols

with varying numbers of senders, receivers and 500 GB

disks. The testbed also contains four Cisco Catalyst 4948-

10G switches with 24 10/100/1000 MPS ports per switch

and three Juniper M7i edge routers connected to the RE-

NATER network 2.

To serve the needs for the emulations and real network

experiments, two networks have been created in Laas-

netexp: a three-domain real network (suited for multi-

domain experiments) with public IP addresses belonging

to three different networks, as well as an emulation net-

work. Our evaluations used DiffServ QoS, where the QoS

server was hosted on the Velox blade.

In our evaluation scenario, a number of real-time sen-

sors and actuators sent their monitored data to each other

so that appropriate control actions are performed by the

military training and Airbus Flight Simulators we used.

Figure 10 shows several simulators deployed on EuQoS5-

EuQoS8 blades communicating based on the RTI DDS

middleware implementation 3. To emulate network traffic

behavior, we used a traffic generator that sends UDP traf-

fic over the three domains with configurable bandwidth

consumption. To differentiate the traffic at the edge router,

the Velox framework described in Section 2.2 manages

both QoS reservations and the end-to-end signaling path

between endpoints.

3.2. Validating the Performance Scheduling Model

Section 2.1 described an analytical performance model

for the range of scheduling activities along the end-to-end

critical path traced by a DDS pub/sub flow. We now val-

idate this model by first conducting a performance evalu-

ation using real conditions and estimating the time delays

in the analytical performance model. We then compare

these simulation results with actual experimental results

conducted in the testbed described in Section 3.1. The

accuracy of our performance model is evaluated by the

degree of similarity of these results.

We apply the approach above because some parame-

ters in our analytical formulation are only observable and

not controllable (i.e., measurable). To obtain the values

for these observable parameters so they can be substi-

tuted into the analytical model, we conducted simulation/-

emulation studies. These studies estimated the values by

measuring the time taken from when a request was sub-

mitted to the DDS middleware by a publisher applica-

2http:www.renater.fr
3www.rti.com

13

http:www.renater.fr
www.rti.com


Figure 10: Laasnetexp testbed

tion calling a “write()” data writer method until the time

the subscriber application retrieves data by invoking the

“read()” data reader method. We first analyze the results

and then validate the analytical model as a whole.

3.2.1. Estimating the Publish and Subscribe Activity

at the Middleware-Application Interface in the

Pub/Sub Model

Rationale and approach. One component of our perfor-

mance model (see Equation 4 in Section 2.1.3) includes

the event notification time Tam. This time measures how

long an application takes to provide the published event

to the middleware (called Tappmid) or the time taken to

retrieve a subscribed event from the middleware (called

Tmidapp). We estimate these modeled parameters by com-

paring the overall time using our analytical model with the

empirically measured end-to-end delay encountered in the

LAN environment shown by VLAN “V101” in Figure 10

and described in Section 3.1. Since the LAN environment

provides deterministic and stable results, the impact of the

network can easily be separated from the results. We can

therefore pinpoint the empirical results for the delays in

the end-systems and compare them with the analytically

determined bounds.

We implemented a high accuracy time stamp func-

tion in the application using the Windows high-resolution

method QueryPerformanceCounter() to measure the

time delay required by the application to disseminate

topic data to the middleware event broker system. The

publisher application writes five topics using the reliable

DDS QoS setting, where each topic data size ranges be-

tween 20 and 200 bytes and the receiver subscribes to all

topics. Increasing the number of topics and their respec-

tive data sizes enables us to analyze their impact on end-

to-end latency in the performance model. The Reliability

QoS policy configures the level of reliability DDS uses to

communicate between a data reader and data writer.

14



Results and analysis. Figure 11 shows the time delay

measured at both the publisher and subscriber applica-

tions, respectively, Tappmid and Tmidapp. As shown in Fig-

Figure 11: Time Delay for the Publish/Subscribe Event

ure 11 (note the different time scales for the publisher

and subscriber sides), the time required by the applica-

tion to retrieve topics from the DDS middleware broker

is larger than the time required to publish the five topics.

The subscriber application takes ∼50µs to retrieve data by

invoking the “read()” data reader method and displaying

the results on the user interface. Likewise, publisher ap-

plication takes ∼ 1µs to transmit the request to the DDS

middleware broker by a invoking a “write()” data writer

method.

The DDS Reliability QoS policy has a subtle effect on

data reader caches because data readers add samples and

instances to their data cache as they are received. We

therefore conclude that the time required to retrieve topic

data from the data reader caches contributes to the ma-

jority of time delay observed by a subscriber. Figure 12a

further analyzes the impact of number of topics on the

time delay for a subscriber event. This figure shows the

cumulative time delay required to push up all six samples

of topic data from the DDS middleware to the application

we called Tmidapp in the previous section (the experiment

was conducted for a 30 minute duration).

As shown in Figure 12a, Tmidapp is linearly proportional

to number of topics. For example, the amount of time

required by the application to retrieve a message from the

reader’s cache to relay the events to the display console

for only a single topic remains close to 9µs for all samples.

(a)

(b)

Figure 12: Impact of the number of DDS Topics on the

Time Delay for publish/subscribe event

When the number of topics increases, Tmidapp increases,

respectively, e.g., for 2 topics Tmidapp = 15 µs, for 3 topics

Tmidapp = 24µs, for 4 topics Tmidapp = 34 µs, and for 5

topics Tmidapp = 42µs.

A question stemming from these results is what is the

impact of the data size on Tappmidd and Tmidapp? To answer

this question, we analyze Figure 12b, which shows the

Tmidapp for each topic. To retrieve topic “Climat” (which

is 200 bytes in size) the required Tmidapp is close to 9µs

for all samples (and also for all experiments). Likewise,

to retrieve topic “Exo” (which is 20 bytes in size) the re-

quired Tmidapp remains close to 6µs. Finally, the Tmidapp

for topic “Object” (which is 300 bytes in size) remains

close to 9µs. These results reveal that the size of the data

has little impact on Tmidapp.

15



Figure 13 shows the time delay required by the pub-

lish application to send every topic to the DDS middle-

ware. Indeed, to push “Climat”Topic into the DDS mid-

Figure 13: the Time Delay for publish event

dleware the required Tappmidd is between0.2µs and 0.6µs.

The Tappmidd of the “Exo” Topic is close to 0.1µs, Topic

“Object” has Tappmidd value between to 0.1µs and 0.4µs,

and the “Global” and “Observateur” Topics have Tappmidd

smaller then 0.4µs and 0.2µs, respectively. These results

reinforce those provided by Figure 11; we therefore con-

clude that most of the time between the application and

the DDS middleware is spent on the subscriber and not on

the publisher.

To summarize, the pub/sub notification time-per-event

(which corresponds to the cost required by the application

to provide event publish message or retrieve event sub-

scribe message) depends largely on the number of topic

data exchanged between remote participants. The time-

per-event is relatively independent of the size of each

topic instance. Moreover, the time delay required by an

application to retrieve a message from the reader’s cache

to relay the events to the display console Tmidapp is greater

than Tappmid, which is the time for publisher application to

provide the message to the DDS middleware.

3.2.2. Estimating the CPU Scheduling Activities in the

Analytical Model

Rationale and approach. To evaluate the scheduling

model, we refer to Figure 14 that describes the CPU

scheduling. During the experimentation, the traffic inten-

sity per CPU refers to the utilization rate of the proces-

sor as the ratio ρ = λ
µ
, which is on average equal to 0.1

Figure 14: Impact of increasing the Topic samples on the

utilization rate of the CPU

(10% in Figure 14), which illustrate that the service rate

of the CPU remains constant when the topic samples in-

creases during the experiments. That is, The pub/sub cost

per event Tps(λ) for the DDS middleware is the store-and-

forward cost required for an event publish and subscribe

message. It remains undefined, however, both at the pub-

lisher (Tpub(λ)) and the subscriber (Tsub(λ)). These pa-

rameters were therefore empirically evaluated using the

Gilbert model described in Section 2.1.3.

Results and analysis. The data collected from the trace

files shows that the DDS middleware sends data at pub-

lish rate λ equal to 12,000 packets per second (pps). The

average inter-arrival time 1
λ

to the CPU is equal to 83.3µs.

Moreover, using the utilization rate of the processor, the

average service time 1
µ

is equal to 8µs.

When an event is generated, it is assigned a timestamp

and is stored in the DDS store-and-forward queue. Pro-

cesses enter this queue and wait for their turn on a CPU

for an average delay of 83.3µs. They run on a CPU un-

til they have spent their service time, at which point they

leave the system and are routed to the network interface

(NIC interface). A process is selected from the front of

the queue when a CPU becomes available. A process ex-

ecutes for a set number of clock cycles equivalent to the

service time of 8µs.

From the above discussion, the average arrival time 1
λ

is ten times greater than the average service time 1
µ
. Pro-

cesses spend most of their time waiting for CPU avail-

16



ability. Referring to the relation 2 in Section 2.1.3, the

steady-state probabilities for the “waiting” and “process-

ing” states are 0.9 and 0.1, respectively.

3.2.3. Estimating the Network Time Delay in the Analyti-

cal Model

Rationale and approach. To evaluate end-to-end network

latency and determine each of its components discussed

above (i.e., the DDS pub/sub notification time per event

Tam and DDS pub/sub cost-per-event Tps), we empirically

evaluate both the transmission delay and propagation de-

lay. We are interested only in the delay “D” elapsed from

the time the first bit was sent to the time the last bit was

received (i.e., we exclude the time involved in Tam and

Tps).

Results and analysis. Table 1 shows the different param-

eters and their respective values used to evaluate the net-

work delay empirically. This model emulates the be-

Table 1: Empirical Evaluation of Network Time Delay

Parameters Value

M: number of hops 2

P: Per-hop processing delay (µs) 5

L: link propagation delay (µs) 0.5

T: packet transmission delay (µs) 82.92

N: message size (packets) 1

Pkt: Packet size 8192 bits

D: Total delay (µs) 171.84

havior of two remote participants in the same Ethernet

LAN. In this configuration, the average time delay “D”

is 171.84µs.

3.2.4. Comparing the Analytical Performance Model

with Experimental Results

Rationale and approach. We now compare our analytical

performance model (Section 2.1) with the results obtained

from experiments in our testbed (Section 3.1). We first

calculate the end-to-end delay “ED” provided by the per-

formance model and given by relation 4 in Section 2.1.3,

by summing the DDS pub/sub notification time per event

Tam, the DDS pub/sub cost-per-event Tps(λ), the effective

processing time per DDS pub/sub message Pps(µ), and

the average time delay “D”. We then compare “ED” with

empirical experiments shown in Figure 15, which indicate

the time required to publish topic data until they are dis-

played at the subscriber application.

Figure 15: Experimental end-to-end latency for Pub/Sub

events over LAN

Results and analysis. The experimental results in Fig-

ure 15 show that the end-to-end delay is ∼350µs. In ad-

dition, the results provided by our performance model de-

scribed in Table 2 are consistent with those provided by

the experiments, i.e., the end-to-end latency provided by

the performance model is 306.74µs. We believe the val-

ues are acceptable because rather than taking into account

the percentage (14%), the 44 microseconds is not notice-

able because it is due to hardware ASIC processing at

the network physical node. These evaluations show that

Table 2: Evaluation of the End-to-End Delay (ED)

Parameters Value

Tmidapp(µs) 42

Tappmid(µs) 1.6

Tpub(λ) + Tsub(λ) = 1
λ
(µs) 83.3

P(µ) + P1(µ) = 1
µ
(µs) 8

D (µs) 171.84

ED (µs) 306.74

the results obtained from the analytical model are similar

to those obtained using empirical measurements, which

demonstrates the effectiveness of our performance model

17



to estimate the different time delay components described

above. The slight discrepancy between those results stems

from the simplified assumptions made with the first-order

Markov model, which is not completely accurate. We be-

lieve the slight discrepancy is acceptable because rather

than taking into account the percentage difference (14%)

which may appear large, the 44 microseconds is not no-

ticeable because it is due to hardware ASIC processing at

the network physical node.

3.2.5. Impact of Increase in Number of Subscribers

Rationale and approach. We conducted experiments

with a large number of clients and measured the commu-

nication cost by varying the number of clients. We lever-

age and compared our experimental results of the end-to-

end latency delay with the empirical study found in [18],

where the authors suggested a function S (n) to evaluate

the effect of distributing messages for several subscribers.

The experiments were conducted by increasing the

number of subscribers, so we used only one publisher that

sent data to respectively 1, 2, 4, and 8 subscribers and plot

the end-to-end delay taken from trace files, as shown in

Figure 16. The results in this figure show that the latency

Figure 16: End-to-end latency for one publisher to many

subscribers

for one-to-one communication (single publisher sending

topic data to a single consumer) is ∼400µs.

Results and analysis. As the number of subscribers in-

creased, the moving average delay (the time from send-

ing a topic from the application layer to its display on the

subscriber) increased proportionally with the respect to

the number of subscribers. The moving average delay re-

mained ∼600µs for two subscribers, became ∼900µs for 4

subscribers, and remained ∼1400µs when the number of

subscribers was 8.

Our results confirm the results provided in [18], where

the moving average delay is proportionally affected by

the number of clients declaring their intention to receive

data from the same data space. The publisher can deliver

events with low cost when it broadcasts events to many

subscribers with an impact factor between 1
n

and 1.

In summary, when using DDS as a networking sched-

uler, the required time delay to distribute topic data is de-

termined at least by the number of topics and the number

of readers. In the case of the number of topics, our ex-

periments described above showed that the time delay for

sending data from the application to the DDS middleware

increases with the number of topics. Those experiments

have been conducted for different DDS middleware ven-

dor implementations including RTI DDS 4, OpenSplice

DDS 5 and CoreDX DDS 6.

Based on these results, we recommend sending larger

data size packets with fewer topics instead of using a

large number of topics. DDS middleware defines the

get matched subscriptions() method to retrieve the

list of data readers that have a matching topic and com-

patible QoS associated with the data writers. Having a

greater number of topics, however, allows dissemination

of information with finer granularity to select set of sub-

scribers. Likewise, reducing the number of topics by com-

bining their types results in more coarse-grained dissemi-

nation with a larger set of subscribers receiving unneces-

sary information. Application developers must therefore

make the right tradeoffs based on their requirements.

3.3. Evaluation of the Velox Framework

Below we present the results of experiments conducted

to evaluate the performance of the Velox framework de-

scribed in Section 2.2. These results evaluate the Velox

premium service, which uses the DiffServ expedited for-

warding per-hop-behavior (PHB) model [19] whose char-

4www.rti.com/products/dds
5www.prismtech.com/opensplice
6www.twinoakscomputing.com/coredx

18

www.rti.com/products/dds
www.prismtech.com/opensplice
www.twinoakscomputing.com/coredx


acteristics of low delay, low loss, and low jitter are suit-

able for voice, video, and other real-time services. Our

future work will evaluate the assured forwarding PHB

model [20] [21] that operators can use to provide assur-

ance of delivery as long as the traffic does not exceed

some subscribed rate.

3.3.1. Configuration of the Velox Framework

To differentiate the traffic at the edge router, the Velox

server manages both QoS reservations and the end-to-end

signaling path between endpoints.7 Velox can manage

network resources in a single domain and multi-domain

network. In a multi-domain network, Velox behaves in

point-to-point fashion and allows users to buy, sell, and

deploy services with different QoS (e.g., expedited for-

warding vs. assured forwarding) between different do-

mains. Velox can be configured using two types of ser-

vices: the network service and the session service, as

shown in Figure 17 and described below:

Figure 17: Resource Reservation Inside the MPLS End-

to-End Tunnel

• Network services define end-to-end paths that in-

clude one or more edge routers. When the network

session is created, the overall bandwidth utilization

for different sessions are assigned to create commu-

nication channels that allow multiple network ses-

sions to use this bandwidth. Moreover, it is pos-

sible to create several network sessions, each one

having its bandwidth requirements among the end-

to-end paths.

• Session services refer to a type of DiffServ service

7Performance evaluation of the functions of Velox is not presented

in this paper because we address the impact (from the point of view the

network QoS) of mapping the DDS QoS policies to the network (routing

and QoS) layer with the help of the MPLS tunneling.

included within the network session. Service ses-

sions create end-to-end tunnels associated with spe-

cific QoS parameters (including the bandwidth, the

latency, and the class of service) to allow different

applications to communicate with respect to those

parameters. For example, bandwidth may be as-

signed to each session (shown in Figure 17) and al-

located by the network service. Velox can therefore

call each service using its internal “Trigger” service

described next.

• Trigger service initiates a reservation of bandwidth

available for each session of a service, as shown in

Figure 18. When the network service and session

Figure 18: Trigger Service QoS Configuration

services are ready for use, the trigger service prop-

agates the QoS parameters among the end-to-end

paths that join different domains.

3.3.2. Evaluating the QoS Manager’s QoS Provisioning

Capabilities

Rationale and approach. The application is composed of

various data flows. Each flow has its own specific char-

acteristics, so we need to group them into categories (or

media), taking into account the nature of the data (ho-

mogeneity) as described in Figure 19. Then, we ana-

lyze those application’s flows to define and specify their

network QoS constraints to enhance the interaction be-

tween the application layer, the middleware layer and

the network layer. Therefore, We associate a set of

middleware QoS policies (History, Durability, Reliabil-

ity, Transport-priority, Latency-budget, Time-based-filter,

Deadline, etc.) by media to classify them into 3 traffic

classes, each class of traffic has its specific DDS QoS poli-

cies, then map them to specific IP services.

The application used for our experiments is composed

of three different DDS topics. Table 3 shows how top-

ics with different DDS QoS parameters allow data trans-

19



Figure 19: Mapping the application flow requirements to

the network through the DDS middleware

fer with different requirements. As shown in the table,

continuous data is sent immediately using best-effort re-

liability settings and written synchronously in the context

of the user thread. The data writer will therefore send a

sample every time the write() method is called. State in-

formation should deliver only previously published data

samples (the most recent value) to new entities that join

the network later.

Asynchronous data are used to send alarms and events

asynchronously in the context of a separate thread inter-

nal to the DDS middleware using a flow controller. This

controller shapes the network traffic to limit the maxi-

mum data rates at which the publisher sends data to a

data writer. The flow controller buffers any excess data

and only sends it when the send rate drops below the

maximum rate. When data is written in bursts—or when

sending large data types as multiple fragments—a flow

controller can throttle the send rate of the asynchronous

publishing thread to avoid flooding the network. Asyn-

chronously written samples for the same destination is

coalesced into a single network packet, thereby reducing

bandwidth consumption.

Figure 20 describes the overall architecture for map-

ping the application requirements to network through

the middleware: the DDS QoS policies provided by the

Topic

Data

Requirements QoS

DDS

DSCP

Field

Contin-

uous

Data

Constantly

updating data

best-

effort

12

Many-to-many

delivery

keys,

multicast

Sensor data, last

value is best

keep-last

Seamless failover owner-

ship,

deadline

State

Infor-

mation

Occasionally

changing

persistent data

durability 34

Recipients need

latest and greatest

history

Alarms

&

Events

Asynchronous

messages

liveliness 46

Need confirmation

of delivery

reliability

Table 3: Using DDS QoS for End-Point Application Man-

agement

middleware to the network (Transport-priority, latency-

budget, deadline) are parsed from an XML configuration

files. The Transport-priority QoS policy is processed by

the application layer at the terminal nodes according to

the value of this QoS policy, then translated by the mid-

dleware to IP packet DSCP marking; the Latency-budget

is considered very roughly at the terminal nodes, only;

and the “Deadline QoS policy” allows adapting the pro-

duction profile to the subscriber request.

This solution improves the effectiveness of our ap-

proach to enhance the interaction between the application

and the middleware and the network layer. The data pro-

duced using the local DDS service must be communicated

to the remote DDS service and vice versa. The network-

ing service provides a bridge between the local DDS ser-

vice and a network interface. The application must di-

mension the network properly, e.g., a DDS client performs

a lookup and assigns a QoS label to the packet to identify

all QoS actions performed on the packet and from which

20



Figure 20: QoS Guaranteed Architecture

queue the packet is sent. The QoS label is based on the

DSCP value in the packet and decides the queuing and

scheduling actions to perform on the packet.

An edge router selects a packet in a traffic stream based

on the content of DSCP packet header (described in col-

umn 3 in Table 3) to check if the traffic falls within the

negotiated profile. If it does, the packet is marked to a

particular DiffServ behavior aggregate. The application

then uses the DDS transport priority policy to define the

aggregated traffic the domain can handle separately. Each

packet is marked according to the designated service level

agreement (SLA).

Since Velox supports QoS-sensitive traffic reliably to

support delay- and jitter-sensitive applications, QoS re-

quirements for a flow can be translated into the appro-

priate bandwidth requirements. To ensure queuing de-

lay and jitter guarantees, it may be necessary to ensure

that the bandwidth available to a flow is higher than the

actual data transmission rate of this flow. We therefore

identified two flows and used them to evaluate the impact

of Velox on the bandwidth protection as follows: (1) a

real-time traffic generated by the application using expe-

dited forwarding DiffServ service with priority level 46

and (2) UDP best-effort traffic using Jperf traffic genera-

tor (iperf.sourceforge.net).

We performed two variants of this experiment. The first

variant uses UDP network background load of forward

and reverse bandwidth. For this configuration, the Velox

resource manager does not provide any QoS management

for the large-scale network, as the default configuration

of routers uses only two queues with 95% for best-effort

packets and 5% for network control packets, i.e., all traffic

traversing the network goes through a single best-effort

queue. Subsequently, we begin sending a DDS flow at

500 Kbps followed by a UDP flow at 600 Kbps injected

from Jperf to congest the queue and observe the behavior

of the DDS flow.

The second variant also used the UDP perturbing

traffic, but we enabled Velox for QoS management.

The Velox resource manager configured the edge router

queues to support 40% best-effort traffic, 30% expedited

forwarding traffic and 20% assured forwarding traffic, and

5% for network control packets.

Results and analysis. Figure 21a shows the results of ex-

periments when deployed applications were (1) config-

ured without any network QoS class and (2) sending DDS

flow competing with UDP background traffic. These re-

sults show the deterioration of the flow behavior as it can-

not maintain a constant bandwidth expected by the DDS

application due to the disruption by the UDP background

flows.

Figure 21b shows the results of experiments when the

deployed applications were (1) configured with expedited

forwarding network QoS class and (2) sending DDS flows

competing with UDP background traffic. These results

show that irrespective of heavy background traffic, the

bandwidth experienced by the DDS application using the

expedited forwarding network class is protected against

background perturbing traffic.

21

iperf.sourceforge.net


(a) without QoS

(b) with QoS

Figure 21: Impact of the QoS provisioning Capabilities

on the bandwidth protection

3.3.3. Evaluating the Impact of the Velox QoS Manager

Capabilities on Latency

Rationale and approach. Velox provides network QoS

mechanisms to control end-to-end latency delay between

distributed applications. The next experiment evaluates

the overhead of using it to enforce network QoS. As de-

scribed in Section 2.2, DDS provides deployment-time

configuration of middleware by adding DSCP markings

to IP packets. When applications invoke remote opera-

tions, the Velox QoS Server intercepts each request and

uses it to reserve the network QoS resources for each call.

It reserves these resources by configuring the edge router

queues with the priority level extracted from the DSCP

field (e.g., expedited forwarding, assured forwarding, etc).

We used WANem (wanem.sourceforge.net)

to emulate realistic WAN behaviors during applica-

tion development/testing over our LAN environment.

WANem allows us to conduct experiments in real envi-

ronments to assess performance with and without QoS

mechanisms. These comparisons enabled us to measure

the impact of change with the QoS mechanisms provided

by Velox.

This experiment had the following variants:

• We started one-to-one communication between end-

points, followed by sending perturbing UDP back-

ground traffic, and

• We increased the number of senders and receivers

applications to evaluate their impact on transmission

delay.

To measure the one way delay between senders and re-

ceivers, we used the Network Time Protocol (NTP) [22] to

synchronize all applications components with one global

clock. We then ran application components that over-

loaded the network link and routers to perform extra work

and applied policies to instrument IP packets with the ap-

propriate DSCP values.

Results and analysis. Figure 22 shows the end-to-end de-

livery time for distributed DDS applications over a WAN

without applying any QoS mechanisms. Figure 22 also

shows the impact of using the Velox QoS server, which

shows the latency delay measured when applying QoS

mechanisms to use-case applications. These results in-

dicate that the end-to-end delay measured without QoS

management is more than twice as large than the delay

measured when applying QoS management at the edge

routers. A closer examination shows that WANem incurs

roughly an order of magnitude more effort than Velox to

provide QoS assurance for end-to-end application flows.

3.3.4. Evaluating QoS Manager Capabilities for One-to-

Many Communications

Rationale and approach. This experiment evaluates the

potential of the Velox framework to handle increases in

the number of DDS participants (we do not consider

22

wanem.sourceforge.net


Figure 22: Impact of the QoS provisioning Capabilities

on the end-to-end delay

WANem here). We measured the moving average de-

lay between DDS applications distributed over the Inter-

net. We configured the DiffServ implementation in the

edge router of each network, as described in Section 3.1.

We then used DDS-based traffic generator applications to

send DDS topics via the Velox QoS service’s expedited

forwarding mechanisms at 500 kbps. Each DDS flow was

sent from one or more remote publishers from IP domain

1 managed by the “Montperdu” edge router (shown in

Figure 10) to one and/or many subscribers in IP domain 2

managed by “Posets” edge router.

The experiments in this configuration had the following

variants:

• We started one publisher sending data in the direc-

tion of two remote subscribers and then measured

the worst-case end-to-end latency between them,

• We used the same publisher and increased the num-

ber of subscribers, i.e., we added two more sub-

scribers to analyze the impact of competing flows

arriving from distributed applications on the Velox

QoS server, and

• We increased the number of participants to obtain

eight subscribers in competition for receiving a sin-

gle published expedited forwarding QoS flow from

the EuQoS6 machine.

The bandwidth utilization was limited to 1 Mbps for all

experiments so it would be consistent with the number of

participants tested.

Results and analysis. The end-to-end delay shown in Fig-

ure 23 includes the latency curves for 1-to-2, 1-to-4, and

1-to-8 configurations. When a single publisher sent DDS

Figure 23: Impact of Competing DDS Flows on End-to-

End Delay

topic data to several subscribers we found the latency val-

ues for different configurations remained ∼13 ms. In par-

ticular, the average latency is ∼13 ms for the 1-to-2 vari-

ant and the average latency is ∼12 ms for the 1-to-4 and

1-to-8 variants.

Based on these results, we conclude that the number

of subscribers affects end-to-end latency. In comparison

with communication over a LAN, the increase in the num-

ber of subscribers in the WAN adds more jitter to the

overall system. This jitter remains perceivable for the

WAN configuration since communication is measured in

milliseconds. Additional experiments conducted over a

WAN for other configurations—including more than 30

distributed application subscribers—indicated an end-to-

end delay of ∼15 ms.

3.3.5. Evaluating QoS Manager Capabilities for Many-

to-One Communications

Rationale and approach. This experiment is the inverse

of the one in Section 3.3.4 since we considered two ex-

pedited forwarding QoS competing flows sent by two re-

mote publishers to reach a single subscriber. We increased

23



the number of published QoS flow by increasing the num-

ber of participants to 4 and 8 publishers, respectively. Fig-

ure 24 shows the many-to-one latency obtained from trace

files, where each sending DDS application uses the expe-

dited forwarding QoS class supported by Velox.

Figure 24: Impact of Competing DDS Flows on End-to-

End Delay

Results and analysis. As shown in Figure 24, the end-to-

end latency is ∼13ms when two publishers sent DDS top-

ics to a single DDS subscriber. The delay is ∼13ms when

we considered 4 and 8 publishers sending data to a sin-

gle DDS subscriber. The increased number of publishers

does not significantly affect the end-to-end delay during

the experiments. In particular, all data packets marked

with DSCP value 46 are processed with the same priority

in the edge router. The Velox framework can configure

edge router queues to support the expedited forwarding

of packets with high priority.

3.3.6. Evaluating QoS Manager Capabilities for Many-

to-Many communications

Rationale and approach. This experiment evaluates the

impact of increasing number of participants on both pub-

lishers and subscribers. We started with 2-to-2 communi-

cation where two publishers send DDS topic data to both

two remote subscribers. We then increased the number of

participants to have 4-to-4 and 8-to-8 communication, re-

spectively. Figure 25 shows the many-to-many configura-

tion using the expedited forwarding QoS class supported

by Velox.

Figure 25: Impact of the competing flows on the end-to-

end delay

Results and analysis. The latency experienced for many-

to-many communication shows a time delay of ∼14 ms

for the 2-to-2 configuration. The latency increases to ∼22

ms for the 4-to-4 configuration and ∼45 ms for the 8-to-8

configuration. By setting the DDS reliability QoS pol-

icy setting to “reliable” (i.e., the samples were guaranteed

to arrive in the order published), Velox helps to balance

time-determinism and data-delivery reliability.

The latency for the 8-to-8 configuration is higher than

the 2-to-2 and 4-to-4 values because the data writers

maintain a send queue to hold the last “X” number of sam-

ples sent. Likewise, data readers maintain receive queues

with space for consecutive “X” expected samples. Never-

theless, the end-to-end latency for the 8-to-8 configuration

is acceptable because DDS ensures the one-way delay for

applications in DRE systems is less than 100 ms.

4. Related work

Conventional techniques for providing network QoS to

applications incur several key limitations, including a lack

of mechanisms to (1) specify deployment context-specific

network QoS requirements and (2) integrate functional-

ity from network QoS mechanisms at runtime. This sec-

tion compares the Velox QoS provisioning mechanisms

for DiffServ-enabled networks with related work. We di-

vide the related work into general middleware-based QoS

management solutions and those that focus on network-

level QoS management.

24



4.1. QoS Management Strategies in Middleware

Different QoS properties are essential to provide each

operation the right data at the right time, and hence the

network infrastructure should be flexible enough to sup-

port varying workloads at different times during the op-

erations [23], while also maintaining highly predictable

and dependable behavior [24]. Middleware for adaptive

QoS control [25] [26] was proposed to reduce the im-

pact of QoS management on the application code, which

was extended in the HiDRA project [27] for hierarchical

management of multiple resources in DRE systems [28].

Many middleware-based technologies have also been pro-

posed for multimedia communications to achieve the re-

quired QoS for distributed systems [29] [30].

QoS management in content-based pub/sub middle-

ware [31] allows powerful content-based routing mech-

anisms based on the message content instead of IP-based

routing. Likewise, many pub/sub standards and technolo-

gies (e.g., Web Services Brokered Notification [32] and

the CORBA Event Service [33]) have been developed to

support large-scale data-centric distributed systems [34].

These standards and technologies, however, do not pro-

vide fine-grained and robust QoS support, but focus on

issues related to monitoring run-time application behav-

ior. Addressing these challenges requires end-system QoS

policies to control the deployment and the self-adaptation

of resources to simplify the definition and deployment

of network behavior [35]. Besides, many pub/sub mid-

dleware [36] have been proposed for real-time and dis-

tributed systems to ensure both performance and scalabil-

ity in QoS-enabled components for DRE systems, as well

as for Web-enabled applications.

For example, [37] proposed a reactive QoS-aware ser-

vice for DDS for embedded systems to refactor the DDS

RTPS protocol. This approach scales well for DRE sys-

tems comprising on-board DDS applications, however, it

does not provide any analyses about the schedulability of

the occurring events, and how it can impact the behav-

ior of the system end-to-end. In addition, we developed

container-based pub/sub services in the context of OMG’s

Lightweight CORBA Component Model (LwCCM) [38].

We argue this solution is restricted to few number of QoS

policies. It provides only two QoS settings that can be

mapped into 2 network services that can be used in the

context of mono-domain network. The solution provided

in this paper benefits from the rich set of DDS QoS poli-

cies that we used in the context in multi-domain network.

This allows defining more flexible classes of services to fit

the application requirements. In addition,[39] presented

a benchmark of DDS middleware regarding it timeliness

performance. Authors studied the DDS QoS properties

in the context of Best-Effort network. Our concerns is

using the DDS QoS policies that allows controlling the

QoS proprieties end-to-end. Our work addresses the QoS-

based network architecture which help us to mark out the

latency experienced in the network.

In [40] authors presented the integration of the DDS

middleware with SOA and web-service into a single

framework to allow teams collaboration over the Inter-

net. Since this solution allow the interoperability between

heterogeneous applications, however, the end-to-end QoS

can be guaranteed because the additional latencies added

by the web interfaces. Likewise, in [41] the authors pro-

posed a redirection proxy on top of DDS to support adap-

tation to mobile networks. Even if this architecture adds

a Mobile DDS client implemented in mobile device, the

Mobile DDS Clients are expected to run in single network

domains in wireless networks with connectivity guaran-

tees, which is not the case in heterogeneous networks.

We argue that using a redirecting proxy can have sev-

eral shortcomings when applied to real-time communica-

tion. In particular, our solution benefits from the map-

ping between the application layer and the middleware

layer to improve the QoS constraints required by the each

data flow. Without using either redirection proxy or mo-

bile agent, therefore, each flow in our solution has a spe-

cific requirement that allows grouping them into different

classes of traffic, where each class has its specific DDS

QoS policies that we mapped to a specific IP services.

In [42], authors presented a broker-like redirection

layer to allow P2P data dissemination between remote

participants. We argue that even if we use brokers, we

will still need to use our solution because even the bro-

kers will be geographically distributed, and our approach

should apply even if we have brokers.

To assess the adequate QoS supply chain management

application, authors in [43] presented a queuing Petri net

methodology for message-oriented event-driven systems.

Such a system is composed of interconnected business

products and services required to the end user. Petri nets

are well suited to analyze the performance of Flexible

25



Manufacturing System (FMS) which involves measuring

the production rate, machine utilization, kanban schedul-

ing, etc. In this model, the transportation times are in-

cluded in the transitions times. In comparison with our

analysis model, this one differs from ours on three points:

first, the FMS application does not require any real-time

constraints when putting it in production; even if some

cases require this, the queuing Petri net is not the best

choice to analyze the performance of the system, but the

timed petri net is more appropriate for this purpose. Thus,

TINA (TIme petri NetAnalyzer) 8 is a toolbox developed

in our lab which allows analyzing real-time system using

time petri nets. Second, DDS is not a message-oriented

middleware (e.g., JMS), even if DDS topics are similar

to messages, DDS is a data-centric middleware. DDS and

JMS are based on fundamentally different paradigms with

respect to data modeling, dataflow routing, discovery, and

data typing. Finally, the analytical model presented in this

paper is based on queuing theory to perform analysis of

real-time constraints in our application. The model dif-

fers from the petri net model in the way the performance

analysis is inferred from the model and how they can be

applied in telecommunication system.

The OMG’s Data Distribution Service (DDS) defines

several timing parameters (e.g., deadline, latency budget)

that are suitable for network scheduling rather than the

data processing in the processor since those QoS parame-

ters are used to update the topic production profile. For

example, the deadline QoS manages the write updates

between samples, while latency budget QoS can control

the end-to-end latency. DDS QoS policies thus effec-

tively make the communication network a schedulable en-

tity [44]. In contrast, DDS does not provide policies re-

lated to scheduling in the processor.

Despite a range of available middleware-based QoS

management solutions, there has heretofore been a gen-

eral lack of tools to analyze the predictability and timeli-

ness of these solutions. Verifying these solutions formally

requires performance modeling techniques (such as those

described in Section 2.1) to empirically validate QoS in

computer networks. Our performance modeling approach

can be used to specify both the temporal non-determinism

of weakly distributed applications and the temporal vari-

8http://projects.laas.fr/tina

ability of the data processing when using DDS middle-

ware. DDS middleware can use the results of our perfor-

mance models to control scheduling policies (e.g., earliest

deadline first, rate monotonic, etc.) and then assign the

scheduling policies for threads created internally by the

middleware.

4.2. Network-level QoS Management

Prior middleware solutions for network QoS manage-

ment [45] focus on how to add layer 3 and layer 2

services for CORBA-based communication [46] [47].

A large-scale event notification infrastructure for topic-

based pub/sub applications has been suggested for peer-

to-peer routing overlaid on the Internet [48]. Those ap-

proaches can be deployed only in a single-domain net-

work, however, where one administrative domain man-

ages the whole network. Extending these solutions to the

Internet can result in traffic specified at each end-system

being dropped by the transit network infrastructure of

other domains [38].

It is therefore necessary to specify the design for net-

work QoS support and session management that can sup-

port the diverse requirements of these applications [49],

which require differentiated traffic processing and QoS,

instead of the traditional best-effort service [40] provided

by the Internet. Integrating signaling protocols (such as

SIP and H.323) into the QoS provisioning mechanisms

has been proposed [50] with message-based signaling

middleware for the control plane to offer per-class QoS.

Likewise, a network communication broker [51, 46] has

been suggested to provide per-class QoS for multimedia

collaborative applications. This related work, however,

supports neither mobility service management nor scala-

bility since it adds complicated interfaces to both applica-

tions and middleware for the QoS notification. When an

event occurs in the network, applications should adapt to

this modification [52], e.g., by leveraging different codecs

that adapt their rates appropriately.

Authors in [42, 53] have provided a framework 9 that

address the reliability and the scalability of DDS commu-

nication over P2P large-scale infrastructure. This work,

however, is based on the best-effort QoS mechanisms of

9http://lia.deis.unibo.it/Research/REVENGE/index.

html

26

http://projects.laas.fr/tina
http://lia.deis.unibo.it/Research/REVENGE/index.html
http://lia.deis.unibo.it/Research/REVENGE/index.html


the network and omits the fact that if the network is unable

to provide the QoS provisioning and the resource alloca-

tion, there will be no guarantees that the right data will be

transmitted at the right time.

Our earlier DRE middleware work [54] has focused

on priority reservation and QoS management mechanisms

that can be coupled with CORBA at the OS level to pro-

vide flexible and dynamic QoS provisioning for DRE ap-

plications. In the current work, our Velox framework

provides an architecture that extends the best-effort QoS

properties found in prior work. In particular, our solution

considers application flows requirements and maps them

into the DDS layer to allow end-to-end QoS provisioning.

We therefore integrate QoS along two key dimensions: (1)

the horizontal direction between different adjacent layers

in the network stack (application, middleware, and net-

work), and (2) the vertical direction between homologous

layers (layers at the same level of the OSI model).

To address limitations with related work, the Velox

framework described in Section 2.2 need not modify

existing applications to achieve the benefits of assured

QoS. Velox uses QoS provisioning mechanisms based

on MPLS over DiffServ QoS-based architectures. These

mechanisms were widely discussed in several papers in

networking including admission control mechanism with

COPS [55], NSIS [56] protocol and MPLS mapping over

WAN [57].

Experiments were conducted with one MPLS tunnel

because if there are any traffic engineering tunnels to the

BGP next hop, and if one or more of those is available

for use by the packet in question, one of these tunnels is

chosen. This tunnel will be associated with an MPLS la-

bel, the “tunnel label”. The tunnel label gets pushed on

the MPLS label stack, and the packet is forwarded to the

tunnels next hop.

In this paper, DDS applications may be connected to

one Service Provider (SP) and/or many SPs, but this

is made transparent to the application since it supposes

there is a Service Level Agreement (SLA) between the

SPs (RFC 4364: BGP/MPLS IP VPNs) [57]. Using one

MPLS tunnel is therefore sufficient for the application to

distribute DDS Topics end-to-end, so there is no need to

manage multiple MPLS tunnels is required (the SLA al-

lows data distribution among multiple ASs transparently).

Velox allows end users to request a specific QoS-

guaranteed connectivity independent of the chosen ap-

plications, thereby achieving net neutrality requirements.

Moreover, Velox does not alter the decentralized Inter-

net model since it relies on bi-lateral agreements among

neighboring domains. Velox’s policy-based management

also enables the integration of services in a single session

that requires network resources, such as a bandwidth and

controllable end-to-end delay. It provides the mapping of

the DDS session between the application at the service

plane and the underlying network. The Velox QoS server

thus addresses mobility issues by installing the required

QoS allocation scheme for DDS sessions using per-flow

QoS reservation in edge routers.

5. Conclusions

Although DDS implementations have been used to de-

velop many scalable, efficient, and predictable DRE appli-

cations, the DDS standard has several limitations, includ-

ing lack of processor scheduling and end-to-end QoS sup-

port. This paper describes how we addressed these limita-

tions by (1) analyzing DDS scheduling capabilities to de-

liver DDS samples on an end-system using a performance

model and validating the accuracy of this model via both

simulation results and empirical experiments and (2) de-

veloping the Velox policy-based management framework

to provide end-to-end QoS provisioning for DDS-based

applications by controlling network resources, such as a

bandwidth and end-to-end delay.

We learned following lessons from developing and

evaluating our performance model and the Velox frame-

work:

• Ontology-based mechanisms are needed to auto-

mate DDS QoS configurations. The results in this pa-

per underscore the importance of integrating QoS poli-

cies at both the end-system and network levels to supply

users with the right data at the right time, support vary-

ing workloads at different times during operations, and

maintain predictable behavior. Velox currently supports

end-to-end QoS provisioning for DDS applications over

multi-domain networks, but lacks a robust means to en-

sure semantic consistency of QoS policies end-to-end. In

particular, a DDS QoS configuration developed for one

scenario in one operating environment may be subopti-

mal for different scenarios in different operating environ-

ments. Our future work will therefore focus on adding

27



ontology-based mechanisms [58, 59] to Velox that au-

tomate the assured configuration of DDS QoS policies,

thereby adapting network resources to better meet appli-

cation requirements.

For example, for effective QoS-based service selection

DDS applications require a tool to determine which trans-

port policy should be provided to the network to decide

which DiffServ service (AF, EF, etc.) best fits applica-

tion requirements. The use of ontologies makes it possible

to detect the appropriate Service Level Agreement (SLA)

to perform matching between the DDS application needs

and the service offered in real-time. This tool can be im-

plemented as an adjacent layer to the DDS middleware to

detect actual behavior of the network service.

• History Cache latency must be taken into account

when calculating the overall delay. This paper described

the specification and the evaluation of the performance

model to calculate the time latency at an end-system and

then conducted experimentations to verify the effective-

ness of this approach. The fidelity and effectiveness of

the delay computation model can be improved when all

software layers and hardware artifacts are accurately con-

sidered in the model.

For example, the results from Section 3.2 show dis-

crepancies between the delay predicted by our analytical

model versus the experimentally validated model. These

discrepancies stem from simplifying assumptions made

when integrating DDS with the application layer, e.g., we

did not consider the history cache that keeps DDS top-

ics in the case of durable data writers and readers nor did

we consider the DLRL (Data Local Reconstruction Layer)

layer of DDS. Accurate modeling can help improve time

delay calculations required by the history cache in the la-

tency calculation, both in terms of performance and mem-

ory consumption. Our future work will therefore consider

the case were durable writers and readers keep their his-

tory cache in permanent storage and study its impact on

the end-to-end latency.

• A constrained application protocol can help sup-

port QoS provisioning for resource-constrained Inter-

net devices. This paper explained how the web-service

QoS provisioning provided by Velox can control net-

work elements by enforcing policy control mechanisms,

negotiating QoS, and coordinating the data and signal-

ing paths to perform resource reservation. Velox does

not, however, address the QoS requirements of resource-

constrained applications over the Internet that have power

and energy limitations. In particular, to allow machine-

to-machine (M2M) communication, a special data format

should replace existing HTML and XML-based formats

with REST-based formats that work with existing Internet

solutions. Our future work will therefore develop cross-

layer DDS-based solutions that support efficient and com-

pact energy transmission methods, energy harvesting and

service-layer architecture for M2M that includes bindings

for both HTTP/REST and CoAP (Constrained Applica-

tion Protocol) [60] for constrained battery-powered de-

vices.

• Large deployments of publish/subscribe applica-

tions involve brokers. For scalability reasons, large

deployments of publish/subscribe applications often in-

volve brokers at various network and middleware lev-

els [61, 62, 6, 38]. Although this paper focused on end-

to-end timeliness of event dissemination between a pub-

lisher and a subscriber without involving any brokers, our

approach should seamlessly apply to a system comprising

event brokers.

• Additional dimensions of QoS require refinements

in the solution. The paper addresses the end-to-end time-

liness issues in large-scale networks, which relies on in-

formation sharing between different participants among

shared data spaces. Since DDS is deployed in mission-

critical and/or enterprise DRE systems for its ultra-low

latency benefits, the framework should support high infor-

mation assurance requirements without overloading the

overall system. A minimum and efficient use of cryp-

tography is thus required to enhance the integrity of the

information dissemination. In particular, security poli-

cies to control and restrict access to information to only

the authorized recipients should be included to the frame-

work to prevent denial of service attacks and ensure the

non-repudiation of information.

Our future work will therefore develop security policies

to allow authentication, authorization, access control, and

secure transport. These policies can be defined via the

Security Assertion Markup Language (SAML) to allow

exchanging public/private keys as part of the DDS QoS

policies, e.g., within a confidential DDS topics that may

be transported using the Datagram Transport Layer Se-

curity (DTLS) protocol. Additional work is also needed

to support reliability of the event dissemination and toler-

ance to failures.

28



References

[1] J. White, B. Dougherty, R. Schantz, D. C. Schmidt,

A. Porter, A. Corsaro, R&D Challenges and Solu-

tions for Highly Complex Distributed Systems: a

Middleware Perspective, the Springer Journal of In-

ternet Services and Applications special issue on the

Future of Middleware 2 (3).

[2] OMG-DDS, Data distribution service for real-time

systems specification, ddsv1.2, http://www.omg.

org/spec/DDS/1.2/.

[3] G. Kartik, K. Kyoung-Don, Coordinated allocation

and scheduling of multiple resources in real-time op-

erating systems, in: Proc. OSPERT, June 2007.

[4] A. Hakiri, B. Pascal, A. Gokhale, G. Thierry, D. C.

Schmidt, J. Hoffert, SIP-based QoS Support Ar-

chitecture and Session Management for DDS-based

Distributed Real-time and Embedded Systems, in:

Poster at ACM Distributed Event-based Systems

(DEBS ’11), ACM, Yorktown Heights, NY, USA,

2011, pp. 389–390.

[5] A. Hakiri, A. Gokhale, D. C. Schmidt, B. Pas-

cal, J. Hoffert, G. Thierry, A SIP-based Network

QoS Provisioning Framework for Cloud-hosted

DDS Applications, in: 1st International Symposium

on Secure Virtual Infrastructures (DOA-SVI’11),

Springer LNCS, Crete, Greece, 2011, pp. 507–524.

[6] R. E. Schantz, J. P. Loyall, C. Rodrigues, D. C.

Schmidt, Y. Krishnamurthy, I. Pyarali, Flexible and

adaptive qos control for distributed real-time and

embedded middleware, in: Middleware, Vol. 2672

of Lecture Notes in Computer Science, Springer,

Rio de Janeiro, Brazil, 2003, pp. 374–393.

[7] E. N. Gilbert, Capacity of a burst-noise channel, Bell

System Technical Journal (1960) 1253–1265.

[8] M. David, M. Jim, B. Jack, K. William, Network

time protocol version 4: Protocol and algorithms

specification, IETF, RFC 5905.

[9] A. Konrad, B. Y. Zhao, A. D. Joseph, Determining

model accuracy of network traces, Journal of Com-

puter and System Sciences (2006) 1156–1171.

[10] P. Gao, S. Wittevrongel, K. Laevens,

D. De Vleeschauwer, H. Bruneel, Distribu-

tional littles law for queues with heterogeneous

server interruptions, Electronics Letters 46 (2010)

763–764.

[11] J. Wroclawski, The use of rsvp with ietf integrated

services, IETF RFC 2210.

[12] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang,

W. Weiss, An architecture for differentiated service,

IETF RFC 2475.

[13] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell,

J. McManus, Requirements for traffic engineering

over mpls, IETF RFC 2702.

[14] F. L. Faucheur, E. Rosen, Advertising IPv4 Network

Layer Reachability Information with an IPv6 Next

Hop, RFC 5549 (Proposed Standard) (May 2009).

URL http://www.ietf.org/rfc/rfc5549.txt

[15] R. Hancock, G. Karagiannis, J. Loughney, S. V. den

Bosch, Next Steps in Signaling (NSIS): Framework,

RFC 4080 (Informational) (Jun. 2005).

URL http://www.ietf.org/rfc/rfc4080.txt

[16] P. Calhoun, J. Loughney, E. Guttman, G. Zorn,

J. Arkko, Diameter base protocol, IETF RFC 3588.

[17] P. Owezarski, P. Berthou, Y. Labit, D. Gauchard,

LaasNetExp: a generic polymorphic platform for

network emulation and experiments, 4th Interna-

tional Conference on Testbeds and Research In-

frastructures for the Development of Networks and

Communities.

[18] O. Sangyoon, K. Jai-Hoon, F. Geoffrey, Real-time

performance analysis for publish/subscribe systems,

Future Generation Computer Systems 26 (2009) 318

– 323.

[19] B. Davie, A. Charny, J. Bennet, K. Benson, J. L.

Boudec, W. Courtney, S. Davari, V. Firoiu, D. Stil-

iadis, An Expedited Forwarding PHB (Per-Hop

Behavior), RFC 3246 (Proposed Standard) (Mar.

2002).

URL http://www.ietf.org/rfc/rfc3246.txt

29

http://www.omg.org/spec/DDS/1.2/
http://www.omg.org/spec/DDS/1.2/
http://www.ietf.org/rfc/rfc5549.txt
http://www.ietf.org/rfc/rfc5549.txt
http://www.ietf.org/rfc/rfc5549.txt
http://www.ietf.org/rfc/rfc5549.txt
http://www.ietf.org/rfc/rfc4080.txt
http://www.ietf.org/rfc/rfc4080.txt
http://www.ietf.org/rfc/rfc3246.txt
http://www.ietf.org/rfc/rfc3246.txt
http://www.ietf.org/rfc/rfc3246.txt


[20] J. Heinanen, F. Baker, W. Weiss, J. Wroclawski, As-

sured Forwarding PHB Group, RFC 2597 (Proposed

Standard), updated by RFC 3260 (Jun. 1999).

URL http://www.ietf.org/rfc/rfc2597.txt

[21] D. Grossman, New Terminology and Clarifications

for Diffserv, RFC 3260 (Informational) (Apr. 2002).

URL http://www.ietf.org/rfc/rfc3260.txt

[22] D. Mills, J. Martin, J. Burbank, W. Kasch, Network

Time Protocol Version 4: Protocol and Algorithms

Specification, RFC 5905 (Proposed Standard) (Jun.

2010).

URL http://www.ietf.org/rfc/rfc5905.txt

[23] D. C. Schmidt, D. L. Levine, S. Mungee, The design

of the tao real-time object request broker, Computer

Communications 21 (1998) 294–324.

[24] J. Chen, M. Diaz, L. Llopis, B. Rubio, J. M. Troya,

A survey on quality of service support in wireless

sensor and actor networks: Requirements and chal-

lenges in the context of critical infrastructure protec-

tion, J. Netw. Comput. Appl. (2011) 1225–1239.

[25] G. Duzan, J. Loyall, R. Schantz, R. Shapiro,

J. Zinky, Building adaptive distributed applications

with middleware and aspects, 2004, pp. 66–73.

[26] S. P. Mahambre, S. Kumar-Madhu, U. Bellur, A tax-

onomy of qos-aware, adaptive event-dissemination

middleware, IEEE Internet Computing 11 (2007)

35–44.

[27] N. Shankaran, X. D. Koutsoukos, D. C. Schmidt,

Y. Xue, C. Lu, Hierarchical control of multiple re-

sources in distributed real-time and embedded sys-

tems, in: ECRTS, 2006, pp. 151–160.

[28] W. Duangdao, N. Klara, G. Xiaohui, X. Dongyan,

2k: An integrated approach of qos compilation and

reconfigurable, component-based run-time middle-

ware for the unified qos management framework,

2001, pp. 373–394.

[29] M. Valls, A. Alonso, J. Ruiz, A. Groba, An architec-

ture of a quality of service resource manager mid-

dleware for flexible embedded multimedia systems,

in: Software Engineering and Middleware, LNCS,

2003, pp. 36–55.

[30] K. Nahrstedt, H. H. Chu, S. Narayan, Qos-aware re-

source management for distributed multimedia ap-

plications, J. High Speed Netw. 7 (1998) 229–257.

[31] A. Farroukh, E. Ferzli, N. Tajuddin, H. A. Jacob-

sen, Parallel event processing for content-based pub-

lish/subscribe systems, in: ACM. DEBS ’09, 2009,

pp. 1–8.

[32] OASIS, Web services brokered notification version

1.3, http://www.oasis-open.org/.

[33] CROBA-OMG, Common object request broker ar-

chitecture (corba/iiop), 3.1,, http://www.omg.

org/spec/CORBA/3.1/.

[34] J. A. Dianes, M. Diaz, B. Rubio, Using standards

to integrate soft real-time components into dynamic

distributed architectures, Comput. Stand. Interfaces

(2012) 238–262.

[35] C. D. Gill, J. M. Gossett, D. Corman, J. P. Loyall,

R. E. Schantz, M. Atighetchi, D. C. Schmidt, Inte-

grated adaptive qos management in middleware: A

case study, Real-Time Syst. 29 (2005) 101–130.

[36] P. T. Eugster, P. A. Felber, R. Guerraoui, A. M. Ker-

marrec, The many faces of publish/subscribe, ACM

Comput. Surv. 35 (2003) 114–131.

[37] X. Lu, X. Li, T. Yang, Z. Liao, W. Liu, H. Wang,

Qos-aware publish-subscribe service for real-time

data acquisition, Business Intelligence for the Real-

Time Enterprise 27 (2009) 29–44.

[38] J. Balasubramanian, S. Tambe, B. Dasarathy,

S. Gadgil, F. Porter, A. Gokhale, D. C. Schmidt,

Netqope: A model-driven network qos provisioning

engine for distributed real-time and embedded sys-

tems, in: RTAS’ 08: Proceedings of the 14th IEEE

Real-Time and Embedded Technology and Appli-

cations Symposium, IEEE Computer Society, Los

Alamitos, CA, USA, 2008, pp. 113–122. doi:

10.1109/RTAS.2008.32.

[39] C. Esposito, S. Russo, D. D. Crescenzo, Perfor-

mance Assessment of OMG Compliant Data Distri-

bution Middleware, in: Ipdps’08, 2008, pp. 1–8.

30

http://www.ietf.org/rfc/rfc2597.txt
http://www.ietf.org/rfc/rfc2597.txt
http://www.ietf.org/rfc/rfc2597.txt
http://www.ietf.org/rfc/rfc3260.txt
http://www.ietf.org/rfc/rfc3260.txt
http://www.ietf.org/rfc/rfc3260.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.ietf.org/rfc/rfc5905.txt
http://www.omg.org/spec/CORBA/3.1/
http://www.omg.org/spec/CORBA/3.1/
http://dx.doi.org/10.1109/RTAS.2008.32
http://dx.doi.org/10.1109/RTAS.2008.32


[40] Y.-H. Wang, S.-H. Yang, A. Grigg, J. Johnson, A

dds based framework for remote integration over the

internet, in: 7th Annual Conference on Systems En-

gineering Research, CSER, 2009.

[41] K.-J. Kwon, C.-B. Park, H. Choi, A Proxy-based

Approach for Mobility Support in the DDS System,

in: 6th IEEE International Conference on Industrial

Informatics, IEEE, 2008.

[42] A. Corradi, L. Foschini, A dds-compliant p2p infras-

tructure for reliable and qos-enabled data dissemina-

tion, in: IPDPS, 2009, pp. 1–8.

[43] K. Sachs, S. Kounev, A. Buchmann, Performance

modeling and analysis of message-oriented event-

driven systems, Software & Systems Modeling

(2012) 1–25.

[44] J. Schlesselman, G. Pardo-Castellote, B. Farabaugh,

Omg data-distribution service (dds): architectural

update, in: IEEE, MILCOM 2004, 2004, pp. 961–

967.

[45] E. S. Richard, P. L. Joseph, R. Craig, C. S. Douglas,

K. Yamuna, I. P., Flexible and adaptive qos control

for distributed real-time and embedded middleware,

2003, pp. 374–393.

[46] B. Dasarathy, S. Gadgil, R. Vaidyanathan,

K. Parmeswaran, B. Coan, M. Conarty, V. Bhanot,

Network qos assurance in a multi-layer adaptive

resource management scheme for mission-critical

applications using the corba middleware framework,

IEEE. RTAS.

[47] B. Dasarathy, S. Gadgil, R. Vaidyanathan, A. Nei-

dhardt, B. Coan, K. Parmeswaran, A. McIntosh,

F. Porter, Adaptive network qos in layer-3/layer-

2 networks as a middleware service for mission-

critical applications, JSS 80.

[48] A. I. T. Rowstron, A. M. Kermarrec, M. Cas-

tro, P. Druschel, Scribe: The design of a large-

scale event notification infrastructure, in: Springer,

COST, 2001, pp. 30–43.

[49] S. Michal, P. Pavel, F. Dario, C. Tommaso, C. Fabio,

H. Zdenek, L. Giuseppe, Modular software architec-

ture for flexible reservation mechanisms on hetero-

geneous resources, Journal of Systems Architecture

57 (2011) 366–382.

[50] G. L. Teodora, H. Schmidt, A. Schorr, F. J. Hauck,

A. Kassler, A session initiation protocol based mid-

dleware for multi-application management, IEEE.

ICC.

[51] C. Zhang, Sadjadi, S. Masoud, S. Weixiang, R. Raju,

D. Yi;, A user-centric network communication bro-

ker for multimedia collaborative computing, IEEE,

CollaborateCom.

[52] C. Antonio, F. Luca, A dds-compliant p2p infras-

tructure for reliable and qos-enabled data dissemi-

nation, in: IEEE-IPDPS, 2009, pp. 1–8.

[53] A. Corradi, L. Foschini, L. Nardelli, A dds-

compliant infrastructure for fault-tolerant and scal-

able data dissemination, in: Proceedings of the The

IEEE symposium on Computers and Communica-

tions, ISCC ’10, 2010, pp. 489–495.

[54] S. R. E., L. J. P., R. Craig, S. D. C., K. Yamuna,

I. Pyarali, Flexible and adaptive qos control for dis-

tributed real-time and embedded middleware, in:

Proceedings of the ACM/IFIP/USENIX 2003 In-

ternational Conference on Middleware, Middleware

’03, 2003, pp. 374–393.

[55] S. Salsano, Cops usage for diffserv resource alloca-

tion (cops-dra), IETF Draft, draft-salsano-cops-dra-

00.

[56] J. Manner, G. Karagiannis, A. McDonald, Nsis sig-

naling layer protocol (nslp) for quality-of-service

signaling, RFC 5974 (Experimental) (Oct. 2010).

[57] E. Rosen, Y. Rekhter, BGP/MPLS IP Virtual Private

Networks (VPNs), RFC 4364 (Proposed Standard)

(2006).

[58] R. Carlos, L. S. Rito, Álvarez Sabucedo Luis M.,

C. Paulo, An ontology for managing network ser-

vices quality, Expert Syst. Appl. 39 (9) (2012) 7938–

7946.

31



[59] J. L. Pastrana, E. Pimentel, M. Katrib, Qos-enabled

and self-adaptive connectors for web services com-

position and coordination, Computer Languages,

Systems & Structures 37 (1) (2011) 2 – 23.

[60] C. Bormann, A. P. Castellani, Z. Shelby, Coap:

An application protocol for billions of tiny internet

nodes., IEEE Internet Computing 16 (2012) 62–67.

[61] R. Campbell, R. Daley, B. Dasarathy, P. Lardieri,

B. Orner, R. Schantz, R. Coleburn, L. R. Welch,

P. Work, Toward an approach for specification of qos

and resource information for dynamic resource man-

agement, in: Second RTAS Workshop on Model-

Driven Embedded Systems (MoDES ’04), 2004.

[62] B. Dasarathy, S. Gadgil, R. Vaidhyanathan,

K. Parmeswaran, B. Coan, M. Conarty, V. Bhanot,

Network QoS Assurance in a Multi-Layer Adaptive

Resource Management Scheme for Mission-Critical

Applications using the CORBA Middleware Frame-

work, in: IEEE RTAS, 2005.

32


	Introduction
	The Velox Modeling and End-to-end QoS Management Framework
	An Analytical Performance Model of the DDS End-to-end Path
	Context: DDS and its Real-time Communication Model
	Problem: Determining End-to-end DDS Performance at Design-time
	Solution Approach: Developing an Analytical Performance Model for DDS

	Architecture of the End-to-end Velox QoS Framework
	Context: Supporting DDS over WANs
	Problem: Dealing with Multiple Systemic Issues to Support DDS in WANs
	Solution Approach: A Layer 3 QoS Management Middleware


	Analysis of Experimental Results
	Hardware and Software Testbed and Configuration Scenario
	Validating the Performance Scheduling Model
	Estimating the Publish and Subscribe Activity at the Middleware-Application Interface in the Pub/Sub Model
	Estimating the CPU Scheduling Activities in the Analytical Model
	Estimating the Network Time Delay in the Analytical Model
	Comparing the Analytical Performance Model with Experimental Results
	Impact of Increase in Number of Subscribers

	Evaluation of the Velox Framework
	Configuration of the Velox Framework
	Evaluating the QoS Manager's QoS Provisioning Capabilities
	Evaluating the Impact of the Velox QoS Manager Capabilities on Latency
	Evaluating QoS Manager Capabilities for One-to-Many Communications
	Evaluating QoS Manager Capabilities for Many-to-One Communications
	Evaluating QoS Manager Capabilities for Many-to-Many communications


	Related work
	QoS Management Strategies in Middleware
	Network-level QoS Management

	Conclusions

