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S U M M A R Y
Multiparameter full waveform inversion (FWI) is a challenging quantitative seismic imaging
method for lithological characterization and reservoir monitoring. The difficulties in multi-
parameter FWI arise from the variable influence of the different parameter classes on the
phase and amplitude of the data, and the trade-off between these. In this framework, choos-
ing a suitable parametrization of the subsurface and designing the suitable FWI workflow
are two key methodological issues in non-linear waveform inversion. We assess frequency-
domain visco-acoustic FWI to reconstruct the compressive velocity (VP), the density (ρ) or
the impedance (IP) and the quality factor (QP), from the hydrophone component, using a
synthetic data set that is representative of the Valhall oil field in the North Sea. We first assess
which of the (VP, ρ) and (VP, IP) parametrizations provides the most reliable FWI results when
dealing with wide-aperture data. Contrary to widely accepted ideas, we show that the (VP, ρ)
parametrization allows a better reconstruction of both the VP, ρ and IP parameters, first because
it favours the broad-band reconstruction of the dominant VP parameter, and secondly because
the trade-off effects between velocity and density at short-to-intermediate scattering angles
can be removed by multiplication, to build an impedance model. This allows for the match-
ing of the reflection amplitudes, while the broad-band velocity model accurately describes
the kinematic attributes of both the diving waves and reflections. Then, we assess different
inversion strategies to recover the quality factor QP, in addition to parameters VP and ρ. A
difficulty related to attenuation estimation arises because, on the one hand the values of QP

are on average one order of magnitude smaller than those of VP and ρ, and on the other hands
model perturbations relative to the starting models can be much higher for QP than for VP and
ρ during FWI. In this framework, we show that an empirical tuning of the FWI regularization,
which is adapted to each parameter class, is a key issue to correctly account for the attenuation
in the inversion. We promote a hierarchical approach where the dominant parameter VP is
reconstructed first from the full data set (i.e. without any data preconditioning) to build a
velocity model as kinematically accurate as possible before performing the joint update of
the three parameter classes during a second step. This hierarchical imaging of compressive
wave speed, density and attenuation is applied to a real wide-aperture ocean-bottom-cable
data set from the Valhall oil field. Several geological features, such as accumulation of gas
below barriers of claystone and soft quaternary sediment are interpreted in the FWI mod-
els of density and attenuation. The models of VP, ρ and QP that have been developed by
visco-acoustic FWI of the hydrophone data can be used as initial models to perform visco-
elastic FWI of the geophone data for the joint update of the compressive and shear wave
speeds.

Key words: Inverse theory; Controlled source seismology; Seismic attenuation; Computa-
tional seismology; Wave propagation.

1640 C© The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/194/3/1640/645074 by guest on 17 June 2021



Multiparameter visco-acoustic FWI on OBC data 1641

I N T RO D U C T I O N

Full waveform inversion (FWI) is gradually being integrated into
the seismic processing workflow for the building of high-resolution
velocity models that can be used as improved background mod-
els for reverse time migration in complex environments (Plessix
& Perkins 2010; Sirgue et al. 2010; Vigh et al. 2011). FWI is an
optimization problem that seeks to minimize the misfit between
the recorded and modelled seismic data (Tarantola 1984, 1987;
Pratt et al. 1998; Virieux & Operto 2009). The synthetic data are
computed with the two-way wave equation, to exploit the full in-
formation content of the data associated with diving waves, pre-
and post-critical reflections, diffractions, and so on. However, sev-
eral simplifications in the physical description of the subsurface are
generally considered for seismic modelling and inversion. The most
basic of these considers the subsurface to be an acoustic medium
that can be parametrized by the compressional (P) wave speed only
(e.g. Ravaut et al. 2004; Brenders & Pratt 2007). These simplifica-
tions reduce the computational burden of the seismic modelling as
well as the non-linearity of the FWI. Although high-resolution P-
wave velocity models can provide useful inferences for geological
interpretation, a more realistic description of the physical proper-
ties of the subsurface, and in particular of the elastic properties, is
required for realistic reservoir and fluid characterization (Shi et al.
2007).

One of these physical properties is the density, which is closely
related to the porosity φ by the relation: ρ = (1 − φ)ρ0 + φρ f l,
where ρ0 and ρ f l are the grain and pore fluid densities respectively.
The velocity is not linearly related to the porosity, and thus not to the
density. For example, the velocities can decrease because of cracks
and faults, while the cracks have a null porosity (Mavko et al.
2009). This is why the empirical relations between the velocity
and the density (Gardner et al. 1974; Castagna et al. 1993) are
often more realistic within high-pressured and fluid-saturated rock.
Another related physical property is the impedance, which controls
the partitioning of the seismic energy at an interface. The impedance
is traditionally reconstructed rather than the density, because of the
potential trade-off between density and P-wave velocity to match
amplitudes of reflected waves (Mora 1987; Tarantola 1987; Forgues
& Lambaré 1997).

Generally speaking, the seismic reflection imaging workflow is
subdivided into two distinct tasks, which respect the scale sep-
aration between the velocity macromodel and the subsurface re-
flectivity: a highly non-linear problem is first solved to build a
large-scale velocity model from kinematic attributes, followed by a
more linear problem that consists of the imaging of the reflectivity
parametrized by the impedance from dynamic attributes (Tarantola
1986; Métivier et al. 2011). This scale separation occurs, because
the intermediate wavelengths of the subsurface cannot be estimated
from narrow-azimuth reflection data (Jannane et al. 1989). While
the velocity-impedance parametrization makes sense in seismic re-
flection processing, is this parametrization the most suitable one for
FWI of wide-aperture data? Indeed, FWI of wide-aperture data is a
non-linear iterative process, that does not rely on scale separation, as
a continuous spectrum of wavenumbers can theoretically be imaged
from the broad illumination of scattering angles provided by wide-
azimuth surveys (Pratt & Worthington 1990; Neves & Singh 1996;
Sirgue & Pratt 2004). Therefore, the first issue that we address in this
study aims to clarify whether velocity-impedance parametrization
is more suitable than velocity-density parametrization for FWI of
wide-aperture data. Two factors need to be taken into account for this
assessment: the trade-off between the two parameter classes, and the

resolution with which each parameter class can be reconstructed
during FWI.

Attenuation is another physical property that, in addition to the
P-wave velocity, provides useful inferences on the lithology, the
physical state, and the degree of saturation, which are all very in-
formative for reservoir characterization and monitoring (Toksöz &
Johnston 1981; Best et al. 1994; Wang 2008). Intrinsic attenuation
occurs when grains are not elastically bounded (Aki & Richards
1980), or due to the fluid ‘squirt’ within the pore space (Thomsen
et al. 1997), or because of the intrapore clay content (Klimen-
tos & McCann 1990). The footprint of the QP-factor translates in
the data by amplitude attenuation and dispersion effects (Toverud
& Ursin 2005). Numerous methods have been developed to ex-
tract the attenuation from seismic data: the spectral ratio method
(Tonn 1991; Romero et al. 1997; Dasgupta & Clark 1998), the cen-
troid frequency-shift method (Quan & Harris 1997; Plessix 2006a),
least-squares migration (Ribodetti & Virieux 1998; Causse et al.
1999; Ribodetti et al. 2000) and FWI (Liao & McMechan 1995;
Charara et al. 1996; Hicks & Pratt 2001; Askan et al. 2007; Mali-
nowski et al. 2011). Ribodetti et al. (2000) demonstrated with the
ray+Born migration/inversion approach that the reconstruction of
the velocity and the attenuation is only possible when the reflector
is illuminated from above and beneath, as the asymptotic Hessian is
otherwise singular. Mulder & Hak (2009) and Hak & Mulder (2011)
have shown that, when no dispersion is considered, for short-offset
seismic reflection acquisitions, the velocity and the attenuation are
related by a Hilbert transform, which prevents their independent
reconstruction, with numerous combinations of the two parameters
being able to match the data equally well. Only a few applications
of FWI of real land and marine data have been presented for at-
tenuation imaging. Most of these applications were performed for
cross-well acquisitions (Song et al. 1995; Charara et al. 1996; Pratt
et al. 2005; Kamei & Pratt 2008; Rao & Wang 2008), and to a lesser
extent, for surface acquisitions (Hicks & Pratt 2001; Smithyman
et al. 2009; Malinowski et al. 2011). Although Malinowski et al.
(2011) showed that the joint reconstruction of P-wave velocity and
attenuation is possible for very attenuating media, the attenuation
reconstruction at low frequencies can be unstable, because of the
small influence of the attenuation at these frequencies. Attenuation
generally has a much smaller imprint on the data than wave speed,
and in particular, in a marine environment. Therefore, the second
issue that is addressed in this study is related to the design of a ro-
bust hierarchical optimization workflow, which can handle multiple
classes of parameters with variable influence on the data, such as
the P-wave velocity and attenuation.

FWI becomes highly non-linear when multiple classes of pa-
rameters with contrasted influences on the data are reconstructed.
In this framework, a first key issue is the selection of a suitable
parametrization of the subsurface for FWI, which allows the man-
aging of this variable influence as well as the trade-off between
parameters. Here, subsurface parametrization relates to set of in-
dependent parameters that fully describe the subsurface properties
that govern wave propagation under some specific approximation
(e.g. acoustic, elastic). In this study, the influence of one parameter
class on the data for a given subsurface parametrization must be
understood as the wavefield perturbation in terms of phase and/or
amplitude that would be generated by a representative perturbation
of this parameter class (i.e. a perturbation of size and amplitude that
is expected to be reconstructed by FWI according to the intrinsic
resolution power of FWI), while keeping fixed the other parame-
ter classes of the parametrization. According to this definition, the
influence of a given parameter class (e.g. the compressional wave
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speed) will change depending on the other parameter classes in-
volved in the parametrization (e.g. density or impedance) because
of the potential trade-off between these parameters. Note also that
the wavefield perturbation just described is not equivalent to the
partial derivative of the wavefield with respect to the model param-
eter, the values of which are biased by the order of magnitude of the
model parameter. Indeed, many subsurface parametrizations can be
inferred from different non-linear combinations of parameters, and
together with the scaling applied to the different parameter classes,
this choice is not neutral in the framework of non-linear FWI.

A second issue is the design of a suitable hierarchical workflow to
manage different data components (e.g. hydrophones, geophones)
and multiple classes of parameters to reduce the non-linearity of
FWI (Tarantola 1986; Sears et al. 2008; Jeong et al. 2012). As an
illustrative example, the shear (S) wave velocity is generally con-
sidered as a parameter of secondary importance in terms of the
influence on the data in marine environments where soft sediments
can prevent significant P-to-S conversions on the sea bed (Taran-
tola 1986). This second-order parameter can be reconstructed from
geophones, once the P-wave velocity (i.e. the dominant parameter)
has been reconstructed from hydrophones.

This study is the first of a two-part series that investigates
2-D multiparameter FWI of multicomponent ocean-bottom-cable
(OBC) data from the shallow-water Valhall field. These are de-
signed to build visco-acoustic and visco-elastic subsurface models
along two cables of the available 3-D acquisition. In this study, we
discuss the feasibility of the reconstruction of the P-wave veloc-
ity, density or impedance, and the QP-factor from the hydrophone
component in the visco-acoustic approximation. In the companion
report, we will use the subsurface models that are built into this
study as initial or background models to jointly reconstruct the P-
and S-wave velocities from the hydrophone and geophone compo-
nents using visco-elastic FWI.

In the first part of this study, we review the basics of the frequency-
domain FWI method that we use. We stress two key algorithmic
ingredients of multiparameter FWI: the first concerns the optimiza-
tion algorithm, which should take into account the effects of the
Hessian during inversion, to correctly scale the gradients of the
misfit function associated with each parameter class, and the sec-
ond key algorithmic ingredient is the regularization, which should
help to reduce the non-linearity of the inversion without affecting
the ability of the FWI to update parameters that have little influence
on the data. In the second part of this study, we discuss the two
methodological issues addressed here, with a realistic synthetic ex-
ample that is representative of the Valhall field. We first show that the
velocity–density parametrization is more suitable than the velocity–
impedance counterpart for FWI of wide-aperture data. Secondly, we
propose a hierarchical FWI workflow for the reconstruction of the
P-wave velocity, density and attenuation from the hydrophone com-
ponent, using visco-acoustic FWI. In the last part of this study, the
FWI methodology that was developed from the synthetic case study
is applied to a real data case study from Valhall, after which we
draw some conclusions.

V I S C O - A C O U S T I C F W I

Seismic modelling is performed in unstructured triangular meshes
with a frequency-domain velocity–stress finite-element discontinu-
ous Galerkin method (Brossier et al. 2010b). A forward-modelling
operator based on the second-order wave equation for particle ve-
locities and piecewise constant interpolation function (P0) in the
finite-element method is used to build the diffraction kernel of the

FWI from self-adjoint operators. Meanwhile, the incident and ad-
joint wavefields are accurately computed with a first-order velocity–
stress formulation of the wave equation, with either P0, P1 (linear)
or P2 (quadratic) interpolation functions (Brossier 2011). Of note,
the velocity–stress wave equation allows us to introduce the pres-
sure field in a natural way during the seismic modelling for both the
incident and adjoint wavefields.

The misfit function C(m) is given by

C(m) = 1

2
�d†Wd�d

+ 1

2

Np∑
i=1

λi

(
mi − mpriori

)†
Wmi

(
mi − mpriori

)
, (1)

where the hydrophone data-residual vector is denoted by �d, and
is weighted by the operator Wd. The symbol † is the adjoint op-
erator, the transpose conjugate. The matrix Wd can weight data
residuals according to the standard error and/or according to the
source–receiver offset (Ravaut et al. 2004; Operto et al. 2006). The
multiparameter subsurface model is denoted by m = (m1, ..., mNp ),
where Np denotes the number of parameter classes. Attenuation is
implemented easily in frequency-domain modelling and FWI using
a complex-valued velocity given by c̄ = c{1 − [i sgn(ω)]/(2Q P )}
(Tarantola 1988). Contrary to the Kolski–Futterman model (Kolsky
1956), QP is independent of the frequency, because of the small
range of inverted frequencies. In this study, we minimize the misfit
function (eq. 1) with respect to normalized model parameters that
are scaled by their mean value in the initial model, such that each
class of parameter has the same order of magnitude. By doing so,
the partial derivative of the wavefield with respect to the model
parameters give some reasonable insights into the real influence of
the parameters on the data in the sense that these normalized partial
derivative wavefields represent wavefield perturbations generated
by model perturbations defined as a fixed percentage of an average
value of the parameters (Gholami et al. 2013b). This is a deliberate
choice, and other parameter scaling can be viewed to perform FWI.
Let us notice that we also apply this normalization to QP, although
this parameter is dimensionless.

A Tikhonov regularization is applied to each class of parameter, i,
through a roughness operator Wmi , which forces the difference be-
tween the model mi and a prior model mpriori

to be smoothed. The
scalars λi control the influence of the data-space misfit function
1
2 �d†Wd�d relative to the model-space misfit functions 1

2 (mi −
mpriori

)†Wmi (mi − mpriori
). Of note, the scalar λi can be adapted

to each parameter class i, which is helpful when the partial deriva-
tive wavefields with respect to different parameter classes have
contrasted amplitudes, as we shall see. The prior model is the start-
ing model at the first frequency group, and for each new frequency
group, it is set to be the final model of the previous frequency group,
in order to recover better-resolved models at the high frequencies.

FWI is performed in the frequency domain by local optimization
where the gradient of the misfit function is computed with the
adjoint-state method (Plessix 2006b; Chavent 2009). The expression
of the perturbation model, which minimizes the misfit function at
iteration k, is given by

�m(k) =

�
[

Ŵ
−1
m J(k)†Wd J(k) + Ŵ

−1
m

(
∂J(k)†

∂mT

) (
�d(k) . . . �d(k)

) + �

]−1

�
[
Ŵ

−1
m J(k)†Wd�d(k) + �

(
m(k) − mprior )

)]
(2)
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where J denotes the sensitivity or Fréchet derivative matrix, and �

is a block diagonal damping matrix

� =

⎛⎜⎜⎝
λ1IM ... 0

... ... ...

0 ... λNp IM

⎞⎟⎟⎠ , (3)

and IM is the identity matrix of dimension M, where M denotes the
number of nodes in the computational mesh which is identical for
each parameter class. In eq. (2), � is the real part of a complex
number. The matrix Ŵm is a Np × Np block diagonal matrix, where
each block is formed by the Wmi matrices. On the right-hand side
of eq. (2), the term to be inverted is the full Hessian, which contains
three terms. The first aims to correct the gradient for linear effects
such as the limited bandwidth of the source, the limited spread
of the acquisition geometry, and the geometrical spreading of the
data. The second term corrects the Hessian for double-scattering
effects in non-linear inverse problems (Pratt et al. 1998). The third
regularization term dampens the deconvolution action of the first
two terms of the Hessian to improve the conditioning of the Hessian
matrix. The second term on the right-hand side of eq. (2) is the
gradient of the misfit function, which is composed of two terms:
the first represents the contribution of the data, and it is formed by
the zero-lag correlations of the partial derivative wavefields at the
receiver positions with the data residuals, while the second term is
the model-space regularization term.

It is worth remembering that the partial derivative wavefields
satisfy the differential equation,

B [ω, m(x)]
∂v

∂m j
= −∂B [ω, m(x)]

∂m j
v, (4)

where B[ω, m(x)] and v denote the forward-problem operator (in
our case, the second-order wave-equation operator for particle ve-
locities) and the incident particle velocity wavefield, respectively.
The index j represents each parameter in the mesh, regardless of
the class we consider. The right-hand side of eq. (4) is the sec-
ondary virtual source of the partial derivative wavefield, the spatial
and temporal supports of which are centred on the position of the
diffractor mj and on the arrival time of the incident wavefield at the
diffractor mj, respectively (Pratt et al. 1998). The diffraction pattern
of this virtual source is given by ∂B[ω, m(x)]/∂mj, and it gives
some insights into the sensitivity of the data to the parameter mj for
the parameter class i as a function of the scattering (or aperture)
angle.

We use the quasi-Newton limited memory Broyden–Flechter–
Goldfarb–Shanno (L-BFGS) optimization algorithm to solve eq. (2)
(Nocedal 1980; Nocedal & Wright 1999). The L-BFGS algorithm
computes recursively an approximation of the product of the inverse
of the Hessian with the gradient, from a few gradients and a few
solution vectors from previous iterations. As an initial guess of this
iterative search, we use a diagonal approximation of the approximate
Hessian (the linear term) damped by the � matrix,

H0 =
(

Ŵ
−1
m diag

{
J(k)†Wd J(k)

}
+ �

)−1
. (5)

Various expressions of eq. (2) exist (Greenhalgh et al. 2006), and
these can be selected for convenience of implementation. Our im-
plementation allows the initial estimation of the Hessian (eq. 5)
to be diagonal, and hence easy to invert, because the matrix � is
diagonal unlike Ŵm .

The smoothing operators W−1
mi

are Laplace functions that are
given by

W−1
mi

(z, x, z′, x ′) = σ 2
i (z, x)exp

(−|x − x ′|
τx

)
exp

(−|z − z′|
τz

)
,

(6)

where τ x and τ z denote the horizontal and vertical correlation
lengths that are defined as a fraction of the local wavelength. The
coefficients σ i generally represent the standard error in the frame-
work of Bayesian inversion (e.g. Gouveia & Scales 1998). In this
study, we do not introduce standard deviations in the operators Wmi ,
σ 2

i (z, x) = 1, because we normalize the subsurface parameters by
their mean values. A Laplace function is used for W−1

mi
, because its

inverse in the expression of the misfit function can be computed
analytically (Tarantola 1987, pp. 308–310).

The frequency-domain FWI is performed with a conventional
multiscale approach, which proceeds from low to high frequencies
(Pratt & Worthington 1990; Sirgue & Pratt 2004). A second level
of data preconditioning with respect to time can be implemented
through time damping of seismograms with a decaying exponential
function (Brenders & Pratt 2007; Brossier et al. 2009; Shin & Cha
2009). This time damping is implemented in frequency-domain
seismic modelling with complex-valued frequencies, the imaginary
part of which controls the decay of the amplitude with time. This
is shown by the expression of the Fourier transform of the damped
function p(t)e−(t−t0)/τ written as

p(ω + i/τ )e
t0
τ =

∫ +∞

−∞
p(t)eiωt e−(t−t0)/τ dt, (7)

where τ will be referred to as the time-damping factor in the fol-
lowing.

The aim of this data pre-conditioning is the progressive injection
of more complex or more resolving late-arriving phases into the
inversion to reduce the risk of cycle skipping. An application of
this heuristic approach to land data for the joint update of the P-
and S-wave velocities by joint inversion of body waves and surface
waves was presented by Brossier et al. (2009).

S Y N T H E T I C VA L H A L L C A S E S T U DY

Models and FWI set-up

We now present an application of visco-acoustic FWI to the syn-
thetic Valhall model. The Valhall model is a shallow-water medium
(water depth, 70 m), that is 16 km long and 5.2 km deep (Fig. 1a).
We consider an OBC-like sea bottom acquisition with a maximum
offset of 16 km, and a source and receiver spacing of 50 m. The
depths of the explosive sources and the hydrophones are 6 and
71 m, respectively. Seismic modelling is performed on a hybrid P0–
P1 triangular mesh where the P0 interpolation is set below 160 m in
depth (Brossier 2011; Prieux et al. 2011). A discretization rule of 10
elements per minimum wavelength is used in the regular mesh for
the P0 interpolation, leading to 20-m-long triangle edges. This mesh
is kept the same over the iterations and the inverted frequencies. The
h-adaptivity (the ability to adapt the size of the elements to the local
wavelength through unstructured meshing) is not exploited below
160 m in depth for two reasons: first, the P0 interpolation order
does not provide accurate solutions on unstructured meshes, and
secondly P1 or P2 interpolation orders would not lead to computa-
tional savings because of the limited range of velocity in the Valhall
subsurface (Vpmax/Vpmin = 3500/1400 = 2.5) (see Brossier et al.
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1644 V. Prieux et al.

Figure 1. True (a–d) and corresponding starting models (f–i) for the P-wave velocity (a, f), density (b, g) and impedance (c, h), and true QP-factor model
plotted with different colour scales (d, e). (i) The initial QP-factor model (i) is homogeneous, with QP = 150 and 1000 in the subsurface and in the water,
respectively.

2010a; Brossier 2011, for a more extensive discussion on the use
of the discontinuous Galerkin method in frequency-domain seismic
modelling). However, a finer mesh is used in the first 160 m of the
medium to allow for accurate positioning of the seismic devices.

The true Valhall models for P-wave velocity, density and
impedance, were provided by the BP company, and they are shown
in Figs 1(a)–(c). The QP-factor model is built by picking some geo-
logical interfaces on the velocity model (Fig. 1e). The values of QP

are set to 80 where the velocity is smaller than 1600 m s−1 above
730 m in depth, and where the velocity is smaller than 1800 m s−1

below 730 m in depth. These two ranges of velocities are related to
soft quaternary sediments and gas layers, respectively.

Five frequencies [3.5, 4, 5, 6.1, 7.1] Hz are successively inverted
during FWI. The source excitation is estimated for each shot gather
at each iteration of the FWI with an L2 norm, following the approach
of Pratt (1999), while the the data functional for FWI is based on
the L1 norm (Brossier et al. 2010c).

Smoothing of the gradient and of the diagonal Hessian is per-
formed during the inversion to remove high-frequency artefacts
through eq. (2). Before smoothing, gradient and diagonal Hessians
are projected onto a Cartesian grid, for ease of implementation
before projecting back the smoothed gradient and Hessian on the
triangular mesh for step length estimation and model update. For
both the synthetic and real case, the grid size of the Cartesian grid
is 15 m, which is sufficiently small to avoid spatial aliasing (the best

possible resolution would be λmin/2 = 50m). The vertical correla-
tion length [τ z , see eq. (6)] of the smoothing in each cell ‘i’ is defined
as a fraction of the local wavelength, such that: τz,i = 0.2π VP,i

ω
. The

horizontal correlation length (τ x) is set three times higher than the
vertical correlation length as the vertical resolution power of sur-
face acquisition is higher than the horizontal one in particular for
horizontally stratified media.

For quality control of the FWI models, we compute the relative
percentage of errors for the models [ξ (m)]

ξ (mcal) = 100

Nx .Nz

Nx .Nz∑
i=1

|mcal,i − m true,i |
m true,i

, (8)

where Nx and Nz correspond to the number of nodes in the x and
z direction after projection along a Cartesian grid. We compute the
time-domain seismograms for three shots gather located at 2, 8 and
14 km in distance, and we take the mean data error to assess the
data match. We define the data error as the expression

ξ (scal) = 100

Nt .Ns

Ns .Nt∑
i=1

|scal,i − strue,i |, (9)

where a time-domain shot gather is denoted by scal. The number of
time samples and the number of seismograms per shot gather are
denoted by Nt and Ns, respectively, while the horizontal and vertical
numbers of nodes in the subsurface model are denoted by Nx and
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Nz , respectively. We checked that the computed mean data misfit
shows similar trend to those computed for other gathers located at
different distances along the profile.

Velocity–density versus velocity–impedance imaging

We first discuss which of the two parametrizations, of (VP, ρ) and
(VP, IP), is the most relevant for acoustic FWI. Therefore, no atten-
uation is considered in the following discussion: the factor QP is
homogeneous in both the true and the background models, and it is
equal to 1000.

Radiation pattern analysis for the VP, ρ and Ip parameters

Parametrization of the subsurface can be defined with different com-
binations of parameters for FWI (Forgues & Lambaré 1997; Plessix
& Cao 2011). In non-linear waveform inversions such as FWI, the
parameters of a given parametrization can be related non-linearly
to the parameters of another parametrization. Therefore, the choice
of the parametrization is not neutral (Tarantola 1986), and it will
govern how the amplitude of a wave scattered by a point perturba-
tion of one model parameter varies with the scattering angle. This
scattered wave divided by the model perturbation corresponds to
the partial derivative of the wavefield with respect to the parameter
located at the diffractor point, as in eq. (4). In the following, with
a slight abuse of language, the diffraction pattern of the secondary
source of the partial derivative wavefield at the diffractor point, as
the right-hand side of eq. (4), will be referred to as the diffraction
pattern of the parameter. This diffraction pattern gives some insight
into the sensitivity of the data to the parameter as a function of the
scattering angle. As the scattering angle is closely related to the
wavenumbers injected into the subsurface model during FWI (e.g.
Sirgue & Pratt 2004), the diffraction pattern provides hints of the
resolution with which a given parameter class is reconstructed. The
strength of these secondary sources control the relative amplitudes
of the partial derivatives of the wavefield with respect to the differ-
ent parameter classes. Parameter scaling can be used to arbitrarily
change the relative amplitude of these partial derivative wavefields
and to deliberately steer the inversion towards some specific param-
eter classes.

The analytical expressions of the visco-acoustic/elastic diffrac-
tion patterns were developed asymptotically in the framework of the
ray+Born approximation by Wu & Aki (1985), Tarantola (1986),
Ribodetti & Virieux (1996) and Forgues & Lambaré (1997). Al-
ternatively, these can be estimated numerically by computing the
partial derivative wavefields in a finite-difference discrete sense,
as shown in Malinowski et al. (2011) and Gholami et al. (2013b).
In this study, we follow this numerical finite-difference approach,
and derive diffraction patterns for three different parametrizations:
(VP, ρ), (VP, IP) and (IP, ρ) (Fig. 2). We compute an incident
monochromatic wavefield in a homogeneous model, which is sub-
tracted from the wavefield computed in the same model in which we
add a point diffractor associated with one parameter perturbation
in the centre of the mesh. The resulting wavefield represents the
wavefield scattered by the parameter perturbation in all directions
for a given parametrization or, in other words, the partial derivative
of the wavefield with respect to the model parameter located at the
point diffractor. A key point is that during this simulation, the other
parameters of the parametrization are left unchanged to the true
values, and this procedure is repeated for each parameter class of
the parametrization. The amplitude variations of the partial deriva-
tive wavefield around the point diffractor give some insight into the

diffraction pattern of the model parameter. The diffraction pattern
of a given parameter class (e.g. VP) can change as a function of the
parametrization (i.e. the other parameters involved in the subsurface
description). This occurs because the partial derivative of the wave-
field with respect to one model parameter is computed by keeping
the other parameter of the parametrization constant by virtue of the
chain rule of derivatives. This highlights why, for example, the VP

parameter does not have the same diffraction pattern (or Fréchet
derivatives) when it is combined with density or impedance in the
subsurface parametrization.

Table 1 outlines the values of the model parameters, that are used
in the computation of the diffraction patterns. The source is a Dirac
function and the frequency is 10 Hz. A first conclusion is that the
diffraction pattern of the P-wave velocity parameter is isotropic
in the (VP, ρ) parametrization (Fig. 2a), while scattering of the
P-wave velocity diffractor is only significant at large scattering an-
gles in the (VP, IP) parametrization (Fig. 2c). A second conclusion
is that the diffraction patterns of the P-wave velocity and the den-
sity overlap at small and intermediate scattering angles (Figs 2a and
b). This suggests that many combinations of P-wave velocity and
density can allow short-spread reflections to be matched equally
well, hence highlighting the trade-off between these two parame-
ters. In contrast, when the (VP, IP) parametrization is considered,
the P-wave velocity and the impedance scatter waves at large and
short scattering angles, respectively (Figs 2c and d). This highlights
that the imaging of the long wavelengths is closely related to the
reconstruction of the P-wave velocities from the diving waves and
supercritical reflections, while the short wavelengths of the subsur-
face are closely related to impedance, which governs the amplitude
of the short-spread reflections. This justifies the conventional work-
flow of seismic imaging based on the scale separation underlying
the velocity model building task and migration. As the diffraction
patterns of the P-wave velocity and impedance do not overlap sig-
nificantly, no trade-off between these parameters is expected during
FWI. In the (ρ, IP) parametrization, the density and the impedance
scatter waves for large and for all scattering angles, respectively
(Figs 2e and f). Therefore, a trade-off between ρ and IP is expected,
similar to that between VP and ρ.

Resolution analysis performed in the framework of diffraction
tomography (Devaney 1982; Wu & Toksöz 1987; Sirgue & Pratt
2004) has shown that the large aperture angles between the source,
the diffracting point, and the receiver allow for the recovery of the
low spatial wavenumbers of the subsurface. Thus, the reconstruction
of the P-wave velocity from the (VP, IP) parametrization is expected
to be smoother than that inferred from the (VP, ρ) parametrization
as VP scatters energy only for the large aperture angles in the first
parametrization. This is a criterion that should be considered for
choice of the best parametrization. The maximum amplitudes of the
diffraction patterns shown in Fig. 2 are of the same order of mag-
nitude. This implies that each parameter class is expected to have
an influence on the data of similar strength over distinct or com-
mon range of scattering angles. Therefore, the main issue here is to
manage the trade-off between parameters rather than to manage pa-
rameters with contrasting influence on the data (for an illustration of
FWI involving parameters of contrasting influence on the data, see
Gholami et al. (2013b) for imaging of VTI acoustic media). Note
that the diffraction patterns of VP and ρ are similar when they are
computed in the acoustic approximation and in the elastic approx-
imation (in the latter case for the P–P scattering mode) (Forgues
& Lambaré 1997). Moreover, the diffraction pattern of the VS pa-
rameter for the P–P scattering mode has a diffraction pattern with
a smaller amplitude relative to the VP and ρ amplitudes. Moreover,
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Figure 2. Wavefields scattered by a point diffractor located in the centre of the medium for three subsurface parametrizations: (VP, ρ) (a, b), (VP, IP) (c, d)
and (IP, ρ) (e, f). The source is located at a distance of 5 km and a depth of 1 km.

Table 1. Values of the physical parameters in the homogeneous medium and the inclusion, as used to
compute the diffraction patterns of Fig. 2 (see text for details).

Fig. 2 panels Family Inclusion of Value in the VP (m s−1) ρ (kg m−3) IP (kg m−2 s−1)

(a–f) All – background 4000 2000 8 × 106

(a) VP 8400 2000 16.8 × 106
(VP, ρ)

(b) ρ 4000 4200 16.8 × 106

(c) VP 8400 952 8 × 106
(VP, IP) Inclusion

(d) IP 4000 4200 16.8 × 106

(e) IP 8400 2000 16.8 × 106
(IP, ρ)

(f) ρ 1905 4200 8 × 106

the impact of VS should be minor in soft seabed environments such
as Valhall, as this should prevent significant P–S conversions. We
therefore believe that the conclusions of our parametrization anal-
ysis drawn in the acoustic approximation will apply equally well to
elastic media.

FWI results—joint reconstruction of two parameters

We first consider the joint reconstruction of the two parameter
classes by FWI for the following two parametrizations: (VP, ρ) and
(VP, IP). For the joint reconstruction of the two parameter classes,
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we use three time dampings, namely τ = 1, 3, 10 s, and we allow
for a maximum number of 30 iterations, to achieve time saving
without preventing a significant decrease in the cost function (about
50 per cent). This leads to ten iterations per time damping. The
stopping criterion of the iteration based on the amount of velocity
perturbation at each iteration was never reached, and 30 iterations
were effectively performed. We use the same optimization damping
coefficients λi in the misfit function, eq. (1), for the P-wave velocity,
the density and the impedance (4 × 10−18), as we showed that the
maximum amplitudes of the partial derivative wavefields associated
with each parameter classes are similar (Fig. 2).

The initial velocity and density models for the FWI are built by
Gaussian smoothing of the true models below the sea level, with
horizontal and vertical correlation lengths of 500 m, as shown in
Figs 1(f) and (g). The initial impedance model is built by multiplying
the initial velocity and density models. This implies that the data
residuals at the first iteration are the same when the (VP, ρ) and the
(VP, IP) parametrizations are used.

The velocity and density FWI models obtained with the (VP, ρ)
parametrization are shown in Figs 3(a), (b), 4(a) and (b), while the
velocity and the impedance FWI models obtained with the (VP, IP)
parametrization are shown in Figs 3(d), (e), 4(d) and (e).

The model error highlights not only the model inaccuracies as-
sociated with convergence towards a local minimum, but also the
resolution with which a model is reconstructed according to the
diffraction pattern of the parameter. Both sources of errors should
be taken into account in the appraisal of the models. For example,
we see in Table 2 that the percentage of errors for the density start-
ing model (1.94 per cent) is smaller than the percentage of errors
for the FWI density model (2.54 per cent), despite numerous fine
structures created by the FWI. On the other hand, the percentage
of errors on the seismograms computed in the starting models is
almost three-times greater than that inferred from the FWI models.

The P-wave velocity reconstruction for the (VP, ρ) parametriza-
tion is better resolved than that inferred from the (VP, IP)
parametrization, in which some artefacts are shown down to 2.5 km
in depth (Figs 3a, d, 4a and d). These inaccuracies might be related

to the narrow diffraction pattern of the P-wave velocity when the
(VP, IP) parametrization is used, which prevents broad-band recon-
struction of the P-wave velocity model. The lack of high wavenum-
bers in the P-wave velocity model inferred from the (VP, IP)
parametrization is more obvious in the upper structure, where the
broader aperture illumination makes the filtering applied by the
directivity of the virtual sources more visible.

The density model shows sharp reconstruction of the main reflec-
tor (Fig. 3b), with locally overestimated or underestimated pertur-
bations (Fig. 4b). However, the impedance model inferred from the
FWI (VP, ρ) models (i.e. by multiplication of the VP and ρ models)
shows good agreement with the true impedance model, except at
the reservoir level where a mispositioning of the reflector at 2.5 km
in depth appears (Figs 3c and 4c). The good agreement between the
true and the induced impedance models suggests that the amplitude
errors of the density perturbations result from the trade-off between
the velocity and density at short apertures. These trade-off artefacts
are cancelled out when these two parameters are multiplied to build
the impedance. This trade-off is highlighted by the opposite polarity
of the velocity and density errors in Figs 4(a) and (b) (a positive
velocity error is correlated with a negative density error and vice
versa between 1.5 km and 2 km in depth).

The impedance model inferred from the (VP, IP) parametrization
shows good agreement with the true impedance model (Figs 3e and
4e). However, the impedance model inferred from the velocity and
the density FWI models obtained with the (VP, ρ) parametrization
(Fig. 3c) is of higher quality than the impedance model inferred
from FWI with the (VP, IP) parametrization (Fig. 3e), with an error
0.32 per cent higher in the last case (Table 2). It is also illustrated by
the comparison of the impedance logs at 1.3 km in depth in Figs 4(c)
and (e). This might occur because the resolution of the impedance
model might be hampered by its narrow radiation pattern when it is
inferred from the (VP, IP) parametrization. In contrast, an improved
impedance model can be inferred from the broad-band VP model
and the density model when the (VP, ρ) parametrization is used.
Furthermore, the density model inferred from the impedance and
velocity FWI models obtained with the (VP, IP) parametrization is

Figure 3. (VP−ρ) versus (VP−IP) imaging. Joint update of two parameters (Table 2, tests 1 and 2). (a, b) Final VP and ρ FWI models for the (VP−ρ)
parametrization (Table 2, test 1). (c) Impedance model inferred from the velocity and density models shown in (a, b). (d, e) Final VP and IP FWI models for
the (VP−IP) parametrization (Table 2, test 2). (f) Density model inferred from the velocity and impedance models shown in (d, e).
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1648 V. Prieux et al.

Figure 4. (VP−ρ) versus (VP−IP) imaging. (a, b) Logs extracted from the final VP and ρ FWI models for the (VP, ρ) parametrization (Figs 3a, b). (c) Log
extracted from the impedance model of Fig. 3(c). (d, e) Logs extracted from the final VP and IP FWI models for the (VP, IP) parametrization (Figs 3d, e). (f)
Log extracted from the density model of Fig. 3(f). True models, starting models, and FWI models are plotted as black, blue and red curves, respectively.

Table 2. (VP−ρ) versus (VP−IP) imaging. Model and data er-
rors, [ξ (m)] and [ξ (s)] for the starting models and the FWI mod-
els obtained with the simultaneous or the hierarchical strategies,
to recover the velocity, the density and the impedance. The small-
est and the largest errors are written in red and blue, respectively.
We added in subscript the parametrization of the tests, in the
cells of the table where can occur ambiguities.

Test Test step ξ (m) ξ (scal)
No. Step 1 Step 2 VP ρ IP × 10−5

VP, 0, ρ0, IP, 0 5.91 1.94 7.73 5.04

1 (Vp, ρ) 4.31 2.54 6.23 1.61
2 (VP, IP) 4.49 4.51 6.55 1.80

3 VP(VP ,ρ) 4.59 1.76
4 VP(VP ,ρ) (VP, ρ) 4.28 2.17 5.85 1.50
5 VP(VP ,ρ) (VP, IP) 4.38 2.77 5.98 1.53

very unstable (Figs 3f and 4f), with the model error being almost
2 per cent higher than the error of the density model inferred from
the (VP, ρ) parametrization. This might occur because the den-
sity is deduced from two subsurface models that are parametrized
by IP and VP which have two distinct wavenumber bandwidths
with a limited overlap (Figs 2c and d). Moreover, a limited
trade-off is expected between these two parameters. Therefore, no
correlation is expected between the errors that impact of the two

models. Another possible reason to explain the instability of the
density model inferred from the (VP, IP) parametrization is re-
lated to the relative range of variations of each parameter, which is
defined by (value max−value min)/value max. This is 60, 26 and
73 per cent for the velocity, density and impedance synthetic mod-
els, respectively. The level of these percentages shows the same
trend as the magnitudes of errors computed in each of the starting
models (Table 2). This percentage is higher for the impedance, be-
cause this is the product of the two other parameters, which vary
within the same direction at all depths, as shown in the true logs
of the velocity and density (Figs 4a and b, black lines). Small er-
rors in the impedance or the velocity reconstruction will translate
into a much greater relative error for the density inferred from
those two models. In contrast, the impedance inferred from the
velocity and the density is less sensitive to an error in the den-
sity. This statement will apply for all of the subsurface models
where the velocity and density vary in the same direction, which
is the most common scenario in geological targets (except for salt
and coal).

An alternative that we did not implement for the (VP, IP)
parametrization, would be to add some constraints in the misfit
function to better stabilize the reconstruction of the density de-
duced from the two inverted parameters (VP and IP), by bounding
the density according to empirical law, which relates velocity and
density.
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FWI results—hierarchical reconstruction of two parameters

We assess now whether the hierarchical reconstruction of the pa-
rameters is more robust than the simultaneous counterpart. In our
hierarchical approach, during a first inversion, we update the P-wave
velocity with a single time damping τ of 1 s, to cancel most of the
residuals at large scattering angles. During a second inversion, we
jointly update the P-wave velocity and the density or the impedance
with three time dampings to reduce the remaining residuals at short
scattering angles, for which the density and impedance have a sig-
nificant influence on the data. During the second step, we jointly
update the density or impedance and the velocity, as there can be a
trade-off between those parameters.

During the first inversion, the P-wave velocity is updated with
the (VP, ρ) parametrization (Table 2, test 3), because the diffraction
pattern of the P-wave velocity is broader when this parametriza-
tion is used. Some other tests where the (VP, IP) parametrization
is used to recover VP at the first step have shown stronger data er-
rors than their counterparts for both the first and second steps. At
the first step of the (VP, ρ) parametrization (test 3), the trade-off
between the P-wave velocity and density at short scattering an-
gles should not impact on the imaging of the wave speed, because
the inversion is limited to wide scattering angles through the use
of aggressive time damping. The P-wave velocity model inferred
from this first inversion step is shown in Figs 5(a), 6(a) and (d)
(blue line). The resulting model is of satisfying quality, although
its resolution is poorer than that of the model obtained during the

joint reconstruction of velocity and density using three dampings
(Figs 3a and 4a). The final FWI P-wave velocity model of the first
inversion step is used as the initial model for the second inversion
step. The initial density model is the smoothed version of the true
model when the (VP, ρ) parametrization is used during the sec-
ond inversion step. The product of velocity inferred from the first
inversion step with the smoothed density model provides the start-
ing impedance model for the inversion performed with the (VP, IP)
parametrization (Fig. 6e, blue line). Therefore, the data residuals
are the same at the first iteration of the second FWI step for the two
parametrizations.

The final models and logs of the second inversion step for the two
parametrizations can be compared in Figs 5 and 6. The FWI density
model obtained with the (VP, ρ) parametrization (Fig. 5c) shows
weaker perturbations than that obtained during the joint update of
the P-wave velocity and density (Fig. 3b), which shows that many
combinations of velocity and density models can match the data
equally well. In addition, we show that the density is under-estimated
down to 1.4 km in depth, and is polluted by ringing artefacts in the
deep structure, which can result from the narrow aperture illumi-
nation at depth (Fig. 6b). The impedance model inferred from the
P-wave velocity and density models shows good agreement with
the exact model, except for the depth range of 2–2.5 km (Figs 5d
and 6c).

Comparisons between seismograms computed in the true models
and in the models obtained after the first inversion step (the first

Figure 5. (VP−ρ) versus (VP−IP) imaging. Hierarchical update of two parameters. (a) P-wave velocity model built by monoparameter inversion for the (VP,
ρ) parametrization (Table 2, test 3). A time damping of 1 s is applied to the data. (b, c) P-wave velocity (b) and density (c) FWI models for the (VP, ρ)
parametrization using the velocity model shown in (a) as initial model (Table 2, test 4). (d) Impedance model built from the velocity and density models shown
in (b, c). (e, f) P-wave velocity and impedance FWI models for the (VP, IP) parametrization using the velocity model shown in (a) as initial model (Table 2,
test 5). (g) Density model built from the velocity and impedance models shown in (e, f).
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Figure 6. (VP−ρ) versus (VP−IP) imaging. Hierarchical update of two parameters. (a, b) Logs extracted from the P-wave velocity (a) and density (b) FWI
models of the second step of the hierarchical inversion for the (VP, ρ) parametrization. (d, e) Logs extracted from the P-wave velocity (d) and impedance (e)
FWI models of the second step of the hierarchical inversion for the (VP, IP) parametrization. (c, f) Impedance and density profiles inferred from the logs in (a,
b) and (d, e) respectively. True models are plotted as black curves, starting models of the second-step inversion as blue curves, and FWI models of the second
as red curves.

FWI VP model, and the smooth initial density model) show that
significant residuals associated with short-offset reflections were not
cancelled out (Fig. 7e). In contrast, most of the residuals associated
with diving waves and wide-aperture reflections were efficiently
reduced (compared to the residuals in the starting model, Fig. 7d).
This is consistent, as the first inversion was tuned to match the
wide-aperture phases only. The seismograms computed in the final
models of the second inversion step, for the (VP, ρ) parametrization,
and the corresponding residuals (Figs 7c and f) show that the match
of the short-offset reflections was improved by incorporating the
density effects into the inversion (Table 2).

During the second inversion step performed with the (VP, IP)
parametrization, the velocity and impedance FWI models do not
show significant perturbations, as their respective starting models
are already quite close to the true models (Figs 5e, f, 6d and e). The
density model inferred from the reconstructed VP and IP models
is more accurate than the density model inferred from the simulta-
neous strategy with the (VP, IP) parametrization (Figs 5g and 6f).
However, it is still less accurate than the density models inferred
from (VP, ρ) parametrization (in one or two steps, as confirmed by
the density errors in Table 2).

The model errors for the (VP, IP) parametrization are higher
than those for the (VP, ρ) parametrization whatever the parameter

class, although we note that the mean time residual is the same
for the two parametrizations. This highlights the non-uniqueness of
the multiparameter inversion, as several model combinations might
provide an equivalent match of the data.

Considering this surface acquisition and this synthetic case
study, all of the tests converge on the conclusion that the (VP, ρ)
parametrization is more suitable than the (VP, IP) counterpart for
reliable reconstruction of velocity, density and impedance. This con-
tradicts the widely accepted idea that promotes the reconstruction
of velocity and impedance. One reason is the more limited band-
width reconstruction of the velocity in the (VP, IP) parametrization,
which might in turn impact on the impedance reconstruction. A sec-
ond reason is that trade-off effects between velocity and density at
short-to-intermediate scattering angles can be removed by multipli-
cation to build an impedance model, which allows for the matching
of the reflection amplitudes, while the broad-band velocity model
accurately describes the kinematic attributes of both diving waves
and reflections. Finally, this unexpected conclusion arises from the
incorporation of wide-aperture data into the FWI analysis, which
prompts us to favour a parametrization for which the dominant pa-
rameter VP has a diffraction pattern as broad as possible. This is
why we will only consider the (VP, ρ) parametrization in the fol-
lowing of this study. We will also use the hierarchical strategy at the
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Figure 7. (VP−ρ) versus (VP−IP) imaging. Synthetic seismograms computed in (a) the true VP and ρ models; (b) the models obtained close of the first step of
the hierarchical inversion when we only update the VP parameter (Fig. 5a); (c) the models obtained at the end of the second step of the hierarchical strategy for
the (VP, ρ) parametrization (Figs 5b, c). (d) Residuals between the seismograms shown in (a) and the seismograms computed in the starting models of the first
inversion step (smoothed version of VP and ρ). (e) Residuals between the seismograms shown in (a) and (b). (f) Residuals between the seismograms shown in
(a) and (c).

expense of the simultaneous counterpart, because the reconstruc-
tion of the density is more stable with the former approach (compare
the density profiles of Figs 4b and 6b between 1.5 and 3 km depth);
and because for a given parametrization, the data and model errors
are smaller with the hierarchical inversion (compare test 1 with
test 4).

Reconstruction of wave speed, density and QP-factor

In the following part of this study, we investigate the reconstruction
of the QP-factor in addition to the P-wave velocity and density. This
parameter can have a smaller imprint on the data than wave speed.
However, values of QP as small as 10 are realistic in shallow soft
sediments. If these low values of QP are not present in the initial
model, the large error hampering the initial QP model can raise its
influence in the inversion. Moreover, realistic values for the quality
factor are around one order of magnitude lower than those of wave
speeds or density. Therefore, fine tuning of the FWI regularization
should be defined with the synthetic Valhall example before the real
data case study is addressed. We set up this synthetic example such
that it mimics as closely as possible the real data case study from Val-
hall presented later in this study. We consider a vertically transverse
isotropic medium, that is parametrized by the vertical velocity (VP0),
the Thomsen parameters δ and ε, the density, and the quality factor.
The Thomsen parameters provided by BP are kept fixed during the
inversion, and are smoothed with a correlation length of 500 m to
reproduce the inaccuracies of the Thomsen parameters observed in
the real case (Prieux et al. 2011; Gholami et al. 2013a). The vertical
velocity, the density, and the quality factor are updated during the
FWI. The initial vertical velocity model is built by smoothing the
true model with a Gaussian filter, where the correlation length is

250 m at the sea level, and 500 m at the bottom of the model. The
initial density model is inferred from this velocity starting model
using Gardner’s law. The true model and the starting models of
the QP-factor are presented in Figs 1(d) and (i). The smoothing of
the model perturbations is the same for all of the parameters. Of
note, the use of a stronger smoothing could have been applied to
the attenuation, as shown by Malinowski et al. (2011), to stabilize
the inversion when inverting the smallest frequencies for which the
data are very weakly sensitive to the attenuation, although this was
not judged necessary in our case as we did not observe instabilities.

On the sensitivity of the data to the density and QP-factor

Before showing the results of the multiparameter FWI, it is instruc-
tive to show how the inaccuracies of the vertical velocity, density,
and QP-factor starting models translate into the data. For this pur-
pose, we show in Figs 8(b)–(d) the differences between seismograms
computed in the true (VP0, ρ, QP) models (Fig. 8a) and those com-
puted in the true models of two parameters and in the initial model of
the remaining parameter. A smooth density model mainly impacts
the match of the short-offset reflections, as a density diffractor leads
to significant scattering at short apertures only (Fig. 8c). The foot-
print of the homogeneous QP-factor model is visible in the residual
seismograms over the full offset range, although it is stronger at
large offsets as more wavelengths are propagated (Fig. 8d). This is
consistent with the isotropic diffraction pattern of the QP-factor pa-
rameter (Malinowski et al. 2011). The velocity smoothing leads to
much stronger residuals relative to the density and QP-factor, hence
this illustrates the dominant influence of this parameter on the data
(Fig. 8b). All of these statements are also supported by the data
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Figure 8. (VP, ρ, QP) imaging. Sensitivity of the data to VP, ρ and QP. (a) Synthetic seismograms computed in the true VP, ρ and QP models (Figs 1a, b, d).
(b) Residuals between seismograms computed in the true models and in a smooth velocity model, the true density model, and the true QP model. (c) Same as
(b) for seismograms computed in a smooth density model, the true velocity model, and the true QP model. (d) Same as (b) for seismograms computed in the
QP-factor model of 150 of Fig. 1(i), the true velocity model, and the true density model.

Table 3. (VP, ρ, QP) imaging—data and model errors computed in the different FWI models presented in Fig. 11. Comparison of the three
following strategies: (1) simultaneous reconstruction of VP, ρ, and QP without time damping [(VP, ρ, QP)no − dp]; (2) reconstruction of VP and
QP with time damping of 1 s in a first step [(VP, QP)1dp], followed by simultaneous reconstruction of VP, ρ, and QP in a second step [(VP, ρ,
QP)no − dp]; (3) reconstruction of VP without time damping in a first step [(VP)no − dp], followed by simultaneous reconstruction of VP, ρ and
QP without time damping.

Test Test ξ (m) ξmean,n ξmean λ

No. STEP 1 STEP 2 VP ρ QP IP (m) (s) × 10−5 QP VP ρ

– VP, 0 5.09 0 0 2.29
– ρ0 0 2.26 0 0.43
– QP, 0 0 0 32.66 0.95

1 (VP, ρ, QP)no − dp 5.03 2.53 25.3 6.77 0.92 1.63 8 × 10−20

2 (VP, ρ, QP)no − dp 4.90 2.82 27.86 6.81 0.96 1.83 4 × 10−18

3 (VP, QP)1dp 5.20 28.89 6.82 1.94 8 × 10−20

4 (VP, QP)1dp (VP, ρ, QP)no − dp 5.09 2.96 27.84 6.97 0.99 1.38 8 × 10−20
4 × 10−18 4 × 10−18

5 (VP, QP)1dp (VP, ρ, QP)no − dp 5.12 3.04 24.65 7.07 0.97 1.35 4 × 10−18

6 (VP)no − dp 4.94 6.45 1.70 8 × 10−20

7 (VP)no − dp (VP, ρ, QP)no − dp 4.89 2.41 26.11 6.35 0.89 1.35 8 × 10−20

8 (VP)no − dp (VP, ρ, QP)no − dp 5.00 2.39 23.54 6.43 0.88 1.16 4 × 10−18

– Mean FWI models 4.72 2.41 25.08 6.31 0.88 1.25

errors that are computed in the corresponding seismograms (Ta-
ble 3), with an error for the vertical velocity that is 2.4-fold greater
than for the attenuation, and 5.3-fold greater than for the density.

To assess the sensitivity of the monoparameter inversion for the
vertical velocity to the inaccuracies of the density and the QP-factor
background models, we compare the FWI velocity models, that are
built without time damping, when the background density and QP-
factor models are the true models and the smoothed models, respec-
tively (Figs 9 and 10). The FWI models inferred from the smooth
density and QP-factor background models are slightly noisier in the
tertiary sediments, but remain close to the vertical velocity model
inferred from the true density and QP-factor background models.
This validates the hierarchical approach, where the vertical velocity
is updated during a first inversion step.

Inversion strategies

We test three different inversion strategies to update the vertical
velocity, the density and the QP-factor.

The ‘first strategy’, strategy 1, consists of the simultaneous up-
date of the vertical velocity, density and QP-factor without any
time-damping procedures. The simultaneous inversion should pre-
vent artefacts that arise when hierarchical strategies are used: the
reconstruction of the dominant parameter alone might contribute to
reduce the residuals mainly associated with secondary parameters.
The ‘second strategy’, strategy 2, is a multiscale procedure, that
proceeds hierarchically over the data and the parameter classes.
In a first step, we jointly update the large wavelengths of the
P-wave velocity and the QP-factor using a strong time-damping
factor τ of 1 s, as eq. (7), to minimize data residuals associated
with the wide scattering angles before the simultaneous update of
the shorter wavelengths of P-wave velocity, density and QP-factor
without time damping to reduce the remaining residuals at short
apertures. Following a multiscale approach, low wavenumbers are
reconstructed first by updating the parameters VP and QP, which are
sensitive to the wide scattering angles, then by the reconstruction of
the short wavelengths by updating the parameters that are sensitive
to the short scattering angles (VP, ρ and QP). In the ‘third strategy’,
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Figure 9. (VP, ρ, QP) imaging. Sensitivity of monoparameter FWI for
VP to the accuracy of the density and QP-factor background models.
(a, b) P-wave velocity model inferred from monoparameter FWI using three
time dampings. (a) The background density and QP models are smoothed
versions of the true models. (b) The background density and QP models are
the true models.

strategy 3, we update the P-wave velocity without time dampings
during a first step to cancel most of the residuals, and build a ve-
locity model as kinematically accurate as possible before jointly
updating the three parameter classes (without time damping). In
this last strategy, we keep the same starting model of density for the
first and the second inversion steps.

Compared to the update of the density or impedance presented in
the previous section, we found that an additional difficulty with the
reconstruction of the QP-factor arises because the partial derivative
of the wavefield with respect to QP have much smaller amplitudes
than the VP and ρ counterparts, although we scaled the parame-
ters by their mean value. The difficulty associated with this scaling
comes from the fact the model perturbations relative to the starting
models during FWI can be much higher for QP (100 per cent of its
mean value) than for VP and ρ (20 per cent of its mean value), in
particular in shallow soft sediments where a strong decrease of Q
occurs. This is highlighted by the diagonal terms of the Hessian
computed for parameters scaled by their mean value. These diag-
onal terms are of the order of 10−17, 5 × 10−18 and 10−21 for VP,
ρ and QP, respectively. Those values show in one hand the weaker

influence of ρ and QP relative to VP on the data as shown by Figs 9
and 10, and are in the other hand related to the dynamic of Q as men-
tioned just above. Applying the inverse of the Hessian to the gradient
of the misfit function should theoretically correct for the variable
influence of each parameter class on the data, if the inverse problem
was not ill-posed, to reconstruct the true values of the model param-
eters. Due to the ill-conditioning of the Hessian, regularization of
the inverse problem is needed. However, a difficulty arises when the
damping regularization term λi, eq. (2), is added to the diagonal of
the approximate Hessian for regularization. If the damping λi is too
high, it can hamper the scaling effect of the Hessian during the up-
dating of the parameter class i, and also impact on the reconstruction
of the other parameters. In this framework, we found that a suitable
choice of the damping λi is a key feature to properly scale the model
perturbations associated with each parameter class. Alternatively,
different parameter scaling can be viewed to balance the amplitudes
of the partial derivative wavefields associated with the different pa-
rameter classes, and hence to design a better-conditioned Hessian.
This should facilitate the setting of the hyperparameter λi, which
should have a comparable order of magnitude. In this case, the risk
is however to give a significant weight during the optimization pro-
cess to a parameter that has a weak imprint on the data, this imprint
being potentially dominated by data noise. In this case, the inver-
sion can become unstable. The choice of the parameters and their
scaling is thus critical as it should combine physical considerations
(is the influence of the parameter greater than noise?) and numerical
aspects (is the Hessian well-conditioned?). In this study, we focus
on the strategy where the parameter classes are normalized by the
mean value of the parameter. In this case, the inversion is steered
towards the reconstruction of the parameters that have a dominant
imprint on the data. We however seek to find a fine tuning of the λi

such that the secondary parameters can be reconstructed in a stable
way.

To illustrate the effects of the damping terms λi on the inver-
sion, we perform a series of tests, an outline of which is presented
below. First, we estimate a suitable value of the damping term
for the velocity (λVP ) during a monoparameter inversion. As an
illustrative example, a damping term of 10−6 leads to negligible
velocity perturbations. An improved P-wave velocity model is ob-
tained using a damping term of 4 × 10−8. Secondly, we perform the

Figure 10. (VP, ρ, QP) imaging. Sensitivity of monoparameter FWI for VP to the accuracy of the density and QP-factor background models. Comparison
between the true and FWI velocity profiles at 8 km (a, b) and 12.5 km (c, d) in distance. (a, c) The FWI logs are taken from the FWI model of Fig. 9(a). (b, d)
The FWI logs are taken from the FWI model of Fig. 9(b). True models are plotted as black curves, starting models of the second-step inversion as blue curves,
and FWI models of the second step as red curves.
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simultaneous updates of the P-wave velocity, density and QP-factor
using the same damping for each parameter class (4 × 10−8). This
inversion set-up leads to underestimation of the model perturba-
tions, which prompted us to repeat the experiment with decreasing
values of the damping until unstable reconstructions were found.
The smallest value of the damping that leads to reasonable models
is 4 × 10−18, which is ten times smaller than the maximum co-
efficient value of the block in the approximate Hessian associated
with the velocity parameter. Decreasing the damping to values as
small as 8 × 10−20 for the three parameters leads to an unperturbed
velocity model, a sharp model of density, and an unstable model of
the QP-factor. We conclude from these experiments that a suitable
approach to properly scale the model perturbations associated with
each parameter class consists of adapting the value of the damp-
ing factor to each parameter class. We use a value of the damping
term for QP, that is 50-fold smaller than the dampings used for the
P-wave velocity and density. It is worth noting that, even in this
setting, the damping term of the QP-factor is almost two orders
of magnitude higher than the maximum coefficient of the diagonal
block of the Hessian associated with the QP-factor, hence, making
the contribution of this part of the approximate Hessian negligible.
Note that after some iterations, estimation of the Hessian done by
the L-BFGS is not damped anymore by the regularization term.

FWI results

We synthesize all of the FWI results (models and logs) in Figs 11 and
12, and to appraise these, the corresponding data and model errors
[ξ (s) and ξ (m)] are shown in Table 3. The FWI QP models can
be compared with the true model represented with the appropriate
colour scale in Fig. 1(e). We show the inversion results for the
three strategies described in the previous section for two sets of
dampings λi during the joint update of the P-wave velocity, density,
and QP-factor: (λVP = 4 × 10−18, λρ= 4 × 10−18, λQ P = 8 × 10−20),
and (λVP = λρ= λQ P = 4 × 10−18). A first overview of the whole
scene shows large variations in the solutions, and in particular for
the density and the QP-factor, which reminds us of the intrinsic ill-
posedness of the multiparameter inversion. It is worth noting that
the value of λQ P not only impacts on the reconstruction of the QP-
factor parameter, but also on the reconstruction of all of the other
parameters because the sum in the model cost function is differently
weighted.

Strategy 1: joint update of multiple parameters
For the first strategy, the time and model errors (except for the

velocity) tend to promote the use of a small value of λQ P (i.e.
8 × 10−20) (Table 3). With this setting (Figs 11a–c), the density
and the QP-factor perturbations are better balanced compared to

Figure 11. (VP, ρ, QP) imaging. FWI results. (a–u) Velocity (a, d, g, i, l, o, p, s), density (b, e, j, m, q, t) and QP-factor (c, f, h, k, n, r, u) models inferred
from three different inversion strategies (see text for details). For each strategy, the FWI was performed using the same damping (= 4 × 10−18) for all of the
parameter classes (d–f, l–n, s–u), and using λQ P 50-times smaller than λVP and λρ (a–c, g–k, o–r).
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Figure 12. (VP, ρ, QP) imaging. FWI results. (a–u) Velocity, density and QP-factor profiles extracted from the FWI models shown in Figs 11(a)–(u). True
models are plotted as black curves, starting models of the second-step inversion as blue curves, and FWI models of the second step as red curves.

the case where the same damping is used for all of the parameters
(Figs 11d–f). In this case, the QP-factor perturbations are clearly
underestimated, while the density perturbations are overestimated
(Figs 11a–f and 12a–f).

Strategies 2 and 3: hierarchical approaches
In strategies 2 and 3, we attempt to increase the quality of the

starting models of the second-step inversion, the aim of which is
to jointly update the three parameters. Strategy 2 is intermediate
between strategies 1 and 3, and while strategy 1 does not include a
preliminary inversion step, the first inversion step of strategy 3 uses
the full data space to update a reduced model space corresponding
to the dominant parameter VP, hence putting strong prior informa-
tion into the initial VP model of the second-step inversion. Strategy
2 uses a reduced data space; namely, the wide-aperture components
of the data, to update a reduced model space that involves two pa-
rameter classes during the first inversion step. Contrary to strategy
1, the data and model errors in strategies 2 and 3 tend to promote
the use of the same damping term for all of the parameters. Strat-
egy 2 succeeds in the reconstruction of the smooth velocity and
QP-factor models during the first step of the hierarchical approach
(Figs 11 g and h). This should help to build a more accurate velocity
model during the second step of strategy 2 than during strategy 1.
Although a mispositioning in depth of the top of the reservoir sub-
sists, the velocities are better reconstructed in terms of amplitude
(Figs 11i and l). However, the reconstruction of the density and
the QP-factor is not successful during the second step, and shows

noisy reconstructions in particular for the density (Figs 11j, k, m
and n).

Strategy 3 (Figs 11o–u) leads to a final velocity model, that is
close to that inferred from strategy 2. A more stable reconstruction
of the QP-factor and density is, however, achieved with strategy 3
because most of the residuals were cancelled out during the update
of the dominant parameter during the first inversion step (Fig. 11o),
which was performed without any time damping. The underesti-
mated perturbations in the density and QP-factor models highlight,
however, the trade-off between velocity and these two secondary
parameters. The trade-off between the two secondary parameters, ρ
and QP, is highlighted by the results obtained with the two different
values of λQ P : as λQ P is decreased, the QP-factor perturbations are
strengthened at the expense of the density perturbations (Figs 11q,
r, t and u).

Summary of the results of the synthetic example
This numerical investigation highlights the difficult problem of

FWI tuning when multiple classes of parameters must be updated
with potential trade-off between the parameters and the variable sen-
sitivity of the data to the parameters. The choice of the best damping
factor in the Hessian has been shown to be a key issue to guarantee
reliable results. Our approach to estimate these dampings (one per
parameter class) remains heuristic and relies on trial-and-error ap-
proaches. The L-curve method might be preferred to determine the
best damping terms (Hansen 1992), although it would be very time
consuming to do this for each of the three parameters. Despite our
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Figure 13. (VP, ρ, QP) imaging. (a–c) Mean FWI results for the three parameters respectively obtained by averaging all of the models in Fig. 11. (d) Mean
impedance model derived using (a) and (b). (e–h) Corresponding vertical profiles at a distance of 8 km.

indicators of quality, it is difficult to decide which model is the most
satisfying. For real case studies, our prior geological knowledge and
the prior information coming from well logs should help to choose
the best parametrization. It might also be preferred to adopt the
famous principle: ‘When in doubt, smooth’ [Sir Harold Jeffreys,
as quoted by Moritz & Sunkel (1978)], which is also known as
the Occam principle. A Bayesian view to smooth the models is to
take the mean over all of the derived FWI models. We applied this
idea to the models presented in Fig. 11, which provided the mean
models shown in Fig. 13. It is of interest to see how this process
decreases the noise that was present in the original models. We see
that the mean QP-factor allows us to accurately locate the depth of
the gas layers, although the amplitude is still underestimated. With
the models of test 8, the normalized mean error on these models is
the smallest, and the data error is the second smallest value among
all of the other tests. Of note, we have taken a simple mean of the
models, but it is possible to compute a weighted mean, where the
weights would be defined from the model and time errors to enhance
the most realistic models (only possible for the synthetic case). For
real cases, prior criteria like in situ petrophysical measurements,
can be used to define the probability densities via Bayes Theorem
(Gouveia & Scales 1997, 1998).

A P P L I C AT I O N T O R E A L O B C DATA
F RO M T H E VA L H A L L F I E L D

We now present the application of multiparameter anisotropic visco-
acoustic FWI to wide-aperture data recorded by two ocean-bottom
cables (21 and 29) of a 3-D survey on the Valhall field (Fig. 14).

Valhall is an old Grabben that went into compression during the late
Cretaceous, which led to the creation of an anticline that delineates
the cap-rock of the reservoir at a depth of 2.6 km (Fig. 15a). The
overburden is made of tertiary sediments, where gas is trapped in
some layers. Line 21 is more centred on the axis of the anticline
than line 29, and its data are thus more affected by the gas cloud
attenuation effect. Line 21 is also closer to the platform, located as
(X = 6.2 km, Y = 11.2 km), and consequently more sensitive to its
noise. Acoustic isotropic FWI of the 3-D data set was presented by
Sirgue et al. (2010). The resulting velocity model shows a complex
network of channels 150 m below the surface as well as a gas cloud
with gas-filled fractures at around 1 km in depth. The hydrophone
data of cable 21 were processed by monoparameter anisotropic and
isotropic acoustic FWI by Prieux et al. (2011) for an assessment
of the footprint of anisotropy on the isotropic FWI. They showed
that the horizontal velocities are reconstructed by isotropic FWI
in the upper part of the target, where the FWI is mainly driven
by the wide-aperture components of the data (diving waves and
supercritical reflections). This can lead to underestimated velocities
in the gas layers and/or to mispositioned reflectors at the reservoir
level, which are required to match the short-spread reflections from
the deep discontinuities. In the following, we will take anisotropy
into account by using large-scale models of the Thomsen parameters
δ and ε, which have already been built by anisotropic reflection
traveltime tomography. Prieux et al. (2011) showed that, for the
Valhall case study, the long wavelengths of the Thomsen parameters
provide sufficiently accurate background models for the reliable
reconstruction of the vertical velocity by FWI. The background
model of horizontal velocity nevertheless presents a kinematic error,
which reaches up to 0.1s at 5.5 km offset (Prieux et al. 2011). The
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Figure 14. Real data case study. Valhall acquisition layout on which the locations of the well logs provided by BP are shown (green squares) with their different
quantities measured (on right-hand side). Of note, wells ‘2/8-F1’ and ‘2/8-A-3B’ are close to the Valhall platform. Black line, route in depth of the well logs.

Figure 15. Real data case study. Starting models of line 29 for the vertical velocity (VP0) (a), the density (b) derived from VP0 model using Gardner’s law and
for the Thomsen’s parameters ε and δ (c, d).

shot and receiver spacings are 50 m and the maximum offset in the
data is 13 km. A more detailed description of the anatomy of the
Valhall OBC data is provided in Prieux et al. (2011).

Initial models and FWI set-up

Only the hydrophone component is considered for the FWI. We
invert five overlapping groups of three frequencies: [3.5, 3.78, 4],
[4, 4.3, 4.76], [4.76, 5, 5.25], [5.25, 5.6, 6] and [6, 6.35, 6.7] Hz.
Contrary to the synthetic tests where only single frequencies were
inverted, we adopt this strategy to be less sensitive to the noise. We
apply strategies 1 and 3, which were assessed during the previous
synthetic case study. Strategy 2 provides negligible perturbations
for the three parameters (not shown here) once the long-wavelength
components of the Vp were reconstructed during the initial step: in
this case the hierarchical inversion approach remained stuck in a
local minimum because of the over-interpretation of the data during
the early inversion step.

As for the previous synthetic example, the anisotropic visco-
acoustic wave equation is parametrized by the vertical velocity, the
density, the QP-factor, and the Thomsen parameters δ and ε, with
these last two parameters kept fixed during the inversion (Prieux

et al. 2011). The initial density model of one inversion step is
inferred from the initial velocity model of the current inversion step,
using Gardner’s law. The starting models for the vertical velocity,
the Thomsen parameters, and the densities of line 21 and line 29 in
Prieux et al. (2011), were shown in their fig. 2, and are shown here
in Fig. 15.

A two-layer QP-factor starting model was built by matching the
amplitude versus offset trend of the first arrivals. QP is 150 below
the sea bottom, while we use a value of 1000 in the water layer
(Prieux et al. 2011).

FWI results and model appraisal

The final FWI models of lines 29 and 21 inferred from strategies
1 (joint update) and 3 (hierarchical update) are shown in Figs 16
and 17, respectively. No time damping was applied in strategies 1
and 3, because reproducing the first step of strategy 3 with three
time dampings (equal to 1s, 3s, 5s) for line 21 have contributed to
the amplification of artefacts in the top left of the model (Fig. 17d).
One reason might be that the hierarchical inversions of limited
(damped) subdata sets have more degrees of freedom to create
artificial features in the subsurface model that aim to compensate
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Figure 16. Real data case study. FWI models for vertical velocity (a, d, g, h, k), density (b, e, i, l), and QP-factor (c, f, j, m) for line 29. (a–f) Simultaneous
update of multiple parameters. (g–m) Hierarchical update of multiple parameters. (d–f, k–m) The damping terms are the same for all of the the parameters.
(a–c, h–j) The damping term associated with the QP-factor parameter is 100-times smaller than those used for the other parameters.

for the inaccuracies of the background models of the Thomsen
parameters to fit the data. These artificial features are less visible
when inverting the data in one go, namely, without time damping,
because the optimization process seeks the best match for the whole
data set.

Following the results of the synthetic experiment, two combina-
tions of dampings λi are tested: the same damping is used for all of
the parameters (Figs 16d–f and k–m) or the damping term of QP is
100-times smaller than the dampings for the velocity and density
(Figs 16a–c and h–j).

We follow the same heuristic rule as for the synthetic experiment
to define the suitable values of the dampings λi. Compared to the
synthetic case, we note that the range of acceptable values of λVP

during the monoparameter inversion is much narrower than for the
synthetic experiment. This different behaviour is probably due to
the noise in the real data. The smallest acceptable values for the
damping were of the order of 10−8. It follows that the contribution
of the diagonal blocks of the approximate Hessian used as an initial
estimation, is negligible for each of the three parameters relative
to the damping terms. We recall that this initial estimation of the
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Figure 17. Real data case study. FWI models for vertical velocity (a, d, e), density (b, f), and QP-factor (c, g) for line 21, obtained by simultaneous (a–c)
or hierarchical (d–g) update of the parameters. The damping term associated with the QP-factor parameter is 100-times smaller than those used for the other
parameters.

Hessian is introduced by scaling the gradient provided to the L-
BFGS by the sum of the approximate Hessian and of the damping
parameter. At the first iteration, the approximate Hessian is thus
not taken into account: the perturbation model is just a scaling of
the gradient. At the next iterations however, the Hessian estimation
realized by the L-BFGS is able to heterogeneously scale the gra-
dient. To know the respective contribution of the diagonal blocks
and of the off-diagonal blocks of the Hessian (estimated by the
L-BFGS) to this scaling would deserve a more extensive study of the
Hessian.

Of note, the data Hessian for the velocity, density, and QP-factor
vary within the same proportion as for the synthetic case study.
When the same damping is used for all of the parameters, the QP-
factor model is left almost unchanged when strategies 1 and 3 are
used (Figs 16d–f and k–m). Moreover, the velocity model is noisier
than that obtained with a small value of λQ P . Therefore, we will
focus on the interpretation of the results obtained with a small value
of λQ P .

FWI allows us to image several density contrasts along lines 21
and 29 (Fig. 16b, black arrows). In particular, we show a deep re-
flector at 3.5 km in depth, bending from the middle of the model
to the bottom left, which has already been imaged by reverse time
migration (Prieux et al. 2011, their fig. 8). The low-density con-
trasts at 0.6 and 1.5 km in depth are interpreted as an accumulation
of gas below barriers of claystone. Note that these density con-
trasts are more pronounced for line 29 at around 7 and 11 km in
distance, just above two low-velocity areas that are probably asso-
ciated with gas-charged sediments (Fig. 16 h, white dashed circles).
The FWI velocity model inferred from strategy 1 is smoother than
that inferred from strategy 3, which is balanced by more contrasted

density and QP-factor models when strategy 1 is used. This is con-
sistent with the overall trend revealed by the synthetic experiment,
and it highlights the trade-off between the parameters. The veloc-
ity models obtained after the first-step and second-step inversions
are almost the same when strategy 3 is used, which highlights the
dominant weighting of the velocity in the inversion.

The QP-factor models show interesting features that are amenable
to geological interpretations (Figs 16c and j), although values of the
QP-factor should be interpreted with caution because of potential
lack of resolution and trade-off with both velocity and density esti-
mations. We show weak values of QP down to 600 m in depth in both
models of lines 21 and 29, reaching values down to 50 (although
the colour scale is limited to 80 in Figs 16 and 17). We interpret
these attenuating zones as the signature of soft quaternary sedi-
ments. Small values of QP are also shown in the model of line 29 at
distances of 8 and 11 km and at a depth of 2.5 km; these are the same
locations where we observed smaller values of VP (Fig. 16c, white
circles). Line 21 is known to be located above tertiary sediments
that are strongly charged with gas (Sirgue et al. 2010), as confirmed
by the final velocity models of Figs 17(a) and (e). Consequently, the
QP-factor has smaller values in the middle of the model of line 21,
compared to the model of line 29.

The quality factor is much lower in the first 600 m layer than in
the gas zone, even though we know that the intrinsic attenuation of
the gas is very important. In addition to the lithological differences,
this might arise because the inverse of the quality factor is strongly
dependent on the effective pressure, which decreases by at least
one order of magnitude between the ambient pressure and 40 MPa,
which correspond to a burial depth of about 2000 m (Winkler &
Nur 1982). However, according to the synthetic tests (Figs 11u and
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Figure 18. Real data case study. Impedance perturbation models for line 21 (a–c) and line 29 (d–f). (a, d) Difference obtained by subtracting the final model
from the starting model of the simultaneous inversion. (b, c, e, f) For the hierarchical inversion, the perturbation models computed are distinguished by
subtracting the final model of the second step from the starting model of the first step (b, e), and the perturbation models of the second inversion step (c, f).
Black arrows in (d) point out the deep reflector at 3.5 km in depth.

12u for instance), the main reason is probably due to the intrinsic
weak resolution of this parameter which dampens the Q values.
Furthermore, the resolution strongly decreases with depth, because
at depth the medium is only illuminated by reflections, which are not
as sensitive as the diving waves to the attenuation as less wavelengths
are propagated.

To enhance the information on the reflectivity provided by the re-
construction of the velocity and the density, we show the impedance
perturbations for lines 21 and 29 and for the two strategies (Fig. 18).
We note overall good lateral continuity of the reflectors. The simul-
taneous inversion mainly enhances two reflectors at 2.6 and 1.5 km
in depth (Figs 18a and d). The amplitudes of these perturbations are
greater than the amplitudes of the perturbations built by the second
step of the hierarchical inversion alone (Figs 18c and f), especially
for line 21, and they are of the same order of magnitude as the total
perturbations of the hierarchical inversion (Fig. 18e). We conclude
that the impedance starting model for the second inversion step of
the hierarchical approach contains most of the high-wavenumber
perturbations of the final impedance model. Although this strategy
allows us to inject prior information, it might on the other hand
drive the convergence towards a local minimum. We also note the
impedance contrast associated with the deep reflector at 3.5 km in
depth (Fig. 18b, black arrows), which was already shown in the
FWI velocity model. The weaker impedance perturbations of line
21 compared to line 29 at the second inversion step can be related
to the platform noise, which could hamper the convergence, or to
the stronger presence of gas for line 21.

Comparison with sonic logs
To further appraise FWI results, we compare the FWI profiles

with corresponding band-pass filtered well logs in the [0–14] Hz
frequency range, the locations of which are indicated in Fig. 14.
The match between the FWI and well logs needs to be assessed
taking into account that most of these logs are not located on lines
21 and 29. Moreover, the logs are not rigorously vertical, as shown

by the black line starting from the green square for the ‘2/8-F1’ and
‘2/8-A-3B’ wells in Fig. 14. At first glance, the distance between
the density FWI models and the wells appears to be better for the
first 1.5 km in depth, down to the top of the gas, than below this.
This has to be related to the starting model, which roughly follow
the same trend. On the other hand, the main discontinuities of the
medium, which roughly follow the black dashed line in Fig. 19, and
the few other layers seen in the “2/8-F1” well log down to 700 m
in depth, are reconstructed by the FWI with an underestimated am-
plitude. These observations illustrate the notch in the lowest part
of the wavenumber spectrum of the FWI density model, which
correspond to a lack of sensitivity with respect to the density at
wide apertures. The direct comparison is thus difficulty possible
between the wells and FWI profiles. The lake of clear reflections
in the gas is an additional reason why even the highest wavenum-
bers of the FWI profile are not compatible with those of the well
log.

Data match
In Fig. 20, we show the direct comparisons between the recorded

and the computed data within the final models obtained for the line
29 by simultaneous or hierarchical inversion. The source wavelet
used for the seismic modelling is estimated in the normal moveout
velocity model that was built by reflection traveltime tomography
from offsets smaller than 2 km (Prieux et al. 2011). The long-offset
refracted waves computed in the FWI model obtained after the sec-
ond inversion step of the hierarchical approach arrive slightly earlier
than the recorded arrivals, and amplitudes are weaker than those ob-
tained after the first inversion step (Fig. 20a, ellipse). These two ef-
fects are probably related to the low values of Qp created by the inver-
sion down to 700 m in depth. The small changes in the velocities be-
tween the first and second steps are not significant enough to correct
for this small phase shift (Fig. 20b, ellipse). In contrast, the ampli-
tude and phase match of the diving waves in the models obtained by
simultaneous inversion are slightly better for line 29 (Fig. 20c). This
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Figure 19. Real data case study. Comparison between the FWI profiles of the density for line 21 (a, b) and line 29 (c, d), and the corresponding well logs (red
and orange) (see Fig. 14). The FWI profiles are extracted from the models obtained by simultaneous inversion (blue) or by hierarchical inversion (green).

improved match might be allowed by the simultaneous inversion up-
date of the three parameter classes, which gives more freedom to the
inversion to match the data. On the other hand, seismograms indicate
that the second step inversion strengthens and improves the short-
spread reflections, which also appear with stronger amplitude than
in the seismograms from the simultaneous inversion (Figs 20a and
d, ellipse).

The data match is also shown by the plot in Fig. 21 of the total
misfit functions for line 29, for the tests where the damping term
of QP is 100-times smaller than the dampings for velocity and
density. We can compare the decrease of the misfit function for
the simultaneous strategy (Fig. 21a) and the second step of the
hierarchical strategy (Fig. 21b). We observe that the misfit decrease
is relatively moderate (a mean of 15 per cent) and is equivalent for
the two tests. It is interesting to note that the corresponding synthetic
tests show an average misfit decrease of 30 per cent. We believe that
this smaller decrease can be attributed to the presence of noise in
the real data set, which gives more weight to the model space misfit
function, to prevent the creation of sharp anomalies.

C O N C LU S I O N S

We have presented here an application of visco-acoustic FWI of
hydrophone data for the imaging of the compressional wave speed,
the density, and the QP-factor in marine environments. We first
show that a subsurface parametrization that combines compres-
sional wave speed and density leads to better FWI results than
parametrization, which combines compressional wave speed and
impedance. In the first case, the diffraction pattern of the compres-
sional wave speed is isotropic, which leads to a high resolution
reconstruction of the velocity, the parameter with the dominant
imprint on the data. A second recommendation is that the veloc-
ity and density are updated in a hierarchical manner, rather than
simultaneously. This hierarchical approach contributes to the up-
date of the density during the second step of the inversion in a
more stable manner than the simultaneous update of the velocity

and the density in one go. We have found that judicious scaling
of the model parameters and judicious tuning of the FWI regular-
ization were key issues to retrieve reliable model perturbations of
the dominant and secondary parameters. In the case of the imag-
ing of the velocity, density, and QP-factor, we also recommend
from this case study a hierarchical approach, where the dominant
wave speed parameter is reconstructed first, before the simultane-
ous update of the three parameter classes. These conclusions are
probably still valid for other marine case studies, but should dif-
fer for land environments, where the footprint of the attenuation
and the shear wave velocity is much stronger. When numerous in-
version models are recovered from different choices of damping,
inversion strategies, and parametrizations, their mean, which can
be weighted by prior information, can be of primary importance
to better constrain the most probable solutions within the model
space. The update of the P-wave velocity, density and QP-factor
by visco-acoustic FWI from the hydrophone data recorded at the
Valhall field provide reliable starting and background models for
the subsequent elastic FWI for imaging compressional and shear
wave speeds.
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Figure 20. Real data case study. Seismograms represented with a reduction velocity of 2.5 km s−1. (a–c) True amplitude comparison between recorded (black
line) and modelled (gray line) seismograms. A gain with offset is used to represent these data. (a, b) Seismograms are computed in the final FWI models of
the first (a) and second (b) steps of the hierarchical inversion (see Figs 16g–j). (c) Same as (a) for the seismograms modelled in the final FWI models of the
simultaneous inversion (Figs 16a–c). (d–f) Modelled data shown in (a–c) but displayed with the black/white scale. Green curves, manually picked first arrival
traveltimes; red curves, reflections from the top of the gas; blue curves, reflections from the bottom of the gas.

Figure 21. Normalized misfist functions with respect to the iterations for the five groups of frequencies (for identification, see right-hand side), from the tests
realized on line 29 when the damping term associated with the QP factor was 100-times smaller than those used for the other parameters. (a) Simultaneous
strategy (see Figs 16h–j) and (b) second step of the hierarchical strategy (see Figs 17e–g).
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Wu, R.S. & Toksöz, M.N., 1987. Diffraction tomography and multisource
holography applied to seismic imaging, Geophysics, 52, 11–25.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/194/3/1640/645074 by guest on 17 June 2021


