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Abstract. Field-, temperature- and angle-dependent Fourier amplitude of de Haas-van Alphen (dHvA)

oscillations are calculated for compensated two-dimensional (2D) metals with textbook Fermi surface (FS)

composed of one hole and two electron orbits connected by magnetic breakdown. It is demonstrated that,

taking into account the opposite sign of electron and hole orbits, a given Fourier component involves

combination of several orbits, the contribution of which must be included in the calculations. Such FS is

observed in the strongly 2D organic metal α-’pseudo-κ’-(ET)4H3O[Fe(C2O4)3]·(C6H4Br2), dHvA oscilla-

tions of which have been studied up to 55 T for various directions of the magnetic field with respect to the

conducting plane. Calculations are in good quantitative agreement with the data.

PACS. 71.18.+y Fermi surface: calculations and measurements; effective mass, g factor – 71.20.Rv Poly-

mers and organic compounds
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1 Introduction

Provided that no phase transition occurs as the temper-

ature is lowered, Fermi surface (FS) of two-dimensional

(2D) organic metals is generally rather simple and achieve

model systems for quantum oscillations physics. Indeed,

in the numerous cases where the compound possesses two

carriers (generally holes) per unit cell, the FS originates

from a single orbit with an area equal to that of the first

Brillouin zone [1]. In an extended zone scheme, these or-

bits overlap either along (i) one or (ii) two directions yield-

ing in magnetic field either (i) the model linear chain of

orbits coupled by magnetic breakdown (MB) proposed by

Pippard in the early sixties [2,3] for which all the orbits

are of the same (hole) type or (ii) a set of compensated

electron- and hole-type orbits (i.e. the sum of the hole-type

orbits cross section is equal to that of the electron-type or-

bits).

The former case (i) has been widely studied: it is known

that quantum oscillations spectra are strongly affected by

field-induced chemical potential oscillations yielding many

frequency combinations, the field and temperature depen-

dence of which cannot be accounted for by the Lifshitz-

Kosevich (LK) formula [4,5,6]. In contrast, to our best

knowledge, the second case (ii) has only received little at-

tention up to now even though MB between hole- and

electron-type orbits is relevant, for instance, for recently

studied oxide superconductors [7,8,9]. Numerical resolu-

tion of the grand potential equation for the case (ii) reveals

a e-mail: alain.audouard@lncmi.cnrs.fr

b e-mail: fortin@ijl.nancy-universite.fr

that chemical potential oscillations are strongly damped

for compensated orbits, even in the case of 2D metals [10,

11]. As a consequence, contrary to case (i), the LK for-

mula is predicted to account for the field and temperature

dependence of the oscillations amplitude in case (ii). How-

ever, depending on the MB probability and taking into ac-

count the opposite sign of electron and hole orbits, a given

Fourier component can involve combinations of an infinite

set of orbits, the contribution of which must be included

in the Fourier amplitudes calculation. From the experi-

mental side, only few quasi-2D compensated metals have

been synthesized yet. Such FS are observed in e.g. (BEDO-

TTF)2ReO4·H2O [12] (where BEDO-TTF stands for the

bis-ethylenedioxy-tetrathiafulvalene molecule) and, more

recently synthesized, (ET)4H3O[Fe(C2O4)3]· Solv (where

ET stands for the bis-ethylenedithio-tetrathiafulvalene molecule

and Solv is an organic solvent) [13,14].

As reported in Fig. 1(a), the unit cell of α-’pseudo-κ’-

(ET)4H3O[Fe(C2O4)3]·(C6H4Br2) [13] contains two differ-

ent donor planes with different packing. One of them, with

a ’pseudo-κ’ structure is insulating while the other with

an α-type structure is metallic. As a consequence, spacing

between conducting layers is as large as 3.64 nm, ensuring

negligibly small interlayer transfer integral, hence avoid-

ing effects due to FS corrugation [15]. According to band

structure calculations, the FS of the metallic plane, dis-

played in Fig. 1(b), is composed of two electron-type and

one hole-type compensated orbits (i.e. the hole orbit area

is twice the electron orbits area). In the extended zone

scheme, this set of three orbits is isolated from the other
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Fig. 1. (color on line) (a) Crystal structure of α-’pseudo-κ’-

(ET)4H3O[Fe(C2O4)3]·(C6H4Br2). α-type and ’pseudo-κ’-type

layers are conducting and insulating, respectively. (b) Fermi

surface relevant to the α-type layers, according to Zorina et

al.[13]. Blue and green areas mark electron- and hole-type or-

bits, respectively. Ellipses in dashed lines mark the orbits from

which the Fermi surface originates. Labels Γ , X and Y refer to

the (0, 0), (a∗/2, 0) and (0, b∗/2) points of the first Brillouin

zone, displayed as a rectangle in solid line.

sets. In other words, we are not dealing with a network of

coupled orbits. In contrast, each of the orbits within a set

is liable to be connected to the other by MB. This feature

is shared by the FS studied in Ref. [10], which is composed

of one hole and one electron compensated orbit.

The aim of this paper is, in the first step, to provide cal-

culation of the Fourier amplitudes of de Haas-van Alphen

(dHvA) oscillations spectra for the FS of Fig. 1(b). In the

second step, magnetic torque oscillations of α-’pseudo-κ’-

(ET)4H3O[Fe(C2O4)3]·(C6H4Br2), yielding dHvA spectra,

are studied in magnetic fields up to 55 T. Whereas mag-

netoresistance data of this organic metal, measured in

magnetic fields below 16 T reveal only one frequency at-

tributed to the hole orbit [13], the two frequencies cor-

responding to electron and hole orbits area are observed.

It is shown that the field and temperature dependence of

the Fourier amplitudes are in agreement with the reported

calculations.

2 Experimental

Crystals were synthesized by electrocrystallization tech-

nique as reported by Zorina et al.[13]. Two crystals de-

noted as crystal #1 and #2 hereafter were studied. Their

approximate dimensions were 0.12 × 0.1 × 0.04 mm3.

Magnetic torque was measured with a commercial piezore-

sistive microcantilever, in pulsed magnetic fields of up to

55 T with a pulse decay duration of 0.32 s. Variations of

the cantilever piezoresistance were measured in the tem-

perature range from 1.4 K to 4.2 K with a Wheatstone

bridge with an ac excitation at a frequency of 63 kHz.

The angle between the normal to the conducting plane

and the magnetic field direction was θ = 15◦ and 32◦ for

crystal #1 while θ was varied from 15◦ to 71◦ thanks to

a rotating sample holder for crystal #2.

3 Calculations of the Fourier amplitudes

In the framework of the Lifshitz-Kosevich and Falicov-

Stachowiak models [3,16], the oscillatory part of the mag-

netization Mosc for a set of 2D orbits η can be written

as

Mosc = −
∑

η

∑

p

Fη

π
Apη sin(2πp

Fη

B cos θ
) (1)
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where θ is the angle between the normal to the con-

ducting plane and the field direction. The index η stands

for all the closed orbits allowed by the FS topology, includ-

ing MB orbits, with fundamental frequencies Fη. They do

not include orbits which can be associated with an har-

monic of a simpler trajectory, the latter being accounted

for by the index pFη (with p > 1) where p is the harmonic

order. The amplitude Apη of the Fourier component with

frequency pFη depend on parameters such as tempera-

ture, magnetic field, effective masses (mη), Dingle tem-

peratures (TDη), MB field (B0), and effective Landé fac-

tors (g∗η). These amplitudes can be expressed as Apη =

(−1)psηRMB
pη Rpη/(pmη). MB damping factor is given by

RMB
pη = Cpη(ip0)

ptηq
pbη
0 , where Cpη is the symmetry factor

of the orbit pη, tη and bη are the number of tunnelings and

reflections, respectively, encountered by a quasi-particle

during its path and 2sη is the number of turning points

around the orbit η. The tunneling and reflection probabil-

ities at a MB junction are given, in agreement with the

Chambers approximation, by p20 = exp(−B0/B cos θ) and

q20 = 1 − p20, respectively [17]. The damping factor Rpη

can be written as the product of thermal, Dingle and spin

damping factors (Rpη = RT
pηR

D
pηR

s
pη) which are given by

RT
pη = Xpη/ sinh(Xpη), R

D
pη = exp(−u0TDηpmη/B cos θ),

andRs
pη = cos(pπg∗ηmη/2 cos θ), respectively, whereXpη =

u0Tpmη/B cos θ and u0 = 2π2k2Bme/e~.

In the case of the FS of Fig.1(b), which is modeled

by Fig. 2, and owing to the orbits compensation pre-

dicted by band structure calculations, each electron (e)

and hole (h) orbit contributes to the dHvA oscillations

spectrum with the frequency Fe and Fh = 2Fe, respec-

tively. Besides, MB orbits composed of several individual

orbits (η = nee+ nhh) are also liable to contribute to the

spectrum. Indeed, all contributing trajectories for a given

frequency are accounted for by considering the amplitude

and phase variation exp(iSη) = exp[2iπhAη/eB)] of the

wave-function, whereAη is the area of the trajectory in the

Brillouin zone, which is directly identified to the frequency

Fη = |Aη|h/e. Taking into account the opposite sign of

electron and hole surface area, Snee+nhh = neSe + nhSh

with Sh = −2Se, all Fourier components with frequencies

Fnee+nhh = |neFe − nhFh| = |ne − 2nh|Fe, and effective

masses mnee+nhh = nhmh + neme [3,16], where ne and

nh are the (positive) numbers of electron and hole orbits

involved, contribute. Therefore, the dominant frequencies

Fe, 2Fe = Fh and 3Fe we will consider in the following,

arise from infinite orbits combinations with ne = 2nh± 1,

ne = 2nh±2 and ne = 2nh±3, respectively. To obtain the

amplitude of these Fourier components, the Fermi surface

is modeled in Fig. 2 by a linear finite chain of e and h

orbits.

To count all the allowed paths from one of the arbitrary

starting and ending points α, β̄, β, γ in Fig. 2, we consider

paths of length n, where n is an integer corresponding

to the number of elementary steps from one point to an-

other that form and define the complete closed trajectory.

Turning points are located at the arrows in Fig. 2 and

going through one of these is tantamount to adding a fac-

tor i in the wave-function amplitude. We introduce the

vector amplitude |α, β̄, β, γ〉 corresponding to the state of
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Fig. 2. Compensated Fermi surface with classical representa-

tion of the quasi-particle orbits. Phase variation of the wave-

function is given by exp(iSe) around the electronic orbit e and

exp(iSh) around the hole orbit h, where Se(h) is the electron

(hole) surface area. Either magnetic breakdown occurs with

the probability amplitude ip0 between two orbits or reflection

is allowed with the probability amplitude q0 = (1− p20)
1/2.

the quasi-particle. Any closed path is therefore defined by

its length n and its starting point and state s0 among

the set (α, β̄, β, γ). Initially the state |s0〉 is filled with

zeroes except for the component corresponding to s0, for

example |α〉 = |1, 0, 0, 0〉. We then define each step factor

of the trajectory by moving from one point among the

set (α, β̄, β, γ) to the next one, by following the direction

imposed by the field, with the adequate changes in the

phase and amplitude. For example, as shown in Fig. 2,

β = −ip0α exp(iSe/2 + iSh/2) + iq0β̄ exp(iSh/2). Intro-

ducing parameters x = exp(iSe/2) and y = exp(iSh/2),

with y = 1/x2, we can write a transfer matrix for all the

elementary steps on the Fermi surface:

T (x, y) =























−q0x
2 −ip0xy 0 0

0 0 iq0y −p0x

−p0x iq0y 0 0

0 0 −ip0xy −q0x
2























Since we consider closed paths and conserved current,

the output vector is the same as the input vector |s0〉.

Then the number of all possible paths of length n and

starting from a point s0 is given by the number 〈s0|T (x, y)n|s0〉.

The generalized damping factor Apη in Eq. (1) is com-

puted for all possible orbit combinations contributing to

the same frequency pFη. The combinatorial factor (−1)psη

RMB
pη in Apη, combining the different ways of drawing the

orbits pη on the FS, is precisely defined as the coefficient

of x2ney2nh , as well as x−2ney−2nh , in the following poly-

nomial function

A(x, y) =

∫ 1

0

dz

z

∑

s0

∑

n≥0

Ws0〈s0|T n(
√
zx, zy)|s0〉 (2)

weighted by damping factors for each orbit, and cor-

responding to integers (ne, nh). Ws0 is the weight of the

point s0 in the quasi-particle path. We will take Wα =

Wγ = 1 and Wβ = Wβ̄ = 1/2. Indeed points β and β̄

are equivalent in the sense that they define the same set

of paths and belong to the same orbit. Finally, the inte-

gration over z is performed so that to remove the number

of cyclic permutations ne + 2nh of the same fundamen-

tal orbit by adding a compensatory factor 1/(ne + 2nh),

and to take into account the harmonics coefficients with

a weighting factor 1/p. Each path can be simply decom-

posed using e (or x) for a portion of trajectory around the

electron orbits, and
√
h (or y) around the hole orbit, and

z is added for each e or
√
h encountered on the trajec-

tory. For example the orbit ee
√
he

√
h (corresponding to

ne = 3, nh = 1) with effective mass 3me +mh and phase

Se (corresponding to the frequency Fe) has a weight pro-

portional to 10p40q0/5 = 2p40q0 (the factor 5 = ne + 2nh

is the number of cyclic permutations of the same orbit
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ee
√
he

√
h = e

√
he

√
he = · · · ). It is different from the

orbit ee
√
h
√
he for example, which has a weight propor-

tional to −2p30q
2
0 . We find that the first three amplitudes

can be written as

Ae = −2q0
me

Re −
2p20q0

me +mh

Re+h

+
2[p40q0 − p20q

3
0 ]

3me +mh

R3e+h + · · · , (3)

A2e =
q20
2me

R2e −
q20
mh

Rh

+
3p40q

2
0 − 2p20q

4
0

2(me +mh)
R2e+2h +

2p20q
4
0 − 3p40q

2
0

4me +mh

R4e+h + · · · ,(4)

A3e = − 2q30
9me

R3e +
2p20q

3
0

me + 2mh

Re+2h + · · · . (5)

where Rpη = RT
pηR

D
pηR

s
pη. As an example, the first

term −(2q30/9me)R3e of A3e in Eq. 5, comes from the

third harmonics of the e orbit. Indeed, according to Eq. 1,

this factor is given by Fe(−2q30)R3e/(3me) which can be

rewritten as 3Fe(−2q30)R3e/(9me). Magnetization can then

be expanded as

Mosc = −Fe

π
Ae sin

(

2π
Fe

B

)

− 2Fe

π
A2e sin

(

2π
2Fe

B

)

−3Fe

π
A3e sin

(

2π
3Fe

B

)

+ · · · (6)

Examples of Fourier spectra deduced from Eq. 6 are re-

ported in Fig. 3(a) for various temperatures and MB fields.

Landé factors (g∗e = 2, g∗h = 2) and effective masses (me

= 1, mh = 1), which otherwise are close to those deduced

from the data reported in the next section, are chosen

so that the absolute value of the spin damping factors is

equal to 1 (|Rs
pη|=1) in order to avoid any spurious effect

due to spin-zero phenomenon. First, A3e is always small

compared to Ae and A2e. Corresponding field-dependent

amplitudes A2e are given in Figs. 3(b), (c), (d). Despite

the effective mass mη of a given η orbit increases as the

number of individual orbits involved increases, a clear con-

tribution of the orbits 2e, 2e+2h and 4e+h to the ampli-

tude is observed in Fig. 3(b). Their relative contributions

decrease as the Dingle temperatures (not shown), the tem-

perature (see Fig. 3(c)) and the MB field (see Fig. 3(d))

increase which may lead to errors in effective mass deter-

mination [11]. Contribution of the orbit 2e is substantial in

any case, which indicates that this orbit needs to be con-

sidered, even in the case of large MB field, scattering rate

and temperature, for correct data analysis. In contrast,

complex orbits such as 2e + 2h have significant contribu-

tion for clean compounds with moderate MB field at low

temperature, only. Similar conclusions can be derived re-

garding the component with frequency Fe for which the

contribution of e + h is always significant in the range

explored, except for large MB fields, while 3e + h is neg-

ligible at high temperature and large scattering rate. Of

course, all the considered amplitudes also depend on the

field- and temperature-independent spin damping factor

Rs
pη through the product g∗ηmη.

4 Results and discusion

This section is devoted to de Haas-van Alphen oscilla-

tions of α-’pseudo-κ’-(ET)4H3O[Fe(C2O4)3] ·(C6H4Br2),
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Fig. 3. (color on line) (a) Fourier spectra of the oscillatory magnetization calculated at a mean field of 40 T from Eq. 6

with me = 1, mh = 1, g∗e = 2, g∗h = 2, TDe = 1 K, TDh = 1 K. Labels b, c, d correspond to T = 1.5 K and B0 = 2 T, T =

5 K and B0 = 2 T, T = 1.5 K and B0 = 100 T, respectively. (b), (c), (d) Field dependence of the amplitude of the Fourier

component with frequency Fh = 2Fe corresponding to Labels b, c, d, respectively, of (a). Solid lines are calculated from Eq. 4.

Long dashed, short dashed, dotted and dash-dotted lines are the components linked to the h, 2e, 2e + 2h and 4e + h orbits,

respectively. The magnetic breakdown damping factors for the orbits 2e + 2h and 4e + h are given by R2e+2h = 3p40q
2
0 − 2p20q

4
0

and R4e+h = 2p20q
4
0 − 3p40q

2
0 , where q0 and p0 are the reflection and magnetic breakdown probability, respectively.

the FS of which (see Fig. 1(b)) is relevant to the above

calculations. Note that this FS can be considered as re-

sulting from the hybridization of a series of ellipses cen-

tered at the Γ point. The area of these ellipses, which is

related to the total number of holes per unit cell in the

HOMO bands, is twice the area of the cross section of the

FBZ because the repeat unit of the layer contains eight

ET molecules with an average charge of +1/2, i.e. a total

of four electrons per repeat unit. It is interesting to point

out how this FS differs from that of other α-type ET salts,

such as the α-(ET)2[MHg(SCN)4] family. As pointed out

by Mori et al. [18], the closed and open portions of the
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Fig. 4. Fourier analysis in the field range 25-55 T of the mag-

netic torque data reported in the insert for various directions of

the magnetic field with respect to the normal to the conducting

plane (angle θ).

latter can also be considered to arise from the hybridiza-

tion of a series of ellipses with an area equal to the cross

section of the first Brillouin zone (FBZ) and centered at

Y (using the axes notation of Fig. 1(b)). Since the repeat

unit of these salts contains only four ET molecules, the FS

of Fig. 1(b) is just a folded version along the b∗ direction

of such FS. The different kind of overlap of the ellipses

generated by the folding thus leads to the very different

FS for the present salt (referred to as case (ii) above) and

that of the α-(ET)2[MHg(SCN)4] family (referred to as

case (i) above).

Field-dependent magnetic torque data and correspond-

ing Fourier analysis are reported in Fig. 4. Angle depen-

dence of the two observed frequencies (not shown) follows

the cosine law predicted for a 2D FS with Fh(θ = 0) =

183 ± 3 T and Fe(θ = 0) = 91 ± 5 T. Consistently with

the FS topology reported in Fig. 1(b), they correspond to

Fig. 5. ln(|Aτ |) vs 1/B at various temperatures for (a) Aτ
h

(solid circles) and Aτ
e (solid squares) at θ = 49◦, (b) Aτ

h at

θ = 15◦ (solid squares) and 32◦ (solid circles) and (c) field

dependence of Aτ
h (solid circles) and Aτ

e (solid squares) at θ =

49◦ at 1.5 K. Solid lines are fits of Eqs. 7, obtained with me

= 0.93, mh = 0.88, g∗e = 2.27, g∗h = 2.06, TDe = 5 K, TDh

= 4 K and B0 = 2 T. Long dashed, short dashed, dotted and

dash-dotted lines in (c) are the contributions of the various

components entering the fittings (see text and Fig. 3).
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the hole and electron orbits cross section area Sh = 8.9

± 0.2 % and Se = 4.4 ± 0.3 %, respectively, of the FBZ

area. These data are in agreement with magnetoresistance

data (Sh = 8.9 % of the FBZ area) and band structure

calculations at room temperature (Sh = 7.6 % of the FBZ

area and Se=Sh/2) [13]. Compared to the Fourier compo-

nent with the frequency Fh, that with the frequency Fe,

which was not observed in Ref. [13], has a relatively small

amplitude at θ = 15◦ and 32◦, and can only be reliably

studied at θ = 49◦.

It must be noticed that the studied compound con-

tains magnetic Fe3+ ions. As reported in the case of λ-

(BETS)2FeCl4 (where BETS stands for bis-ethylenedithio-

tetraselenafulvalene) [19,20], these magnetic ions induce

an exchange field leading to angle-dependent splitting of

the oscillation frequency which may alter the oscillations

amplitude. Nevertheless, such a splitting is not observed

neither in the considered compound nor in the compound

with the same composition and β” structure in fields of

up to 55 T [21,22,23]. This could be due to the lower,

by a factor of two, Fe3+ concentration in the present case

hence to a reduced exchange coupling constant.

A naive analysis of the temperature dependence of Aτ
h,

relevant to Fh, assuming that only one orbit contributes

(i.e. through Eq. 1) yields an effective mass mh(θ)×cos(θ)

of 0.96 ± 0.05, 0.93 ± 0.02 and 0.69 ± 0.07 at θ = 15◦,

32◦ and 49◦, respectively. Within the same hypothesis, the

magnetoresistance data at θ = 0◦ of Ref. [13] yield mh

= 1.11 ± 0.04 [24]. In other words, the product mh(θ) ×

cos(θ) would monotonously decreases as θ increases. Hence,

at variance with the angle dependence of the frequency,

the cosine law (mh(θ) = mh(0)/ cos θ) consistent with a

2D FS, would not be followed for the effective mass within

this assumption. This result strongly suggests that Eq. 1

is unable to account for the temperature dependence of

the amplitude. Besides, it can be checked that the field

dependence of the amplitude cannot be accounted for by

Eq. 1 as well. As discussed in the preceding section and

reported hereafter, other orbits (such as 2e, 2e+2h, etc.)

with effective masses different from each other enter the

oscillatory spectra.

According to Eqs. 6, oscillatory torque amplitudes Aτ
e

and Aτ
h, of the Fourier components with frequencies Fe

and Fh = 2Fe observed in Fig. 4, are given by:

Aτ
e = τ0 tan(θ)B

Fe

π
Ae, A

τ
h = τ0 tan(θ)B

2Fe

π
A2e, (7)

respectively, where τ0 is a prefactor depending on the

cantilever stiffness, crystal geometry, etc. and θ is the an-

gle between the field direction and the normal to the con-

ducting plane. Amplitudes Ae and A2e in Eqs. 7 are given

by Eqs. 3 and 4, respectively. We will limit ourselves to

small nh and ne values. Namely, in addition to the basic

electron and hole orbits, only the second harmonic of the

electron orbit (2e) and the MB orbits composed of one

hole and one electron orbit (e + h), 3 electron and one

hole orbits (3e+h), 2 electron and 2 hole orbits (2e+2h)

and 4 electron and one hole orbits (4e+ h) are taken into

account. In short, the contribution of the MB orbits and

harmonics composed of more than 5 individual orbits are

neglected. It must be kept in mind that spin damping fac-
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tors may influence the sign of a given contribution or, in

other words, induce a π dephasing, as observed on either

side of a spin zero angle [5].

Fig. 6. Angle dependence of the amplitude |Aτ
h| at T = 1.5

K and B = 40 T. Solid line is the best fit of Eq.7 to the data,

obtained with the same set of parameters as in Fig. 5. Long

dashed, short dashed and dotted lines in the insert are the

contributions of h, 2e and 2e + 2h, respectively.

Fig. 5 displays field dependence at various tempera-

tures of either Aτ
e or Aτ

h for θ = 15◦ and 32◦ (crystal #1)

and 49◦ (crystal #2) while Fig. 6 displays the angle de-

pendence of Aτ
h at T=1.5 K and B = 40 T for crystal #2.

Solid lines in these figures are the best fits of Eqs. 7 to the

Fourier amplitudes: the same set of parameters stands for

all the data, namely me = 0.93 ± 0.04, mh = 0.88 ± 0.04,

g∗e = 2.27 ± 0.12, g∗h = 2.06 ± 0.09. Dingle temperatures

and MB field, which jointly govern the field dependence

of the amplitude are obtained with a large uncertainty.

Dingle temperatures are rather large, of the order of few

K, whereas B0 is in the range between 0 and 4 T which is

rather small, in agreement with the FS of Fig. 1. Owing

to the small size of e and h orbits, compared to that of

the FBZ, effective mass values are large which suggests

significant renormalization due to many-body effects.

According to Dharma-wardana et al. [25], electron cor-

relations are predicted to yield large Landé factor. Consis-

tently, large values are observed, although they are within

the spread range usually reported for organic metals [4]. In

that respect, puzzling data can be found in the literature

since, for example, values as small as g∗α=1.6 and g∗β=1.5

are observed for the strongly correlated κ-(ET)2Cu(SCN)2

compound [26]. Oppositely values larger than 2 are re-

ported for e.g. κ-(ET)2I3 (g∗β=2.27 [27]).

Composites orbits, e+h and 2e have significant contri-

butions toAτ
e and Aτ

h, respectively, as observed in Fig. 5(c).

Nevertheless, higher order terms (linked to 2e + 2h and

3e + h) are small, due to rather large Dingle tempera-

tures. Finally, as reported in Fig. 5c for the data at 49◦,

contributions of e and 3e + h to Ae have opposite signs.

This result which also holds at 15◦ and 32◦, explains why

this amplitude is small compared to Aτ
h.

5 Summary and conclusion

Fourier spectra of de Haas-van Alphen oscillations of com-

pensated two-dimensional metals with Fermi surface com-

posed of one hole and two electron components have been

considered. The two main Fourier components observed

have frequencies Fe and Fh = 2Fe, corresponding to the

electron and hole orbits area. Nevertheless, it is demon-

strated that, taking into account the opposite sign of elec-

tron and hole orbits, a given Fourier component involves

combination of several orbits, the contribution of which
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must be included in the calculations. Such FS, which is

a textbook case, is observed in the strongly 2D organic

metal α-’pseudo-κ’-(ET)4H3O[Fe(C2O4)3]·(C6H4Br2). Mag-

netic torque oscillations of this compound have been stud-

ied up to 55 T for various directions of the magnetic field

with respect to the conducting plane. It is demonstrated

that data analysis performed assuming that only single

electron and single hole orbits contribute to Fourier com-

ponents with frequency Fe and 2Fe, respectively, cannot

account for the data. In other words, additional orbits gen-

erated by tunneling and reflection at magnetic breakdown

junctions must be taken into account. Calculations are in

good quantitative agreement with the data.

This work has been supported by EuroMagNET II under the

EU Contract No. 228043, and MINECO-Spain (Projects FIS2012-

37549-C05-05 and CSD 2007-00041).
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