
HAL Id: hal-01052728
https://hal.science/hal-01052728

Preprint submitted on 28 Jul 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Vicinity Package for Opportunistic Networks
Tiphaine Phe-Neau

To cite this version:

Tiphaine Phe-Neau. The Vicinity Package for Opportunistic Networks. 2014. �hal-01052728�

https://hal.science/hal-01052728
https://hal.archives-ouvertes.fr


The Vicinity Package for Opportunistic Networks

Tiphaine Phe-Neau

UPMC Sorbonne Universités

tiphaine.phe-neau@lip6.fr

Abstract—Opportunistic networks have grown into a major
trend in the wireless network research field. In our work, we
relaxed the traditional definition of contact and intercontact
times by bringing the notion of vicinity into the game. We first
propose to analyze opportunistic/disruption-tolerant networks
(DTN) using a node-centered vicinity point of view i.e. we
consider that nodes are in κ-contact when they remain within
a few hops from each other and in κ-intercontact otherwise
(where κ is the maximum number of hops characterizing the
vicinity). Second, we focused on the inner vicinity behaviors
namely Vicinity Motion and on how we could reproduce these
patterns to generate dataset-based synthetic pairwise vicinity
movements. Finally, since the main use of opportunistic networks
is to transmit data, we investigated the use of vicinity knowledge
into pairwise shortest distance prediction and found out a very
interesting heuristic relying on Vicinity Motion. We packaged
most of our contributions concerning vicinity knowledge for
opportunistic networks in the Vicinity Package written using
Python 2.7 and libraries such as NetworkX and NumPy. This
paper reviews the theoretical knowledge required to use the
Vicinity Package.

I. INTRODUCTION

In our modern society, citizens tend to have more and more

connected devices. Through these devices, they require to

always be connected to the current trends or news and they

want to be able to communicate with other persons whether

they are commuting, at work, or even on holidays. This need

of a “super-connectivity” shows its limits with the resulting

telecommunication companies infrastructure overload [1]. On

the lookout for alternative means to provide data to users,

we find an attractive solution with the DTN paradigm. It is

mostly user-based, does not need an overall infrastructure,

takes advantage of user mobility as a transmission catalyst,

and manages to deliver an interesting amount of information

in the network.

This all started high in the sky with satellite networks

and the idea of an Interplanetary Internet [2]. To work with

such type of networks is clearly different from working with

our common wired or Wi-Fi networks. Compared to most

systems, interplanetary networks do bear unusual features. For

instance, topological distance between spatial nodes is often

of thousands of kilometers inducing long delays between the

emission and reception of a signal. These long delays are

considered faulty in usual networks. However in this case,

it is a natural part of their functioning. The opportunistic

networking research area gained attention in 2003 when Kevin

Fall formalized the characteristics of a “delay-tolerant network

architecture” for challenged networks [3]. By bringing a back-

to-earth vision to challenged networks, Fall sparked a lot of

t = t1 t = t2 t = t3

A A
A

B
B

B

C

C

C
D

D
D

Fig. 1. An example of disruption-tolerant/opportunistic network.

interests in our fellow scientists. By lifting a few technical

constraints, our community could extend wireless networks

use to such challenged networks. This new paradigm could be

applicable to urban areas with urban nomads always carrying

connected devices (laptops, smartphones, etc.) When two or

more of these devices are close enough, they have potential

connectivity and transmitting powers thanks to their embedded

technologies. Transmitting information hop-by-hop between

these moving devices becomes theoretically possible. Such

challenged networks are called “disruption-tolerant networks”

(DTN) or “opportunistic networks”.1

Opportunistic networks rely on device’s “short” range con-

nectivity (currently Bluetooth, NFC or Wi-Fi Direct) to trans-

mit data. Therefore, nodes can transmit data only when they

are close enough i.e., in contact. Fig. 1 presents an example

of a 4-node DTN. At time t1, A and B as well as C and

D are connected. Next at t2, they form a chain and finally

at t3, B moves away leaving A, C, and D fully connected.

Any disruption-tolerant protocol should cope with such a con-

nected/disconnected scenario. To reach the destination, nodes

use a hop-by-hop “store, carry, and forward” scheme. DTN

have different characteristics from other networks like Wi-

Fi, 2G, 3G or wired networks, therefore, their characteristics

need to be thoroughly understood before we are able to

use them. Many studies have shown the clear potential of

DTN as a self-dependent network model. In our work, we

proposed the utilization of the vicinity in DTN to improve its

characterization, understanding, and functioning.

In this paper, we summarize the knowledge required to

understand and use the Vicinity Package for opportunistic net-

works. First, we define the notion of vicinity in opportunistic

networks and examine some of its properties. Then, we focus

on the inner vicinity dynamics and model it via a chain model

namely the Vicinity Motion. Next, we analyze the prediction

capacities embedded in the Vicinity Motion model and show

1We will alternatively be using these two terms in this paper.



A

group 1
nodes in contact

with A

group 2.b
unreachable

nodes

group 2
nodes in “binary”
intercontact with A

group 2.a
nodes in “binary”
intercontact but
still reachable

Fig. 2. Motivating example. From node A’s point of view, we see that nodes
in group 1 are in contact. Using the usual binary vision, we conclude that
all other nodes are in intercontact (i.e., in group 2). However, nodes in group

2.a are essentially different from nodes in group 2.b. A has end-to-end paths
toward the first and no paths at all to the latter.

its efficiency. For most of these analyses, we have implemented

the corresponding algorithms in the Vicinity Package. Finally,

we give an overview about our implementation choices and

the different various algorithms. For a more detailed version

on vicinity knowledge in opportunistic network, please refer

to [4].

II. VICINITY: DEFINITION & TIMELINES [5], [6], [7]

As a descendent of historical networks where the notion

of contacts and direct connectivity is prominent, the first

characterization of opportunistic networks focused on contacts

between nodes and their resulting intercontact periods. The

notion of contact has been well investigated years before [8],

[9], [10]. However, the intercontact notion is quite unexplored.

The first sensible approach was to consider intercontact as the

complementary of contact. This assumption was maintained in

the context of a number of interesting studies but it may be too

shallow to correctly reflect the underlying network topology.

In Fig. 2, we represent a network snapshot illustrating our

concerns. This figure represents a network where nodes in

group 1 are in contact with A (i.e., they are within A’s

direct communication range). In the usual binary vision, all

remaining nodes (group 2) are, by definition, in intercontact.

Still, we notice that there is a fundamental difference among

nodes in group 2. None of the nodes in group 2.a are in contact

with A; nevertheless, they do have a contemporaneous path

to A. On the other hand, nodes in group 2.b do not have

any path to A. In opportunistic networking where we need

to gather as much knowledge as possible to achieve efficient

communication standards, deeming both cases of intercontact

under the same definition results in a waste of information.

Suppose A needs to send a message to one of the nodes in

group 2.a. In such a situation, most DTN approaches infer the

impossibility of exchanging messages via multi-hop paths and

often calls for a “wait” period until it meets the destination or

finds someone else that knows the destination “better”. With

this binary vision, A does not know that the destination is

nearby, and may miss an opportunity to communicate if, for

example, the destination moves after some time to group 2.b.

Noticing that contemporaneous paths may exist between nodes

is important. Neglecting such closeby possibilities is a waste

of connectivity assets in DTN.

A. Datasets

For our study, we observe the binary assertion and vicinity

properties in real-world experiments as well as a synthetic

datasets. We use realistic measurements to observe the extent

of vicinities in real-life situations. We also confronted the

vicinity notion to a synthetic datasets to observe its presence

in a dedicated mobility pattern.

Infocom05 measurement was held during a 5 day conference

in 2005 [11]. 41 attendees carried iMotes collecting informa-

tion about other iMotes nearby within a 10m wireless range.

We study a 12-hour interval bearing the highest networking

activity. Each iMote probes its environment every 120 seconds.

Infocom05 represents a professional meeting framework.

Sigcomm09 counted 76 attendees with dedicated smartphones

probing their surroundings during 5 days [12]. Smartphones

sensed their surroundings using Bluetooth every 120 seconds.

Sigcomm09 is another example of a professional meeting

scene.

Rollernet had 62 participants measuring their mutual con-

nectivity with iMotes during a 3 hour rollerblading tour in

Paris [13]. These iMotes sent beacons every 30 seconds. This

experiment shows a specific sport gathering scenario.

Shopping used 25 dedicated devices in a shopping mall

over 6 days [14]. Galati and Greenhalgh gave 25 devices to

shop owners and planted 8 others at various locations in the

mall. Devices performed neighborhood discovery every 120

seconds. Shopping reflects the working day routine of shop

owners as well as some of their customers.

Unimi is a dataset captured by students, faculty members,

and staff from the University of Milano in 2008 [15]. The

experiment involved 48 persons with special devices probing

their neighborhood every second. Unimi provides a scholar

and working environment scenario.

RT (S) for RandomTrip is a mobility model correcting flaws

from the Random Waypoint model [16]. We sampled the

behavior of 20 nodes following this model on a surface of 50

× 60 m2 with speed between 0 and 7 m/s and a 10m wireless

range. We choose to simulate 20 nodes over this surface to

recreate office conditions.

B. The Binary Assertion Issue

Considering the notion of intercontact as the mere bi-

nary complementary vision of contact is understandable. The

leading property of historical networks has always been the

“contact” between nodes. But in challenged networks such

as DTNs, we have to get the most of every situation and

surrounding assets. In Fig. 2, we observed that there were

unused pairwise connectivity between nodes. The traditional

contact vision misuses end-to-end “not-in-contact” connec-

tivity. The binary assertion issue, where we ignore end-

to-end connectivity beyond one hop, brings an interesting



0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 ∞

F
ra
ct
io
n
o
f
ti
m
e

Number of hops

Fig. 3. Example of time-distance distribution from the RT dataset. On the
left, we see that nodes spend 10% of their time in contact (1-hop). With the
binary vision, we then consider that nodes spend around 90% of their time
in intercontact (the double arrow on the right). With vicinity goggles we see
that in reality, they dwell at a distance 2 for around 10%, at a distance 3 for
16%. Real intercontact deprived of multi-hop path represents only 50% of the
time (∞).

interrogation: how pervasive are these hidden communication

possibilities?

To understand the problem, let us show an example for

a given pair of nodes using the RT dataset. We compare

the cumulated amount of time they spend in contact and in

intercontact and plot the results in Fig. 3. We observe that

nodes spend around 10% of their time in contact and around

90% in binary intercontact. If we consider the vicinity aware

vision, for the same pair of node, we realize that they spend

around 10% of their time at a 2-hop distance, 18% at 3-hops,

5% at a 4-hop distance, etc. The true time they spend without

any path to one another is only around 50% of the experiment

duration. The binary assertion hides 40% of the time where

these two nodes have a path connecting them.

More than just limiting our vision, the binary assertion

prevents us from leveraging our environments and performing

simple yet efficient closeby end-to-end transmissions. To be

able to use and characterize the closeby topological paths, we

first define the notion of vicinity in DTN.

C. The Notion of Vicinity in opportunistic networks

To the best of our knowledge, this is the first time the notion

of vicinity has ever been formalized in DTN. To understand the

extended transmission possibilities in opportunistic networks,

the first issue is to provide a formal definition of what the

notion of “nearness” means in DTNs. The κ-vicinity notion

brings an ego definition to DTNs and also adds a hop-based

discrimination [5], [17], [6]. This differentiation helps us limit

our vision according to our needs as well as identifying neigh-

bor properties. We discriminate a node i’s vicinity according to

the number of hops between i and its surrounding neighbors.

We use the instantaneous connectivity graph between nodes

to compute pairwise shortest paths. This connectivity graph

illustrates the current network state and what is immediately

useable.

Definition 1: κ-vicinity. The κ-vicinity Vi
κ of node i is the

set of all nodes with shortest paths of length at most κ hops

from i.

Clearly, Vi
κ−1 ⊂ Vi

κ. In Fig. 4, we illustrate the node i’s
1-vicinity and 2-vicinity at instant t. This is an interesting

point of view for opportunistic networks because it extends

a node’s knowledge to immediately useable communication

opportunities. The κ-vicinity empowers a node’s reach in the

network [7].

Vicinity knowledge may come from different techniques.

For instance, we can use link state protocols to gather in-

formation about a node’s connected component. There are

many ways to do so, but they all are costlier than getting

information from contacts only. The tradeoff between getting

vicinity information and its additional costs may be a reason

not to use κ-vicinity. However, we provide a solution to this

tradeoff by suggesting that monitoring the {3, 4}-vicinity is

enough to get most events in a node’s surroundings for the

datasets we consider in our analyses [5], [7].

The κ-vicinity defines a node’s neighborhood, i.e. its new

zone in the network. To characterize this zone’s relationships

to node i like the contact and intercontact notions previously,

we must define some temporal measures relating to time

neighbors spend in the zone and time outside the zone, namely

“κ-contact” and “κ-intercontact”. We maintain a pairwise

definition for these measures and assume that connectivity is

bidirectional.

Definition 2: κ-contact. Two nodes are in κ-contact when

they dwell within each other’s κ-vicinity, with κ ∈ N
∗. More

formally, two nodes i and j are in κ-contact when {i ∈ Vj
κ} =

{j ∈ Vi
κ}. In other words, a contemporaneous path of length

at most κ hops i and j.

We also need to grasp the intercontact observations for our

vicinity viewpoint. The literature definition of mere intercon-

tact is when two nodes are not in contact. Therefore, we

consider κ-intercontact when two nodes are not in κ-contact.

These are complementary notions.

Definition 3: κ-intercontact. Two nodes are in κ-

intercontact while they do not belong to each other’s

κ-vicinity. Formally speaking, two nodes i and j are in

κ-intercontact when {i 6∈ Vj
κ} or {j 6∈ Vi

κ} or there is no path

of length κ or less linking i and j.

Note that 1-contact matches the contact notion and 1-

intercontact corresponds to usual binary intercontact.

D. S1: Vicinity pairwise timelines

To understand the properties of vicinities in opportunistic

networks, we rely on a key data structure called “timeline”.

This timeline will be the first output of the Vicinity Package.

It takes contact traces as inputs. We first organize the trace

as a chronological sequence of instantaneous events. Events

can either be a link appearing or vanishing between a pair

of nodes (i, j) at time t. We symbolize this type of event as



i

(a) 1-vicinity

i

(b) 2-vicinity

Fig. 4. κ-vicinity illustration. Node i’s {1, 2}-vicinity at a given time t.

i

j

j

j leaves i’s κ-vicinity
(κ-intercontact starts)

κ-vicinity (for κ = 2) j returns to i’s κ-vicinity
(end of κ-intercontact time)

i

Fig. 5. Node i’s κ-vicinity and the κ-intercontact phenomenon. For the sake of clarity, we only display i’s connectivity links within the κ-vicinity.

e =< t, i, j, UP/DOWN >. UP indicates the appearance of a link

between i and j and DOWN its disappearance.

For a given pair of nodes (i, j), a timeline consists in the

sequence of their mutual shortest distance through to time

(see Fig. 6). Formally speaking, we represent timelines as a

sequence of tuples < n, i, j, tbegin, tend >. This means that

between tbegin and tend, nodes i and j are at a n-hop distance.

All timelines are initialized with a starting tuple < ∞, 0 >
indicating that they are in κ-intercontact ‘∞’ at time 0.

Following tuples indicate a change in this state and the time

at which it occurs. As long as there are events in the trace, we

read them and update the adjacency matrix before computing

pairwise shortest distances. Then, we update the corresponding

pairwise timelines accordingly. Finally, we format and print

gathered data into timelines.

E. Examples of use

Missed transmission possibilities. To quantify how many

end-to-end transmission opportunities the binary assertion

misses, we present what we call aggregated network so-

ciostructures in Fig. 7 [6]. For Infocom05, we plotted (in

layered mode) the number of connected pairs for each shortest

distance. The bottom layer symbolizes the amount of pair of

nodes in contact. Layer 2 shows the amount of pairs connected

via a 2-hop path, layer 3 represents connection via a 3-hop

path, and so on. Each sociostructure layer of value ≥ 2
represents pair of nodes linked by end-to-end paths longer than

1 hop. Recall that the binary assertion does not recognize such

relations.

In Fig. 7, for Infocom05, we observe several density peaks

of connected pairs. Being a conference-based measurement,

these peaks indicate morning arrivals, lunch, the afternoon

break, and end of sessions. During high density peaks, an

unexpected observation is how pairs connected by 2 hops over-

come contact opportunities. Places with high density ignite

transmission possibilities beyond mere contact. As a result, in

such a scenario, 2+-hop transmissions should be more helpful

than mere contact transmissions or pure DTN techniques.

The presented sociostructures illustrate the illusion provided

by the binary assertion. If we maintain contact-only knowledge



1

2

3

4

5

6

7

50 51 52 53 54

N
u
m
b
er

o
f
h
o
p
s

Time (×103 seconds)

Fig. 6. A pairwise timeline from the Unimi dataset. From 50,000 seconds to
50,500 seconds, the two nodes did not have a path to one another. Then, they
briefly were at a 5-hop distance before coming closer at a 4-hop and then a
3-hop distance and so on.

0

100

200

300

400

500

75000 85000 95000 105000 115000

N
u
m
b
er

of
co
n
n
ec
te
d
p
ai
rs

ov
er

16
40

Time t (seconds)

4+
3
2

contact

Fig. 7. Infocom05 sociostructures presenting the amount of pairs connected
by contacts, 2-hop paths, 3-hop and so on in a layered mode according to
time. We notice the omnipresence of pairs connected by 2+ hops. They
often overcome the possibilities offered by contact only (bottom layer). As
a result, contact opportunities only represent a minor part of all end-to-
end opportunities between two nodes. The binary assertion overlooks these
possibilities by blending all nodes in intercontact under a unique concept.

in DTN, we miss the omnipresent power of nodes at 2+ hops.

These 2+ layers represent powerful transmission opportunities

as they only involve few relays that could reduce significantly

end-to-end delays. These layers vary in importance but are

almost always present. Considering only contacts provides a

minor vision of what happens in the network. Observing a

node’s vicinity at a 2-hop distance may more than double the

transmission opportunities as seen in the Infocom05 dataset

at 90,000 seconds. The binary assertion weakness highlights

the importance of observing nodes beyond simple contact. In

social settings, there may be a concentration of people around

us (when commuting or at work), yet we limit our vision to

contacts only while there is so much more at hand.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

2+
-c
on

ta
ct

(f
ra
ct
io
n
o
f
ti
m
e)

Contact (fraction of time)

Infocom05
Rollernet

Sigcomm09-d1
Unimi

RT
Shopping

Fig. 8. Pairwise behavior according to the fraction of contacts and 2+-
contacts. Each dot represents a pair of nodes. On the x-axis, we have the
fraction of time they dwell in contact. On the y-axis, the fraction of time they
observe κ-contacts. Note that, for the same density of contact, we can obtain
a wide difference in 2+-contact percentage.

Pairwise behavior variability. In Fig. 8, for all pairs of nodes,

we plot on the x-axis the fraction of time they spend in contact

and on the y-axis the fraction of time they spend in 2+-contact.

We visualize a wide variety of meeting patterns with many

pairs having long 2+-contacts.

Using timelines, we observe that a large portion of nodes

display a significant fraction of time with end-to-end trans-

mission capacities endorsed by contact and κ-contact. Nodes

bearing end-to-end transmissions beyond contact for more than

10 minutes are as follows: 78.3% for Infocom05, 99.4% for

Rollernet, 57.1% for Sigcomm09, 57.0% for Unimi, 100% for

RT, and 73.7% for Shopping. If we increase the threshold to

20 minutes, the proportion of pair of nodes with extended

end-to-end properties do not really change for the following

datasets: 78.3% for Infocom05, 98.2% for Rollernet, 53.4%

for Unimi, and 100% for RT. The values for Sigcomm09 and

Shopping decrease to respectively 44.8% and 57.7% but still

remain quite high.

III. INNER VICINITY DYNAMICS [18]

To understand the movements happening in vicinities, we

developed a model capturing inner κ-vicinity movements

called Asynchronous Vicinity Motion (AVM). The asyn-

chronous vicinity motion is a chain model using pairwise

distance values as state values. Those states are linked to each

other via transitional probabilities. Nodes can move sequen-

tially from one distance to another. Our main observations are:

the existence of three main movements patterns called birth,

death and sequential movements. We show how sometimes by

considering only death and sequential movements, we have

more than 80% of vicinity movements. We also show how

most κ-vicinity arrivals aka births occur at distance 3 or 4 and

not in contact for the considered datasets [7], [5]. Based on

this observations and asynchronous vicinity motion transitional

probabilities, we propose TiGeR, a pairwise vicinity behavior



∞ 3 2 1

t = 0 t = 1 t = 2 t = 3

i

j j j j

i i
i

Fig. 9. An example of asynchronous vicinity motion knowledge. At t = 0,
node j is outside i’s vicinity but coming closer. At t = 1, j pops into i’s
vicinity at a 3-hop distance. At t = 2, j moved closer to i at a 2-hop distance
and even arrives in contact at t = 3.

generator who generates model pairwise timelines. We can use

these timelines to understand synthetic κ-vicinity functioning

and test opportunistic protocols relying on κ-contacts.

A. Why Vicinity Dynamics?

As shown in Section II-B, nodes in direct contact represent

only a small part of all opportunistic communications in

DTN. To leverage such unused connectivity, we propose to

understand how neighbors move within a node’s vicinity. In

Fig. 9, we illustrate the evolution of a small network. At t = 0,

nodes i and j have no path to each another – they are in

intercontact. At time t = 1, nodes i and j are not in contact

(1-hop distance) but are linked via a 3-hop path. At t = 2, i
and j are at a 2-hop path and they finally come in contact at

t = 3. The usual contact/intercontact vision would consider

the time steps t = {0, 1, 2} as the same, i.e., that i and j are

in intercontact. Instead, when using the vicinity notion, such

an “extended” view of communication opportunities is taken

into account. Opportunistic networks can benefit from contacts

that were not used before.

B. The Asynchronous Vicinity Motion Framework

The asynchronous vicinity motion (AVM) framework anal-

yses vicinities (the κ-vicinity) for a given network. We want to

answer the following question: when the distance n between

nodes i and j change, what is the probability that their

distance becomes m, with m 6= n?

In the remaining of our work, n is both the mutual shortest

distance for a pair of nodes and the vicinity chain state

while κ is the max hop distance in a κ-vicinity (n ∈
({1, ..., κ}∪{∞})). We name the period between two changes

in a pair’s shortest distance a step. Note that AVM’s step

duration depends on the network dynamics, therefore, steps

do not have a constant duration. AVM analyzes all changes in

an asynchronous way. To answer the aforementioned question,

we follow a two-stage methodology:

1) Timeline generation. Details in Section II-D.

2) Vicinity analysis. Timelines provide the necessary in-

formation to characterize the transition probabilities be-

tween given distances.

We recapitulate the whole workflow in Fig. 10.

0.10 0.44 0.38 0.24

0.16 0.30 0.311 2 3 4∞

0.35 0.300.25

0.32

0.35 0.42 0.57

Fig. 11. Infocom05 average asynchronous vicinity motion for a pair (i, j)
and κ = 4. For the sake of clarity, we display only a few transitions. The
probability of a node appearing in contact {∞ → 1} is 10% or when nodes
are at a 3-hop distance, the probability for them to be next at distance 2 is
30%.

Vicinity analysis. To illustrate AVM, we use a chain process

for each pair of nodes. For a given node i, let Xs
i,j describe

the distance between nodes i and j at step s. The vicinity

analysis step (2) takes timelines as input and provides the

corresponding transitional probabilities for vicinity chains. We

describe the two main component type of our chain process

here:

• States. The chain states depends on the κ we choose, i.e.,

the size of the vicinity we wish to monitor. The number of

states is κ+1; the first state, denoted ‘∞’, corresponds to

the case where the two nodes are in κ-intercontact. The

state {1} represents a contact and the remaining states

{2, . . . , κ} correspond to a situation of κ-contact where

the exact distance between nodes is the corresponding

state.

• Transitional probabilities. To understand AVM, we con-

centrate on the chain conditional probabilities between

states, i.e., the probability of two nodes being at a distance

of m at step s knowing that they were at a distance n
in the previous step s − 1: P(Xs

i,j = m | Xs−1

i,j = n),
m 6= n.

As an example, we show in Fig. 11 the average transitional

probabilities of AVM for Infocom05. For the sake of clarity, we

omit certain transitions. As we can see, when nodes i and j are

in κ-intercontact ‘∞’, the probability that they meet directly

is 10% while it is 35% for a 3-hop distance. This appearance

behavior varies from one dataset to another and highlights the

utility of the Vicinity Package to easily gather data.

C. Example of use

Vicinity patterns. In the analyzed datasets, we observe three

main types of transitions, namely birth, death, and sequential

movements.

1) Birth in the κ-vicinity: Birth is the phenomenon of

appearance in the κ-vicinity after a period of κ-intercontact.

The main interest of such knowledge is for a node or a protocol

to know at which distance another node may appear. Imagine

in the Infocom05 dataset that node i wants to send a message

to node j, which is currently outside i’s κ-vicinity. We now

know that j will appear with a probability of 20% at a 3-hop

distance (see Fig. 11).

In Fig 12(a), we present the values concerning the birth mo-

tion for our datasets. On the x-axis, we represented the actual

incoming state (the distance at which a node appears). On the



Network Dynamics (contact traces)

Timelines

Chains

∞

...

...

1 2 3 4 5 6

n

Timeline
Generation

(1)

Vicinity
Analysis

(2)

ti−1 ti+1ti

1

2

∞

}

}
}

ti−1

ti+1

ti

...

...

Vicinity Motion

Fig. 10. Vicinity motion generation workflow. We begin by reading Network Dynamics under the form of contact traces describing network connectivity
through time. We process them using (1) the timeline generation module. This stage produces timelines. Step (2) aka Vicinity Analysis examines these
sequences to compute transitional probabilities and corresponding vicinity motion chains.

0

20

40

60

80

100

1 2 3 4 5 6 7

%
of

to
ta
l

Birth State

Rollernet

Unimi

RT

Infocom05

Sigcomm09-d1

(a) Proportion of birth values.

0

20

40

60

80

100

1 2 3 4 5 6 7

%
of

to
ta
l

Current State

Rollernet
Unimi

Sigcomm09-d1

RT

Infocom05

(b) Proportion of deaths with regard to the full
chain.

0

20

40

60

80

100

1 2 3 4 5 6 7

%
of

to
ta
l

Current State

Rollernet

Unimi

RTInfocom05

Sigcomm09-d1

(c) Proportion of sequential movements with re-
gard to the full chain.

Fig. 12. Birth, death, and sequential rates.

y-axis, we present the actual birth transitional probability for

each distance. For all datasets, the highest birth probability

belongs to the set {1, 2, 3, 4}. The cumulated transitional

probabilities up to 4 represent from 50% to 70% depending

on the dataset. For a random dataset, if we had chosen to

extend these probing limits only to a state 4, we would detect

from 50% to 70% of nodes vicinity appearance.

2) Death in the κ-vicinity: Death is when nodes vanish

from the κ-vicinity. Being able to foresee death movements,

i.e., a node being in κ-intercontact can indicate when to begin

a fully opportunistic routing technique. As long as nodes are

in the vicinity, we can use end-to-end paths towards them.

However, when we suspect that nodes will next be out of

the κ-vicinity, it may be time to trigger a different routing

approach. Birth and death events represent a big share of the

movements alongside sequential movements as presented next.

3) Sequential movements: For two nodes, sequential move-

ments consist in the process of drifting closer or further from

each other using adjacent states of the chain: when nodes (i, j)
are at a 4-hop distance, they sequentially move closer if they

are at a 3-hop distance during their next step, they sequentially

drift away if they are next at a 5-hop distance.

A non-negligible part of vicinity movements stems from se-

quential behaviors (see Fig. 12(c)). For Unimi and Infocom05,

as long as nodes stay in the κ-vicinity, sequential movements

represent between 50% and 80% of movements. We call erratic

or random movements, all movements that are not birth nor

death nor sequential. They represent a minor share of AVM

and can be overlooked as predicting their destination is tougher

and brings only marginal knowledge gains.

In Fig. 13, we display the proportion of death, sequential,

and erratic movements (from bottom to top) among all vicinity

moves for Infocom05 which is representative of other datasets.

Erratic movements grow with the distance between the nodes,

while death processes remain stationary around 30%. Sequen-

tial movements are strong within the 4-vicinity. The further

two nodes are, the higher the proportion of erratic movements.

Wider vicinity bears fickler connectivity at the borders and

more random hopping.

D. S2: TiGeR– Synthetic Timeline Generator

The direct application of AVM analyses is the possibility of

generating synthetic timelines. Timelines embody the pairwise

vicinity behavior. TiGeR (TImeline GEneratoR) relies on

the asynchronous vicinity motion module outputs (extracted

timelines and transitional probabilities). The use of timelines

to bootstrap nodes’ vicinity knowledge into opportunistic

networks is original. Before, protocols like BUBBLE Rap used

history of nodes contact periods in order to predict future

encounters [10]. Now, instead of focusing on contacts only,

we extend this knowledge to the node’s κ-vicinity. Vicinity

provides more network knowledge and therefore multiplying

the possibilities of encountering another node [7]. To generate

pairwise vicinity behavior, TiGeR relies on transitional proba-

bilities, a given κ value and κ-contact durations distributions.



0

20

40

60

80

100

1 2 3 4 5 6 7 8

%
of

to
ta
l

Current State

Death Sequential Erratic

Fig. 13. Repartition of births, deaths, and sequential movements in Info-

com05.

Based on AVM’s transitional probabilities, we generate a

sequence of pairwise shortest distance. The challenge is then to

match these timelines distances into correct interval durations

as well as plausible distance intervals number.

1) Hop sequence generation: This step generates an AVM

transition compliant hop sequence (a list of distances whose

AVM transition will be similar to the provided transitions).

We take a max distance D and process the provided AVM

transitions as follows:

• Beginning state. We need to bootstrap the generated

timeline with a first starting distance. We choose to get

a random starting distance denoted d0 among all the

existing states {∞, 1, ..., D}. For example, let us begin

with d0 = ‘∞’.

• Run the AVM chain. We run the corresponding AVM

chain from the starting state d0 = ‘∞’. We choose

the highest outgoing probability from ∞ and decrement

the taken transitional rates by a certain value ∆. In

TiGeR, we set ∆ to be the greatest common factor

among all transitional rates. When we find ourselves to

be in a sink node (all output transitional rates are null),

we randomly choose another output state. We stop the

distance generation when all the transitional rates are

depleted.

We then repeat the processes for all the max distance

values in [1:D]. Considering the max distance distribution, we

can generate several synthetic timelines. The only precaution

to take is to normalize the corresponding AVM transitional

probabilities before running the chain.

We detail an example from Fig. 14. For a max-min distance

equals to 4, me assume the following transitional rates: {
(∞ → 1 = 1.0), (1 → 2 = 1.0), (2 → 3 = 0.5),

(2 → 4 = 0.5), (3 → 4 = 1.0), (4 → ∞ = 1.0) } all

other transitional probabilities are considered null here. We

start with d0 = ‘∞’. We determine ∆ = 0.5 (because it is the

highest common factor among {1.0, 0.5}). From the AVM in

Fig. 14, we take the transition ‘∞ → 1’. The resulting AVM

∞ 1 2 3
1.0 1.0

1.0

Run the Vicinity Motion chain

Hop sequence

{∞, 1, 2, 3, 4, ∞, 1, 3, 4}

(1) Sequence generation

0.5

0.5

4
1.0

Beginning
state

Fig. 14. TiGeR’s hop sequence generation example. From the given
asynchronous vicinity motion transitional probabilities, TiGeR produces a
possible hop sequence s. s has transitional probabilities similar to the initial
asynchronous vicinity motion transitional probabilities.

is the same as before except that the ‘∞ → 1’ transition

value is now 1.0-0.5 = 0.5. We normalize this value by the

total outgoing probabilities and ‘∞ → 1’ becomes 1.0. We

are now in state 1 and can decide to go either to state 2 or

3 because they have the same outgoing probability 0.5. We

randomly choose state 2 and decrease the ‘1 → 2’ to 0.0 and

normalizing ‘1 → 3’ to 1.0. Then from state 2 we got to 3

and so on, until all transitional probabilities are ≤ 0.0. In our

case, the matching hop sequence s would be s ={∞, 1, 2, 3,

4, ∞, 1, 3, 4}. Now that we have s, we need to match these

states/distances sequence with accurate intervals durations.

2) Time matching: Using hop sequence s, we match each

of its distances with a plausible interval duration. Depending

on the user need, TiGeR provides two modes. First Mode (I)

mimics timelines with life-like interval durations while the

second Mode (II) outputs timelines with more AVM compliant

transitions. This step requires the user to give L the timeline

length he wants to get. We call the timelines generated with

Mode I, MI-timelines, and those by Mode II, MII-timelines.

• Mode I reflects plausible intervals duration. The first

available option means to reflect the κ-interval durations.

For each distance from s, we use the κ-contact duration

distributions from the AVM module. Let us say that s =
n, then we use a Gaussian distribution based on the n-

contact duration distribution (average duration, first and

third quartile) to extract a plausible interval value. Then,

we record and sum the obtained durations until the total

intervals duration exceeds L. MI-timelines may lack some

step from s but they respect the required duration L and

plausible interval durations.

• Mode II focuses on transitional probabilities. In the

second option, we focus on respecting AVM transitional



Input:
• Sequence s = {s0, s1, s2, ..., sn}
• κ-contact distribution
• Required timeline duration L

Stop condition

Output:
• M(I,II)-timeline

Mode II:
no more hops in s

Mode I:
L duration ≥ L

Mode II:
normalize by

F = L
F

si = n

µn

duration(si)
= di

L duration =�i

l=1
dl

Mode I

1 2

(2) Time matching

Fig. 15. TiGeR’s time matching process.

probabilities. We keep the same process as in Mode I

without limiting the time matching to the L duration. We

keep on generating the κ-intervals durations to plausible

ones for the entire sequence step s. Then, by the end of

the sequence we use a fitting factor F . L is s’s sequence

total duration and F the required length

F = L

L
.

If F < 1, we find that the generated sequence duration is

higher than the required duration and we multiply all the

generated sequence by F . Else if F > 1, it means that

the required duration is higher than the sequence matched

duration then we need to either repeat step sequence or

stretch the durations by multiplying them by a factor F .

We present a recap of the Time Matching stage in Fig. 15.

IV. PREDICTING VICINITY DYNAMICS [19]

A lot of studies showed how a node’s contact history may

be enough to roughly determine future encounters. Beyond

this simple knowledge, we observe how convenient it would

be to be able to predict pairwise encounters for DTN. This

would allow a finer tuning of opportunistic protocols and the

possibility to discriminate between different protocol types.

We raise the question of the predictability of nodes vicinity

behavior. By using the inherent information of the Vicinity

Motion model and its transient stochastic knowledge, we ex-

pose a heuristic to predict pairwise vicinity distances at future

steps. In the DTN research field, knowing which nodes belong

to our vicinity and which ones do not is already a helpful point

of view. With the κ-vicinity, instead of considering only nodes

in contact, we observe neighbors beyond 1-hop. These “close

yet not in contact” nodes could be message destinations, or

information carriers.

Let us imagine a regular scenario of a daily commuting

from home to work. Jean leaves home in the morning takes

his favorite commuting mean and heads toward his workplace.

At noon, he takes his meal along his coworkers, and then

goes back to work. At the end of the day, he leaves his

office, returns home and eventually gets groceries on his way

back. During his whole daily journey, Jean meets a lot of

people, whether he acknowledges them or not. Everywhere

Jean moves, people surround him, at home, in the bus, in

the streets, at work. Currently, opportunistic networks only

gather information about nodes directly around Jean (the 1-hop

knowledge). A first way of using Jean’s mobility is to observe

his current vicinity beyond 1-hop contacts, the more people

around him, the more there are potential message carriers.

In a previous study, we showed how this simple vicinity

observation can help improve performance [7]. During his

daily trip, Jean maintains certain regularity. This regularity

occurs at various levels. Every morning and every night, he is

at home with his family and neighbors. During his commuting,

he may travel with the same people whether he realizes it or

not, the familiar stranger phenomenon [20]. Each workday,

Jean interacts with his coworkers. This regularity in meeting

patterns can be quite interesting to forward information with

smaller costs. Using this potential regularity, we may be able

to predict another node’s future presence into our κ-vicinity.

In our analyses, we forecast pairwise distances between pair

of nodes.

A. S3: Vicinity Motion-based Markovian Heuristic

The Markov chain model itself offers a future state predic-

tion model. When we have the average transition probabilities

from one state to another of the corresponding AVM, we

follow the model evolution to obtain the probability of arriving

at any state in the future slotting step. Using transition matrices

T and the initial position vector, i.e., at what distance the two

nodes are at the beginning, we can infer future steps movement

probabilities. Not only can we do it for the future interval/step

but also for several steps later.



1
2

3

45
6

Fig. 16. An example of a workday routine. Jean leaves his house in the
morning and takes any public transportation mean (1). He heads to work (2)
and stays there with his colleagues all day. At the end of the day, he leaves
to get some groceries (3) and (4) and finally heads home for a well deserved
rest (6). During his journey, Jean meets a lot of people and visits some key
places like the train station, his workplace or his home. In these places, he
may meet the same person on and off again. They are part of his vicinity.

The following heuristic allows us to predict the state i.e.,

the distance, between two nodes n steps later, based on

the current situation. For a given pair of nodes, we apply

the position vector to the transition matrix and deduce the

probability of being in any state at the future step. This

technique provides the probability for the given nodes of being

at state S ∈ {∞, 1, 2, .., κ} at the nth future step. The calculus

follows:

pii,j(n+m) = pii,j(m)× Tn (1)

pii,j(m) is the presence vector indicating the state where

two nodes i and j are at step m. For example, given κ = 5, for

the AVM model, the vector [0, 0, 1, 0, 0, 0] indicates that two

nodes currently are at a 2-hop distance (state 2). The presence

vector [1, 0, 0, 0, 0, 0] shows that the two nodes are in κ-

intercontact (state ∞). Tn is the corresponding AVM transition

matrix of size (κ + 1) × (κ + 1) to the power n, n ∈ N
∗.

pii,j(n + m) is the probability vector of being at each state

{∞, 1, 2, 3, 4, 5} in the following nth step.

Using the resulting pii,j(n + m) vector, we extract the

highest probability state to derive the most plausible state

prediction. However, given the nature of opportunistic net-

working, the connectivity graph is far from fully connected

and most of times for the datasets we evaluate, a given pair

of nodes is in κ-intercontact (∞). To better detect κ-contact

events, we also consider the second highest probability state

as a potential prediction. The proposed heuristic outputs two

states: the first highest probability Sf and the second one Ss.

The implementation relies on the transitional probabilities

provided by the Vicinity Motion module described in S2 and

is implemented using Python 2.7 and the NumPy library for

matrix calculus.

B. Evaluation

To evaluate the performance of our heuristic, we used

the vicinity motion transitional probabilities values and pre-

computed the prediction values Sf and Ss for each dataset, any

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

P
ro
p
or
ti
on

of
co
rr
ec
t
gu

es
se
s

n
th forward step

AVM-full

ED
UbD

Fig. 17. Infocom05’s AVM heuristic performances.

initial position ≤ κ, and n following steps (n ∈ {1, .., 10}).

This means that for any pairwise initial distance between 1 and

κ, our heuristic predicts two potential distance (Sf , Ss) for the

nth future step. Then for each dataset and all of their pairwise

timelines, we observe the hop sequence. For each hop value,

we observe the distance value of the different nth following

step and compare them to the corresponding (Sf , Ss) values.

In this study, we choose to observe results for the nth future

steps with n ∈ {1, .., 10}. To evaluate the performance of our

heuristic we will use two approaches:

• Exact distance (ED). If any of the two values (Sf , Ss)
match, we consider the prediction to be accurate in an

“exact” way. This shows how our heuristic is able to

handle an exact distance prediction.

• Upper bound distance (UbD). If the real hop distance

is below or equal to any of the two values (Sf , Ss), we

deem the prediction to be accurate in an “upper” bound

distance way.

We evaluate the percentage of correct predictions in both

ED and UbD modes.

In Fig. 17, we plot the proportion of accurate heuristic pre-

diction for Infocom05 which is representative of most datasets

except Rollernet. On the x-axis, we present the value of the nth

step. The y-axis indicates the proportion of accurate guesses

our heuristic makes. We test our two evaluation parameters ED

and UbD. For all our datasets, the ED metric gives performances

between 24% and 42% of correct predictions. Most datasets

have their prediction accuracy decrease gradually with higher

step values n. But the results decreases of at most 12%

between prediction for the next step (n = 1) or the 10th next

step (n = 10). Rollernet has a different progression curve with

a lower value for the immediate next step (n = 1) than for

the other steps. However, the sequence of remaining n values

have the same evolution as for the other datasets. For UbD

the prediction accuracy follows the same evolution as ED. The

only difference being its higher results. On average it is 5%

more efficient than ED prediction but it is less precise in terms



of distance prediction.

The exact distance prediction is tougher to get right than

the upper distance bound. This feels natural as guessing a

range is probabilistically easier than guessing an exact value.

If we predict a large enough output value for the upper bound

distance value, we may encompass the real observed value.

A performance evaluation for partial knowledge is available

in [4].

V. THE VICINITY PACKAGE OVERVIEW

The Vicinity package contains the required tools to obtain

the knowledge to make of most of our the observations

detailed in this paper. For further analyses, please refer to [4].

Two of its main parts are: the Asynchronous Vicinity Mo-

tion framework who allows vicinity patterns analyses and

TiGeR the pairwise vicinity behavior (timeline) generator.

These two entities have been designed to function together

as the asynchronous vicinity motion framework provides in-

formation such as state transitional probabilities and κ-contact

durations distributions that are required by the TiGeR module.

However, one can also use asynchronous vicinity motion and

TiGeR on their own as long as one provides the required

inputs. We next provide a few implementation details for both

modules.

• Asynchronous Vicinity Motion (S1). In this module,

we need to recreate the provided network connectivity

and compute all shortest distances for all pairs of nodes.

To this end, we simulate network connectivity with the

Python library NetworkX [21] and make the required

arrangements using Python 2.7.

-Requires: contact trace, number of nodes in the dataset.

-Provides: vicinity transitional probabilities, interval du-

rations distribution.

• TiGeR (S2). The timeline generator module processes ex-

tracted dataset characteristics (vicinity transitional proba-

bilities and interval durations distribution) into synthetic

vicinity behaviors. We use Python 2.7 for this stage.

-Requires: transitional probabilities, interval durations

distribution, timeline required durations.

-Provides: synthetic timelines.

• Vicinity Motion-based Heuristic (S3). Based on the

AVM module, we gather the vicinity transitional prob-

abilities and form the required transition matrix. Then

we perform the calculus detailed in Section IV-A using

Numpy 1.7.

-Requires: transitional probabilities matrix, the nth future

step value.

-Provides: Sf , Ss distance prediction values.

The implementation detailed in S1, S2, and S3 is available

at the following address: http://vicinity.lip6.fr. The Vicinity

module has vicinity motion analyses, the TiGeR generator

and an implementation of the Vicinity Motion-based heuristic.

It takes as inputs vicinity dynamics in the form of contact

traces so it can be applied to any dataset bearing connectivity

knowledge.

ACKNOWLEDGMENTS

This work has been conducted under the supervision of

Marcelo Dias de Amorim from UPMC Sorbonne Universités

and in collaboration with Vania Conan from Thales Commu-

nications and Security, and Miguel Elias M. Campista from

Universidade Federal do Rio de Janeiro.

REFERENCES

[1] Financial Times by P. Taylor, “Data overload threatens mobile net-
works,” 2012, http://on.ft.com/1aWUNLb.

[2] V. Cerf, “The Internet is for Everyone,” RFC 3271 (Informational),
Internet Engineering Task Force, April 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3271.txt

[3] K. Fall, “A Delay-Tolerant Network Architecture for Challenged Inter-
nets,” in ACM Special Interest Group on Data Communication Confer-

ence (SIGCOMM), Karlsruhe, Germany, Aug. 2003.

[4] T. Phe-Neau, “Properties and impact of vicinity in mobile opportunistic
networks,” Ph.D. dissertation, Université Pierre et Marie Curie, 2014.

[5] T. Phe-Neau, M. Dias de Amorim, and V. Conan, “Vicinity-based
DTN Characterization,” in ACM International Workshop on Mobile

Opportunistic Networks (MobiOpp), Zurich, Switzerland, Mar. 2012.

[6] ——, “Fine-Grained Intercontact Characterization in Disruption-
Tolerant Networks,” in IEEE Symposium on Computers and Commu-

nication (ISCC), Kerkyra, Greece, Jun. 2011.

[7] ——, “The Strength of Vicinity Annexation in Opportunistic Net-
working,” in IEEE International Workshop on Network Science For

Communication Networks (NetSciCom), Torino, Italy, Apr. 2013.

[8] A. Vahdat and D. Becker, “Epidemic routing for partially connected ad
hoc networks,” Duke University, Tech. Rep., 2000.

[9] E. Yoneki and D. Greenfield, “Inferring Significance of Meeting Groups
in Human Contact Networks,” in European Conference on Complex

Systems, Lisbon, Portugal, Sep. 2010.

[10] P. Hui, J. Crowcroft, and E. Yoneki, “BUBBLE Rap: Social-Based For-
warding in Delay-Tolerant Networks,” in ACM International Symposium

on Mobile Ad Hoc Networking and Computing (MobiHoc), New York,
NY, USA, Nov. 2008.

[11] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass, and J. Scott,
“Impact of human mobility on opportunistic forwarding algorithms,”
IEEE Transactions on Mobile Computing, vol. 6, no. 6, pp. 606–620,
2007.

[12] A.-K. Pietilänen and C. Diot, “Dissemination in opportunistic social
networks: the role of temporal communities,” in ACM International

Symposium on Mobile Ad Hoc Networking and Computing (MobiHoc),
Hilton Head, South Carolina, USA, 2012, pp. 165–174.

[13] P.-U. Tournoux, J. Leguay, F. Benbadis, J. Whitbeck, V. Conan, and
M. D. de Amorim, “Density-aware routing in highly dynamic DTNs:
The rollernet case,” IEEE Transactions on Mobile Computing, vol. 10,
pp. 1755–1768, 2011.

[14] A. Galati and C. Greenhalgh, “Human mobility in shopping mall
environments,” in ACM International Workshop on Mobile Opportunistic

Networks (MobiOpp), Pisa, Italy, 2010, pp. 1–7.

[15] S. Gaito, E. Pagani, and G. P. Rossi, “Fine-Grained Tracking of Human
Mobility in Dense Scenarios,” in IEEE Conference on Sensor, Mesh and

Ad Hoc Communications and Networks, Rome, Italy, Jun. 2009.

[16] S. Pal Chaudhuri, J.-Y. Le Boudec, and M. Vojnovic, “Perfect Simula-
tions for Random Trip Mobility Models,” in IEEE International Confer-

ence on Computer Communications (INFOCOM), Miami, Florida, USA,
Aug. 2005.

[17] T. Phe-Neau, M. Dias de Amorim, and V. Conan, “Caractérisation
en diptyque de l’intercontact pour les réseaux à connectivité intermit-
tente,” in Rencontres Francophones sur les Aspects Algorithmiques des

Télécommunications (Algotel 2012), May 2012.

[18] T. Phe-Neau, M. E. Campista, M. Dias de Amorim, and V. Conan,
“Examining Vicinity Dynamics in Opportunistic Networks,” in ACM

International Symposium on Modeling, Analysis and Simulation of

Wireless and Mobile Systems (MSWiM), Barcelona, Spain, Nov. 2013.

[19] A. Tatar, T. Phe-Neau, M. Dias de Amorim, V. Conan, and S. Fdida,
“Beyond contact predictions in mobile opportunistic networks,” in An-

nual Conference on Wireless On-demand Network Systems and Services

(WONS), April 2014.



[20] E. Goodman and E. Paulos, “The Familiar Stranger: Anxiety, Comfort,
and Play in Public Places,” in ACM SIGCHI Conference on Human

Factors in Computing Systems, Vienna, Austria, Apr. 2004.
[21] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network

structure, dynamics, and function using NetworkX,” in Proceedings of

the 7th Python in Science Conference (SciPy2008), Pasadena, CA USA,
Aug. 2008, pp. 11–15.


