
HAL Id: hal-01052651
https://hal.science/hal-01052651

Submitted on 8 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SimSo: A Simulation Tool to Evaluate Real-Time
Multiprocessor Scheduling Algorithms

Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-Marie Déplanche

To cite this version:
Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-Marie Déplanche. SimSo: A Simulation Tool to
Evaluate Real-Time Multiprocessor Scheduling Algorithms. 5th International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS), Jul 2014, Madrid, Spain.
6 p. �hal-01052651�

https://hal.science/hal-01052651
https://hal.archives-ouvertes.fr


SimSo: A Simulation Tool to Evaluate Real-Time

Multiprocessor Scheduling Algorithms

Maxime Chéramy∗, Pierre-Emmanuel Hladik∗ and Anne-Marie Déplanche†

∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
†IRCCyN UMR CNRS 6597, (Institut de Recherche en Communications et Cybernétique de Nantes), ECN,

1 rue de la Noe, BP92101, F-44321 Nantes cedex 3, France

Abstract—In this paper, we present SimSo, a simulator de-
signed for the comparison and the understanding of real-
time scheduling policies. This tool is designed to facilitate the
implementation of schedulers in a realistic way. Currently, more
than twenty-five scheduling algorithms are available in SimSo. A
particular attention is paid to the control of the computation time
of the jobs therefore introducing more flexibility, for instance by
taking into account cache-related preemption delays. In addition,
SimSo offers an easy way to generate the tasksets, to perform
simulations and to collect data from the experiments.

I. INTRODUCTION

Davis and Burns referenced more than thirty real-time

multiprocessor scheduling algorithms in 2011 [11] and more

than a dozen of new algorithms have emerged since then,

e.g. [26], [22]. Such a large number of scheduling algorithms

makes their evaluation and comparison difficult. The evalua-

tion generally comes from theoretical analysis, simulation or

an actual implementation, according to criteria that can include

utilization bounds, success rates, number of preemptions,

migrations, and/or algorithm complexity.

Our long-term objective is to compare the various sched-

ulers with ease while taking into account the capacity of the

hardware architecture (e.g. caches, dynamic frequency scaling,

or system overheads) to have an effect on their performance.

This effect is currently very difficult to evaluate using theoret-

ical analyses such as schedulability tests or resource augmen-

tation. On the other hand, while using a real system would

seem to be a better approach, the effective implementation

of a scheduler as an operating system component requires a

substantial amount of time and the results are too specific

to the system. As a consequence, we think that simulation

could be a good compromise to efficiently evaluate scheduling

algorithms.

This paper deals with SimSo, our tool to simulate mul-

tiprocessor real-time schedulers and that aims at facilitating

the design of experimental evaluations. In a prior publication,

some design choices regarding the simulation kernel have

been presented [7]. More recently, we showed using SimSo

how the use of the WCET could bias the evaluation of

scheduling algorithms and how the impact of the caches could

be integrated in the simulation [8]. As a consequence, the

concept of execution time model was introduced.

Contribution. This paper presents SimSo and the main nov-

elties that now enable to conduct large scheduling evaluations

using it. It is indeed possible to automate the simulation of

scheduling algorithms from the generation of the systems to

the collection of the resulting data. The main task generators

are now included and the number of available schedulers

increased from five to more than twenty-five. Our methodology

to automate the evaluation of multiple scheduling algorithms

is described through an example.

Paper organization. The remainder of this paper is orga-

nized as follows: in Section II, related work is summarized.

Section III presents SimSo, and Section IV shows how it can

be used through an example. Finally, Section V provides some

concluding remarks and envisages future work.

II. RELATED WORK

Our work addresses the evaluation of the performance of

scheduling algorithms using empirical measures. Empirical

evaluations of scheduling algorithms focus on the overheads

involved in scheduling decisions. The main studied causes of

overheads are context switches, preemptions, migrations and

computational complexity. Two approaches are typically con-

sidered to evaluate them. The first one is based on measured

performance on a real platform with a dedicated operating

system, e.g. the experiments done with LITMUSRT [4], an

extension of the Linux Kernel developed at the University

of North Carolina, or the experimental work of Lelli et

al. [20] on a dedicated implementation of Linux with RM

and EDF multiprocessor schedulers. This method could also

be conducted on a cycle-accurate simulated architecture with a

real operating system as in [31]. The second approach is to use

tools dedicated to the simulation of real-time systems. Most of

these tools are designed to validate, test and analyze systems.

MAST [16] proposes a set of tools to model and analyze

distributed real-time systems with, for instance, feasibility tests

or sensitivity analyses. MAST also includes a simulator, JSim-

MAST. Cheddar [28] proposes a GUI comprising a simulator,

many feasibility tests and it is also used to simulate AADL

models. RTSIM [5] is a collection of programming libraries

for the simulation of real-time control systems. It is used in

particular for experimenting new scheduling algorithms. The

last version was published in 2007.



STORM [30] and YARTISS [6] are the closest tools to

what we aim. They offer a simulator to conduct evaluation

on scheduling algorithms with the possibility to easily join

new scheduling policies. However, due to its time triggered

simulation engine, STORM does not provide an efficient

way to model the unit of time below a tick of simulation

which is a significant limitation for us. YARTISS is certainly

the most suitable tool to evaluate scheduling algorithms by

considering overheads or hardware effects. However, we began

the implementation of our tool in 2011, before YARTISS was

published. Moreover, its design is focused on the study of

energy consumption and customizing it for our needs would

have been difficult.

III. SIMSO

To facilitate the experimentation of scheduling algorithms,

we thus propose a dedicated tool: SimSo1, a real-time schedul-

ing simulator designed to be easy to use as well as extend. This

software is freely available under an open source license.

The design of SimSo has been driven by the components

available in real systems so that practical issues regarding the

implementation can be taken into consideration. Such issues

would have been hard or even impossible to integrate into

theoretical studies.

A. Architecture

The core of SimSo relies on SimPy2, a process-based

discrete-event simulation framework. The use of discrete-event

simulation allows it to deal with short and long durations at the

same cost. Its process-based nature offers a convenient way to

express the behavior of the simulated components.

The characteristics of a system are modeled by a Con-

figuration object that contains all the information about the

system (tasksets, processors, duration, scheduler, etc). This

object provides some methods to configure the system but also

to save it into an XML file.

Figure 1 shows the main classes of SimSo and their mutual

interactions. The design of SimSo is inspired by real systems:

there are processors, tasks, jobs, timers, etc. Each of these

objects simulates the behavior of the corresponding part on

the system: Tasks release the jobs; Jobs emulate the execution

of the task’s code; Timers can launch a method on a processor

at a given time; etc. The instances of Processors are actually

the central part of the simulation because they simulate both

a processor and the operating system executing on it. Each

processor can execute a job or be interrupted to execute a

method of the scheduler. Finally, the Scheduler object is not an

active process. It could be considered as a part of the operating

system and as a consequence, its methods are only called by

the Processors.

The Model object is the conductor of the simulation. It takes

as a parameter the Configuration object. When the run model

method is called, the objects described above are created and

launched.

1SimSo: http://homepages.laas.fr/mcheramy/simso/
2SimPy: http://simpy.readthedocs.org/

Fig. 1. Interactions between main class instances. Processor, Task, Job and
Timer are Process objects and can have multiple instances.

The design of SimSo allows it to take into consideration

various time overheads that occur during the life of the system.

This includes direct overheads such as context-switches and

scheduler calls (with fixed time penalties) but also indirect

overheads with a simplified system of locks to forbid the

parallel execution of a scheduler if needed. Such overheads

are applied on the processor they are supposed to occur (e.g.

the time spent in the scheduler is taken into account on the

processor that called the scheduler).

We would also like to draw attention to the fact that the

above-mentioned overheads only consume extra-time without

changing the time used to execute the jobs. Indeed, as an

example, these overheads do not take into account the possible

cache misses that could slow down a job and increase its

duration. This important aspect can also be taken into account

by SimSo and is explained in section III-D.

B. Writing a Scheduler

The first requirement for the experimentation of a real-

time scheduling policy is, undoubtedly, a way to specify the

algorithm. This should be able to deal with any kind of online

scheduler: global, partitioned, semi-partitioned, etc. Moreover,

the implementation of a scheduler in a simulator should also

be realistic in the sense that it should rely on mechanisms

available on a real system. For instance, the choice of which

processor should run the scheduler may have an impact on

the performance or even the schedulability. Another example

is the finite precision of the timers: this may introduce a tiny

difference compared to the theoretical schedule and cause a

major issue.

One of the advantages of using a simulator is to simplify

the experimentation. Writing a scheduler should therefore be

as easy as possible and rely on useful methods. We decided to

use Python, a high-level language that benefits from a growing

interest from the scientific community (e.g. the SciPy project).

In practice, most of the schedulers that we have implemented

contain less than 200 lines of code. The language is different to

the one that would be used on a real implementation, however,

this does not change the underlying algorithms and logic.

A scheduler for SimSo is a Python class that inherits

from the Scheduler class and is loaded dynamically into the



simulator. The following methods must be implemented:

• init: The init method is called when the simulation starts,

it is used to initialize the scheduler.

• on activate: This method is called whenever a job is

activated.

• on terminated: This method is called when the execu-

tion of a job is done or when a job is aborted.

• schedule: This method returns the scheduling decisions.

This method is called when a processor has been re-

quested to take a scheduling decision. This request is

usually done during a job activation, a job termination

or by a timer.

As an example, figure 2 shows the source code of a global

multiprocessor Earliest Deadline First scheduler3.

from simso.core import Scheduler

class G_EDF(Scheduler):

def init(self):

self.ready_list = []

def on_activate(self, job):

self.ready_list.append(job)

# Send a "schedule" event to the processor.

job.cpu.resched()

def on_terminated(self, job):

# Send a "schedule" event to the processor.

job.cpu.resched()

def schedule(self, cpu):

decision = None # No change.

if self.ready_list:

# Look for a free processor or the processor

# running the job with the least priority.

key = lambda x: (1 if not x.running else 0,

x.running.absolute_deadline if x.running else 0)

cpu_min = max(self.processors, key=key)

# Obtain the job with the highest priority within the ready list.

job = min(self.ready_list, key=lambda x: x.absolute_deadline)

# If the selected job has a higher priority

# than the one running on the selected cpu:

if (cpu_min.running is None or

cpu_min.running.absolute_deadline > job.absolute_deadline):

self.ready_list.remove(job)

if cpu_min.running:

self.ready_list.append(cpu_min.running)

# Schedule job on cpu_min.

decision = (job, cpu_min)

return decision

Fig. 2. Code of a global multiprocessor Earliest Deadline First scheduler.

C. Available Schedulers

In order to check the ability to express a wide range

of algorithms, we have already implemented more than 25

schedulers. The main uniprocessor schedulers, RM, DM, FP,

EDF and M-LLF [24] are available. The DVFS schedulers

Static-EDF and CC-EDF [25] are also available.

The library of schedulers provided with SimSo also includes

a large variety of multiprocessor real-time scheduling algo-

rithms, from partitioning to global ones.

The partitioned approach forbids migrations and neces-

sitates a static allocation of the tasks to the processors.

The schedulers P-EDF and P-RM are available (they use

the Decreasing First-Fit assignment algorithm). Moreover, a

dedicated class is provided in SimSo to offer the possibility

to choose any uniprocessor scheduler and one of the available

3A minor modification to this code would reduce the number of migrations
by executing a job in the same processor than its previous execution.

assignment algorithms (First-Fit, Next-Fit, Best-Fit, Worst-Fit,

with or without an initial sorting). This class is intended to

ease the development of a partitioned scheduler, but it is not

mandatory.

On the other side, when migration is permitted, scheduling

algorithms are referred to as global. A first category of global

schedulers use a single list of active tasks and assign a priority

to each task. For an architecture with m processors, the m

jobs with the highest priority run in parallel. The following

algorithms belonging to that category are available in SimSo:

G-RM, G-EDF, G-FL [13], EDF-US [29], PriD [18], EDZL,

M-LLF [24] and more recently U-EDF [22].

Baruah introduced the concept of fairness as a way to

achieve optimality in terms of schedulability. SimSo provides

such PFair schedulers with PD2 and its work-conserving

variant ER-PD2 [1]. Subsequently, it was demonstrated that the

fairness constraint could be released to only apply at the job

boundaries and thus could reduce the number of preemptions

and migrations. This led to the BFair and DP-Fair techniques.

We have implemented such schedulers: LLREF [9], LRE-

TL [15], DP-WRAP [21], BF [31] and NVNLF [14].

In order to reduce the number of migrations, some hy-

brid approaches, termed semi-partitioned approaches, combine

the advantages of global and partitioned scheduling. At the

present time, SimSo proposes three semi-partitioned sched-

ulers: EDHS [19], EKG [2] and RUN [26].

D. Execution Time Model

When simulation is used to study the schedulability of

a system, it is usual that the tasks meet their worst-case

execution time at each job. However, the use of the WCET

is in fact very pessimistic: the worst-case is an upper-bound

that is hardly reached by the jobs, and it is even less likely

that the jobs of all the tasks meet their WCET at the same

time. As a consequence, we believe that the WCET approach

should not be the only way to compare policies in terms

of performance. It is non-realistic and gives an advantage to

some scheduling policies that highly depend on the WCET.

Relatedly, schedulers capable to take benefits from shorter

computation times cannot be fairly evaluated. In [8], we give

some experimental results that illustrate this fact.

Also, many scheduling evaluations only focus on the num-

ber of preemptions and migrations because they are the source

of overheads. A preemption induces a system overhead due to

the context-switching, but it may also increase the computation

time of a job by causing extra cache misses. In fact, Mogul and

Berg have shown that the Cache-Related Preemption Delays

(CRPD) are more important than the system overheads. To

increase realism, it is essential to integrate CRPD within the

computation time of the jobs.

As a consequence of the two previous remarks, it is

desirable to have the possibility to simulate a system with

customized durations of jobs, depending on the purpose of the

simulation. In SimSo this point is achieved with the Execution

Time Models (ETM). An ETM is a class that determines the

duration of the jobs during the simulation. Figure 3 shows



the communication between a job and the ETM object (there

is a single ETM object for all the jobs). The ETM object is

informed by the jobs of any scheduling event. The job will

use the get ret method to get a lower bound of its remaining

execution time and, when that time is up, the job calls that

method again until it returns 0.

Fig. 3. Interface of any execution time model.

Several Execution Time Models are already available in

SimSo. The simplest model consists of using the WCET of

the tasks for their execution time. A second one uses a random

duration for each job to meet a given average execution time

(ACET). The ACET model uses a normal distribution defined

by its mean, its standard deviation and is bounded by the

WCET. Another model detects the preemptions and migrations

and extends the WCET4 of the job using fixed time penalties.

Finally, a more complex model tries to simulate the state of

the caches. In this latter model, the execution time of the jobs

depends on the events that happen while they are active. This

ETM is also interesting because it simulates the impact of

shared caches and, as a consequence, it is impossible to know

in advance when a job will end since it depends on external

events.

These models can also deal with Dynamic Voltage and Fre-

quency Scaling (DVFS). Indeed, when the speed of a processor

is changed, the job that was running on it is preempted and

resumed in order to inform the ETM and to reevaluate its

remaining execution time. The current DVFS model simply

considers that a job consumes its computation time propor-

tionally to the speed of the processor. This is obviously a

simplified assumption, but it is possible to implement more

realistic ETM models to deal with DVFS.

Similarly, it should also be possible to add an energy

consumption model.

E. Generation of Tasksets

A taskset is defined by the number of tasks, their utilization

factor, periods, deadlines and the total utilization. Bini and

Buttazzo showed how the random generation of the tasksets

can bias the experimental results of some scheduling algo-

rithms on uniprocessor [3].

For the multiprocessor case, several methods are used by

the researchers to generate the tasksets. The most common

algorithms are implemented in SimSo:

• Kato et al. use an approach inspired by the algorithm

described by Ripoll et al. where tasks are appended to

4In this case, the WCET is defined as the worst-case execution time without
any interruption.

the taskset until the targeted total utilization is reached

[19], [27]. The number of tasks is therefore variable.

• The algorithms UUniFast-Discard and RandFixedSum

generate a taskset with a given number of tasks and

a given total utilization [12]. At the present time, this

methods seem to be the most efficient in generating

tasksets with a weak bias.

These algorithms only generate a set of utilization rates and

must thus be combined with a period generator. The following

algorithms are made available in SimSo:

• Uniform distributions in various fixed ranges: Most eval-

uations use it and this is certainly an interesting way

to study the influence of the periods, but it may not be

relevant for realistic cases.

• Log-uniform choice of periods [10]: For a period range of

1-1000ms, the log-uniform distribution generates an equal

number of tasks in each time band (1-10ms, 10-100ms,

100-1000ms) whereas a uniform distribution would gen-

erate 90% of the periods in the range 100-1000ms.

• Random draw among a fixed set of values: One could

argue that in an industrial system, the periods are de-

rived from the specifications, which are partly written

by humans. Task periods are therefore more likely to be

rounded.

Other period generators could also be added in the future.

For instance, Goossens [17] suggested a method to reduce

the hyper-period of the system by using periods that can be

decomposed in a limited number of prime numbers.

F. Collecting Simulation Results

In order to evaluate scheduling algorithms, some data must

be collected from the simulation. The literature proposes many

measures, here is a non-exhaustive list of data that could be

recovered:

Success rate: The ratio between the number of jobs that

have exceeded their deadline and the number of jobs. It gives

a performance indicator on the schedulability of a taskset.

Preemptions and migrations: Preemptions and migrations

are a factor of overhead and many recent schedulers are

focusing on their reduction. A distinction is made between

job migration and task migration since they may have not the

same implications.

Scheduler calls: The algorithm of a scheduler requires some

time to determine which jobs should run on the processors.

Some scheduling policies are known to make many scheduling

decisions, and some require a significant amount of time to

compute. Therefore, it is interesting to keep track of the

number of calls to the various methods of the scheduler.

Normalized laxity: Lelli et al. proposed to measure the

performance of a scheduler by computing the normalized

laxity [20]. The laxity of a job is its relative deadline minus its

response-time. The laxity of each job of each task is divided

by the task period in order to obtain a normalized laxity. A

greater normalized laxity is synonym of a better safety and

better reactivity.



During the simulation of a system with SimSo, every signif-

icant events are traced. At the end of the simulation, a Results

object is built to store these events and could be post-treated

to compute measurements. Whereas this approach is actually

heavier than just counting events such as the preemptions and

migrations during the simulation, this provides more flexibility.

Indeed, it is not necessary to modify the code of the simulator

to add the computation of new measurements one did not think

about. A set of methods are also available to ease the retrieval

of usual metrics such as the ones mentioned above.

SimSo provides a graphical user interface that helps to

configure a system and run it. That GUI is capable of dis-

playing common measures such as preemptions, migrations,

or execution times. It is also possible to display a gantt

chart, which is very useful during the development of a

scheduler. However, this GUI only shows the results for a

single simulation.

G. Conducting an Evaluation Campaign

To conduct a large evaluation campaign, it is possible to use

SimSo as a Python module. This way, a Python script can be

written to automate the creation of systems, their simulation

and the collection of the results. This choice was motivated by

the fact that the studies can be very specific and a graphical

user interface would be necessarily too frozen or too complex.

On the other hand, using a script is much more flexible.

Everything that is possible using the graphical user interface

is also possible from a script.

IV. EXAMPLE

This section illustrates the use of SimSo in conducting an

experiment on scheduling policies. SimSo is used as a module

for a Python script and the steps described below have been

programmed.

This experiment focuses on the number of preemptions and

migrations in function of the number of tasks, for various

numbers of processors and load. The objective is to compare

five schedulers: G-EDF, NVNLF, EKG5, RUN and U-EDF.

A. Generation of the Configurations

The first step is to define the characteristics of the simulated

systems. For this example, we have selected the following

parameters:

• Number of tasks: 20, 30, 40, 50, 60, 70, 80, 90, 100

• Number of processors: 2, 4, 8

• System utilization: 85%, 95%

For each configuration (tasks, processors, utilization),

twenty tasksets are generated using the methods offered by

SimSo, leading to a total of 5400 systems (9×3×2×20×5).

The RandFixedSum algorithm was used to determine the task

utilizations and the periods were chosen randomly within a

log-uniform distribution between 2 and 100 ms. The ACET

Execution Time Model is used and, for each task, the expected

value is set to 75% of the WCET and the standard deviation to

5The parameter K has been set to the number of processors.

10% of the WCET. Each system is simulated on the interval

of time 0-1000ms6.

The Configuration objects were saved into XML files for po-

tential reuse (it is interesting to repeat simulations on systems

with atypical results in order to obtain a better understanding.).

B. Simulation and Collection of the Results

SimSo executed 5400 simulations which took approxima-

tively 2 hours on an Intel Core i7 processor.

When a simulation is done, the number of preemptions and

job migrations are extracted from the Results object built by

the Model object. Preemptions caused by the system (e.g. the

scheduler is called but no decision is taken) are not taken into

account.

In order to facilitate the analysis, we stored the data in an

SQLite3 database.

C. Analysis

From that database, another script draws the charts using

matplotlib, a plotting library for Python. Each point is the

mean of the twenty tasksets sharing the same parameters. The

results for 8 processors and a system utilization of 95% are

shown on Figure 4.

A few comments on the results are provided here as a com-

plement to the figure. EKG generates a lot of migrations that

could be easily avoided with a better choice of the parameter

K or other improvements [23]. The results for NVNLF are

getting better with more processors unlike the others. U-EDF

could probably do better combined with clustering. With more

than 20 tasks, RUN acts as a partitioned scheduler most of the

time. G-EDF provides better results in terms of preemptions

and migrations but a few jobs were aborted as a consequence

of deadline misses. U-EDF and RUN could probably catch up

with G-EDF with a work-conserving variant.

V. CONCLUSION

In this paper, we have presented SimSo, a simulation tool

to evaluate the multiprocessor schedulers. Its objective is to

facilitate the comparison of the numerous scheduling policies.

To this end, we will conduct large campaigns of experiments

with many scheduling algorithms using the same tasksets. This

should allow us to reproduce numerous experiments in order to

confirm or invalidate results. At the present time, more than

twenty-five schedulers are available, showing that SimSo is

capable of handling partitioned, global and hybrid scheduling

approaches.

The architecture of SimSo, in particular the scheduling in-

terface, was briefly explained. Particular care has been taken to

keep a realistic scheduling interface so that practical decisions

are not eluded. This has also enabled SimSo to take into

consideration direct overheads such as the context-switches or

scheduling decisions. Moreover, the computation time of the

jobs is determined by a model that can be selected depending

on the purpose of the simulation. Hence, the computation time

6Unfortunately, the hyper-period for a set of 100 tasks with random periods
is far too long to be considered (in years).



20 30 40 50 60 70 80 90 100

Number of tasks

0

2000

4000

6000

8000

10000
N

u
m

b
e
r 

o
f 

p
re

e
m

p
ti

o
n
s

20 30 40 50 60 70 80 90 100

Number of tasks
N

u
m

b
e
r 

o
f 

m
ig

ra
ti

o
n
s

20 30 40 50 60 70 80 90 100

Number of tasks

S
u
m

 p
re

e
m

p
ti

o
n
s 

a
n
d
 m

ig
ra

ti
o
n
s

G-EDF
EKG
NVNLF
RUN
U-EDF

Fig. 4. Number of preemptions and migrations for a system with 8 processors and a (worst-case) total utilization of 95%. The simulation used random
durations for the job computation time.

of a job can either be a static duration, a random duration,

or even take into account cache-related preemption delays.

Additionally, a small example shows the capability of SimSo

to produce concrete results.

Future work includes an improvement of SimSo by intro-

ducing cache interferences in the simulation and introducing

more complex task behaviors such as shared resources and

precedence relations.

ACKNOWLEDGMENT

The work presented in this paper was conducted under the

research project RESPECTED (http://anr-respected.laas.fr/)

which is supported by the French National Agency for Re-

search (ANR), program ARPEGE.

REFERENCES

[1] J. Anderson and A. Srinivasan, “Early-release fair scheduling,” in Proc.

of ECRTS ’00, 2000.

[2] B. Andersson and E. Tovar, “Multiprocessor scheduling with few pre-
emptions,” in Proc. of RTCSA, 2006.

[3] E. Bini and G. C. Buttazzo, “Measuring the performance of schedula-
bility tests,” Real-Time Syst., vol. 30, no. 1-2, 2005.

[4] J. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. Anderson,
“LITMUSRT : A testbed for empirically comparing real-time multipro-
cessor schedulers,” in Proc. of RTSS, 2006.

[5] A. Casile, G. Buttazzo, G. Lamastra, and G. Lipari, “Simulation and
tracing of hybrid task sets on distributed systems,” in Proc. of RTCSA,
1998.

[6] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and M. Qamhieh,
“YARTISS: A Tool to Visualize, Test, Compare and Evaluate Real-Time
Scheduling Algorithms,” in Proc. of WATERS, 2012.

[7] M. Chéramy, A.-M. Déplanche, and P.-E. Hladik, “Simulation of real-
time multiprocessor scheduling with overheads,” in Proc. of SIMUL-

TECH, 2013.

[8] M. Chéramy, P.-E. Hladik, A.-M. Déplanche, and S. Dubé, “Simulation
of real-time scheduling with various execution time models,” in Proc.

of the WiP session of SIES, 2014.

[9] H. Cho, B. Ravindran, and E. Jensen, “An optimal real-time scheduling
algorithm for multiprocessors,” in Proc. of RTSS, 2006.

[10] R. Davis and A. Burns, “Priority assignment for global fixed priority
pre-emptive scheduling in multiprocessor real-time systems,” in Proc.

of RTSS, 2009.

[11] ——, “A survey of hard real-time scheduling for multiprocessor sys-
tems,” ACM Comput. Surv., vol. 43, no. 4, 2011.

[12] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in Proc. of WATERS, 2010.

[13] J. Erickson and J. Anderson, “Fair Lateness Scheduling: Reducing
Maximum Lateness in G-EDF-Like Scheduling,” in Proc. of ECRTS

’12, 2012.
[14] K. Funaoka, S. Kato, and N. Yamasaki, “Work-conserving optimal real-

time scheduling on multiprocessors,” in Proc. of ECRTS ’08, 2008.
[15] S. Funk and V. Nanadur, “LRE-TL: An Optimal Multiprocessor Schedul-

ing Algorithm for Sporadic Task Sets,” in Proc. of RTNS, 2009.
[16] M. Gonzalez Harbour, J. Gutierrez Garcia, J. Palencia Gutierrez, and

J. Drake Moyano, “MAST: Modeling and analysis suite for real time
applications,” in Proc. of ECRTS ’01, 2001.

[17] J. Goossens and C. Macq, “Limitation of the hyper-period in real-time
periodic task set generation,” in Proc. of the 9th International Conference

on Real-Time Systems (RTS), 2001.
[18] J. Goossens, S. Funk, and S. Baruah, “Priority-driven scheduling of

periodic task systems on multiprocessors,” Real-Time Systems, vol. 25,
no. 2-3, 2003.

[19] S. Kato and N. Yamasaki, “Portioned EDF-based scheduling on multi-
processors,” in Proc. of EMSOFT, 2008.

[20] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An experimental
comparison of different real-time schedulers on multicore systems,”
Journal of Systems and Software, vol. 85, no. 10, 2012.

[21] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “DP-FAIR: A
Simple Model for Understanding Optimal Multiprocessor Scheduling,”
in Proc. of ECRTS ’10, 2010.

[22] G. Nelissen, V. Berten, V. Nelis, J. Goossens, and D. Milojevic, “U-
EDF: An Unfair But Optimal Multiprocessor Scheduling Algorithm for
Sporadic Tasks,” in Proc of ECRTS ’12, July 2012.

[23] G. Nelissen, S. Funk, and J. Goossens, “Reducing Preemptions and
Migrations in EKG,” in Proc. of RTCSA, Aug 2012.

[24] S.-H. Oh and S.-M. Yang, “A modified least-laxity-first scheduling
algorithm for real-time tasks,” in Proc. of RTCSA, 1998.

[25] P. Pillai and K. G. Shin, “Real-time dynamic voltage scaling for low-
power embedded operating systems,” in Proc. of SOSP ’01, 2001.

[26] P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt, “RUN: Optimal
Multiprocessor Real-Time Scheduling via Reduction to Uniprocessor,”
in Proc. of RTSS, 2011.

[27] I. Ripoll, A. Crespo, and A. Mok, “Improvement in feasibility testing
for real-time tasks,” Real-Time Systems, vol. 11, no. 1, 1996.

[28] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: A flexible
real time scheduling framework,” Ada Lett., vol. XXIV, no. 4, 2004.

[29] A. Srinivasan and S. Baruah, “Deadline-based scheduling of periodic
task systems on multiprocessors,” Inf. Process. Lett., vol. 84, no. 2,
2002.

[30] R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “STORM a simulation
tool for real-time multiprocessor scheduling evaluation,” in Proc. of

ETFA, 2010.
[31] D. Zhu, D. Mosse, and R. Melhem, “Multiple-resource periodic schedul-

ing problem: how much fairness is necessary?” in Proc. of RTSS, 2003.


