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Since exact values of such quantities are known only for specific values of p and special domains Ω, it is important to give (sharp) estimates for these quantities in terms of (simple) geometric quantities such as measure, perimeter, diameter, relative isoperimetric constants and so on. In this direction, the reader could consult for instance [START_REF] Avinyo | Isoperimetric constants and some lower bounds for the eigenvalues of the p-Laplacian[END_REF][START_REF] Avinyo | Geometric inequalities of Cheeger type for the first positive eigenvalue of the n-dimensional free membrane problem[END_REF][START_REF] Brandolini | Sharp estimates for eigenfunctions of a Neumann problem[END_REF][START_REF] Brandolini | Optimal lower bounds for Neumann eigenvalues of linear and nonlinear Neumann problems[END_REF][START_REF] Ferone | A remark on optimal weighted Poincaré inequalities for convex domains[END_REF] and the references therein.

With this respect the most celebrated example is the Faber-Krahn inequality (see [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]Chapter 3] for example) which asserts that the following minimization problem (1.1) inf{λ p (Ω) : |Ω| ≤ c}, is (uniquely) solved by N -dimensional balls of measure c. By taking advantage of the homegeneity properties of the functional Ω → λ p (Ω), the previous can be summarized as

(1.2) λ p (Ω) ≥ λ p (B) |B| |Ω| p N
, where B is now any N -dimensional ball. Then λ p (Ω) can be bounded from below in a sharp way just in terms the measure of the set Ω. We point out that by using isoperimetric inequality or isodiametric inequality, from (1.2) we can infer similar lower bounds for λ p in terms of the perimeter or the diameter of Ω.

Observe that problem (1.1) becomes trivial, when we replace λ p (Ω) with µ p (Ω). Indeed, the latter is actually zero each time Ω is disconnected. It turns out that the natural counterpart for µ p is rather the maximization problem, i.e. (1.3) sup{µ p (Ω) : |Ω| ≥ c}.

Again, this is generally expected to be solved by N -dimensional balls of volume c. Unfortunately so far this problem has resisted all the attempts to be attacked with the unique exception of the case p = 2 (and partially of the limiting cases p = 1 and p = ∞, see [START_REF] Esposito | The longest shortest fence and sharp Poincaré-Sobolev inequalities[END_REF] and [START_REF] Esposito | The Neumann eigenvalue problem for the ∞-Laplacian[END_REF][START_REF] Rossi | On the first nontrivial eigenvalue of the ∞-Laplacian with Neumann boundary conditions[END_REF] respectively). The Szegő-Weinberger inequality [START_REF] Szegő | Inequalities for certain eigenvalues of a membrane of given area[END_REF][START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF] states in fact that for p = 2 problem (1.4) is (uniquely) solved by N -dimensional balls of measure c. As before, the result can be rewritten in scaling invariant form as

(1.4) µ 2 (Ω) ≤ µ 2 (B) |B| |Ω| 2 N
, with equality holding if and only if Ω is an N -dimensional ball. We recall that the proof of (1.4) for p = 2 crucially exploits some pecularities of the Laplacian, like linearity and the knowledge of the explicit form of eigenfunctions on balls.

A couple of comments on the Szegő-Weinberger result are in order. First of all, inequality (1.4) says that µ 2 (Ω) can be estimated from above just in terms of the measure of Ω. But differently from the case λ p , now we can not directly infer similar upper bounds for µ 2 (Ω) in terms of perimeter or diameter. Then one may wonder whether such a kind of estimates hold true or not for every 1 < p < ∞, at least for some particular classes of sets.

Secondly, we notice that if B is any N -dimensional ball, using the fact that µ 2 (B) < λ 2 (B) (see [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] or Proposition 5.1 below), from (1.4) we can infer

(1.5) µ 2 (Ω) ≤ λ 2 (B) |B| |Ω| 2 N
, which can be see as a weak version of the Szegő-Weinberger inequality. Again, a natural question is whether inequality (1.5) can be extended to the case of p = 2 or not.

The last two questions are the starting point of our analysis. In this paper we prove indeed sharp upper bounds on µ p (Ω) in terms of diameter, as well as generalizations of (1.5) for p = 2, under the additional constraint that Ω is a convex set.

1.2.

A sharp upper bound. Then our main scope is to investigate the following shape optimization problem with convexity and diameter constraints

(1.6) sup{µ p (Ω) : Ω ⊂ R N convex, diam(Ω) ≥ 1}.
Of course, by homogeneity of the quantities involved the value 1 has no bearing and could be replaced by any constant c > 0. In Theorem 3.1 we show that the previous upper bound µ * is finite, then we compute it and show at the same time that this problem does not admit a solution. Notably, we show that for every admissible set Ω there holds

µ p (Ω) < µ * ,
and we exhibit a sequence {Ω n } ⊂ R N of convex sets suitably degenerating to a segment for which lim

n→∞ µ p (Ω n ) = µ * .
We refer to Section 3 for more details. As we will show, the previous result can be summarized by the following scaling invariant sharp inequality

(1.7) µ p (Ω) < λ p (B) diam(B) diam(Ω) p ,
where B is any N -dimensional ball and inequality sign is strict. The proof of (1.7) is based on a clever choice of a special test function which reminds idea exploited in [START_REF] Szegő | Inequalities for certain eigenvalues of a membrane of given area[END_REF][START_REF] Weinberger | An isoperimetric inequality for the N -dimensional free membrane problem[END_REF]. We point out that by joining (1.7) and the isodiametric inequality, we immediately get

µ p (Ω) < λ p (B) |B| |Ω| p N
, which generalizes (1.5) to p = 2 for convex sets, as announced above. By keeping in mind the way such an estimate was proved for p = 2, the previous can be seen as the trace of a potentially exhisting Szegő-Weinberger inequality for the p-Laplacian.

For ease of completeness and in order to neatly motivate some of the studies performed in this paper, it is useful to recall at this point that the minimization problem

(1.8) inf{µ p (Ω) : Ω ⊂ R N convex, diam(Ω) ≤ 1},
highlights the same features as problem (1.6). For example, here as well the infimum can be computed and is not attained. More interestingly, a minimizing sequence is again given by a family of convex sets collapsing on a segment. For p = 2 this is a celebrated result by Payne and Weinberger (see [START_REF] Payne | An optimal Poincaré inequality for convex domains[END_REF]), which has been recently generalized in [START_REF] Esposito | Best constants in Poincaré inequalities for convex domains[END_REF][START_REF] Valtorta | Sharp estimate on the first eigenvalue of the p-Laplacian[END_REF] to p = 2.

The result can be summarized by the sharp inequality

(1.9) µ p (Ω) > π p diam(Ω) p . 1.3. Generalized eigenvalues.
It is quite natural to wonder if similar conclusions can be drawn also in the case of the following generalized notion of eigenvalues

λ p,q (Ω) = min v∈W 1,p 0 (Ω) Ω |∇v| p dx : Ω |v| q dx = 1 , and 
µ p,q (Ω) = min v∈W 1,p (Ω) Ω |∇v| p dx : Ω |v| q dx = 1 and Ω |v| q-2 v dx = 0 .
Quite interestingly, it turns out that for q > p one has the following picture:

• one can prove the analogue of (1.7);

• this estimate is not sharp;

• the maximization problem (1.6) now admits a solution;

• a lower bound like (1.9) is not possible (and the infimum in (1.8) is 0); On the contrary, for q < p all the previous statements have to be reverted. In particular, we have sup{µ p,q (Ω) :

Ω ⊂ R N convex, diam(Ω) ≥ 1} = +∞,
and it is rather the minimization problem for µ p,q which is now well-posed (see Section 4 for more details).

1.4. Plan of the paper. In Section 2 we prove some basic results concerning properties of µ p,q (Ω) and λ p,q (Ω). Section 3 is devoted to the investigation of problem (1.6). In Section 4 we consider the case 1 < p < q < p * , and we prove a lower bound for µ p,q (Ω) in terms of measure and diameter of Ω when p > q. In Section 5 we prove a nodal domain property which roughly speaking shows that for q > p eigenfunctions associated to µ p,q (Ω) can not have a closed nodal line. Finally, the last Section is devoted to investigate the limit cases q = p * and p = N .
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Preliminaries

We fix two exponents p and q such that 1 < q, p < ∞ and

(2.1)

q < p * =      N p N -p , if 1 < p < N, +∞, if p ≥ N.
For every Ω ⊂ R N open bounded Lipschitz set, we use the standard Sobolev spaces

W 1,p (Ω) = u ∈ L p (Ω) : ∇u ∈ L p (Ω; R N ) ,
and W 1,p 0 (Ω), the latter being the closure of C ∞ 0 (Ω) with respect to the norm of W 1,p (Ω). We then define the two quantities

µ p,q (Ω) = inf v∈W 1,p (Ω)\{0}          Ω |∇v| p dx Ω |v| q dx p q : Ω |v| q-2 v dx = 0          , and 
λ p,q (Ω) = inf v∈W 1,p 0 (Ω)\{0} Ω |∇v| p dx Ω |v| p dx p q
.

It is useful to recall that µ p,q (Ω) can be defined through the unconstrained minimization

µ p,q (Ω) = inf v∈ W 1,p (Ω) Ω |∇v| p dx min t∈R Ω |v -t| q dx p q
, where we set W 1,p (Ω) = {v ∈ W 1,p (Ω) : Ω |∇v| p dx > 0}. Also, we have that if λ is such that the equation

-∆ p u = λ u p-q L q (Ω) |u| q-2 u in Ω, u = 0, on ∂Ω,
admits a nontrivial solution in W 1,p 0 (Ω), then λ ≥ λ p,q (Ω). Remark 2.1. Observe that the quantity µ p,q (Ω) is always well-defined, we could have µ p,q (Ω) = 0 if Ω does not support a Poincaré inequality of the type

C min t∈R Ω |v -t| q dx p q ≤ Ω |∇v| p dx.
The same remark applies to the quantity λ p,q (Ω).

We start with a couple of preliminary results on the quantities µ p,q and λ p,q .

Lemma 2.2. Let 1 < p < ∞ and 1 < s < q < p * , then we have

λ p,q (Ω) ≤ |Ω| p s -p q λ p,s (Ω) and µ p,q (Ω) ≤ |Ω| p s -p q µ p,s (Ω).
Proof. The result is a plain consequence of Hölder inequality. Let us prove for example the second inequality: we pick u s ∈ W 1,p (Ω) a function minimizing the Rayleigh quotient which defines µ p,s (Ω). We then define t q as the minimizer of

t → Ω |u s -t| q dx,
thus we get

µ p,q (Ω) = min v∈ W 1,p (Ω) Ω |∇v| p dx min t∈R Ω |v -t| q dx p q ≤ Ω |∇u s | p dx Ω |u s -t q | q dx p q ≤ |Ω| p s -p q Ω |∇u s | p dx Ω |u s -t q | s dx p s ≤ |Ω| p s -p q Ω |∇u s | p dx min t∈R Ω |u s -t| s dx p s
which in turn gives µ p,q (Ω) ≤ |Ω| p s -p q µ p,s (Ω), as desired.

The following simple continuity result will be useful.

Lemma 2.3. Let 1 < p < ∞ and 1 < q < p * , then we have

lim s→q λ p,s (Ω) = λ p,q (Ω)
and lim s→q µ p,s (Ω) = µ p,q (Ω).

Proof. We just prove the second equality, the first one can be proved along the same lines. Let u q ∈ W 1,p (Ω) \ {0} be a minimizer for the variational problem defining µ p,q (Ω), i.e. such that

Ω |∇u q | p dx Ω |u q | q dx p q
= µ p,q (Ω), and

Ω |u q | q-2 u q dx = 0.
Observe that since u q = 0, the second condition above implies that u q is not constant. We then define t s to be the minimizer of

t → Ω |u q -t| s dx, t ∈ R, thus we obtain lim sup s→q µ p,s (Ω) ≤ lim sup s→q Ω |∇u q | p dx min t∈R Ω |u q -t| s dx p s = lim sup s→q Ω |∇u q | p dx Ω |u q -t s | s dx p s = Ω |∇u q | p dx Ω |u q | q dx p q = µ p,q (Ω).
where we used that 1 t s goes to 0 as s goes to q. In order to prove that lim inf

s→q µ p,s (Ω) ≥ µ p,q (Ω),
as well, we have to distinguish two cases. If s ր q, then we can simply apply Lemma 2.2, thus we obtain lim inf

sրq µ p,s (Ω) = lim inf sրq |Ω| p s -p q µ p,s (Ω) ≥ µ p,q (Ω).
On the contrary, for s ց q, we pick

u s ∈ W 1,p (Ω) such that Ω |∇u s | p dx = µ p,s (Ω), Ω |u s | s dx = 1, Ω |u s | s-2 u s = 0,
then in particular {u s } is a bounded sequence in W 1,p (Ω), thus there exists a subsequence (not relabeled) which strongly converges when s ց q in L q (Ω). If we call u this limit function, we have

Ω |u| p = lim sցq Ω |u s | s dx = 1 and Ω |u| q-2 u dx = lim sցq Ω |u s | s-2 u s dx = 0
and of course

µ p,q (Ω) ≤ Ω |∇u| p dx ≤ lim inf sցq Ω |∇u s | p dx = lim inf sցq µ p,s (Ω).
This concludes the proof.

We will also need the following very simple geometric result for convex sets. 1 The convex functions

t → Ω |u -t| s dx,
are converging locally uniformly to the function

t → Ω |u -t| q dx.
Moreover, for |s -q| sufficiently small, there exists m > 0 such that we have |ts| < m. Then by uniform convergence and uniqueness of the minimizer tq we can infer lims→q ts = tq = 0.

Lemma 2.4. Let Ω ⊂ R N be an open convex set, and let x 0 ∈ ∂Ω. Then

x -x 0 , ν Ω (x) ≥ 0, for H N -1 -a.e. x ∈ ∂Ω,
where ν Ω (x) denotes the outer unit normal to ∂Ω at the point x.

Proof. Since Ω is convex, given x ∈ ∂Ω we have that

Ω ⊂ {y ∈ R N : y -x, ν Ω (x) ≤ 0},
i.e. the hyperplane orthogonal to ν Ω (x) and passing from x is a supporting hyperplane for Ω. In particular, since x 0 ∈ Ω we get

x 0 -x, ν Ω (x) ≤ 0,
which concludes the proof.

A Szegő-Weinberger inequality for convex sets

The following is the main result of the paper. This shows that the nonlinear spectral optimization problem

sup{µ p,p (Ω) : Ω ⊂ R N convex, diam(Ω) ≥ 1},
does not admit a solution, but a maximizing sequence is given by a family of convex sets suitably degenerating to a segment. Of course, the value 1 for the diameter constraint plays no special role and could be replaced by any constant c > 0.

Theorem 3.1. Let Ω ⊂ R N be an open bounded convex set and 1 < p < ∞. Then we have

(3.1) µ p,p (Ω) < λ p,p (B) diam(B) diam(Ω) p ,
where B is any N -dimensional ball. Equality sign in (3.1) is never achieved but the inequality is sharp. More precisely, there exists a sequence {Ω k } k∈N ⊂ R N of convex sets such that:

• diam(Ω k ) = d > 0, for every k ∈ N;

• Ω k converges to a segment of length d in the Hausdorff topology;

• we have

(3.2) lim k→∞ µ p,p (Ω k ) = λ p,p (B d/2 ),
where

B d/2 is an N -dimensional ball having radius d/2.
Proof. We split the proof into two parts: at first we prove (3.1), then we construct the sequence {Ω k } k∈N verifying (3.2).

Proof of (3.1). First of all, we observe that inequality (3.1) is in scaling invariant form.

Then without loss of generality, we can confine ourselves to prove that where B is the ball centered at the origin such that diam(Ω) = diam(B). Let us take

µ p,p (Ω) < λ p,p (B),
u ∈ C 1,α (B) ∩ C ∞ (B \ {0}
) the first Dirichlet eigenfunction for the ball B, normalized by the condition u > 0. This solves

(3.3) -∆ p u = λ p,p (B) u p-1 and u = 0 on ∂B.
We then take two points x 0 , x 1 ∈ ∂Ω such that |x 0 -x 1 | = diam(Ω), and we define the two caps

Ω i = x : |x -x i | < diam(Ω) 2 ∩ Ω, i = 0, 1,
which are mutually disjoint (see Figure 1). We then take the function

ϕ(x) = u(x -x 0 ) • 1 Ω 0 (x) -c u(x -x 1 ) • 1 Ω 1 (x) ∈ W 1,p (Ω),
where c ∈ R is the constant given by

c = Ω 0 u(x -x 0 ) p-1 dx Ω 1 u(x -x 1 ) p-1 dx , so that Ω |ϕ| p-2 ϕ dx = 0.
By using this function ϕ in the Rayleigh quotient defining µ p,p (Ω), we get

µ p,p (Ω) < Ω 0 |∇u(x -x 0 )| p dx + c p Ω 1 |∇u(x -x 1 )| p dx Ω 0 |u(x -x 0 )| p dx + c p Ω 1 |u(x -x 1 )| q dx
, where the strict inequality holds since ϕ can not be an eigenfunction 2 . By performing an integration by parts in the integrals at the numerator, we obtain 3

Ω 0 |∇u(x -x 0 )| p dx = ∂Ω 0 |∇u(x -x 0 )| p-2 ∂u ∂ν Ω (x -x 0 ) u(x -x 0 ) dH N -1 (x) - Ω 0 ∆ p u(x -x 0 ) u(x -x 0 ) dx = ∂Ω 0 |∇u(x -x 0 )| p-2 ∂u ∂ν Ω (x -x 0 ) u(x -x 0 ) dH N -1 (x) + λ p,p (B) Ω 0 |u(x -x 0 )| p dx,
where we used the equation (3.3) solved by u. Observe that the first integral in the righthand side has a sign. Indeed u is a radially decreasing function, then (with a small abuse of notation) we have

∇u(x -x 0 ), ν Ω )(x) = u ′ (|x -x 0 |) x -x 0 |x -x 0 | , ν(x) ,
and the claim follows from Lemma 2.4. The same computations apply to the other terms appearing in the numerator, thus obtaining

µ p,p (Ω) < λ p,p (B) Ω 0 |u(x -x 0 )| q dx + c p Ω 1 |u(x -x 1 )| p dx Ω 0 |u(x -x 0 )| p dx + c p Ω 1 |u(x -x 1 )| q dx = λ p,p (B),
which concludes the proof of (3.1).

Optimality of (3.1). Let B be a ball of diameter d. We prove optimality of (3.1) by constructing a sequence of convex sets {Ω k } k∈N , all sharing the same diameter d, and such that

(3.4) λ p,p (B) ≤ lim inf k→∞ µ p,p (Ω k ) and lim sup k→∞ µ p,p (Ω k ) ≤ λ p,p (B).
2 Observe that if the Rayleigh quotient of ϕ achieves µp,q(Ω), then ϕ would solve

-∆pϕ = µp,q(Ω) |ϕ| q-2 ϕ, in Ω,
in a weak sense. Let us take y0 ∈ ∂Ω0 ∩ Ω, by picking a ball B̺(y0) with radius ̺ sufficiently small so that B̺(y0) ⊂ Ω \ Ω1, we would obtain that ϕ is a nonnegative solution of the equation in B̺(y0). Then by Harnack's inequality (see [21, Theorem 1.1]) one obtains 0 < max

B̺(y 0 ) ϕ ≤ C min B̺(y 0 ) ϕ = 0,
thus getting a contradiction. We point out that we are not using any unique continuation argument. 3 Observe that we have u(x -x0) = 0 on ∂Ω0 ∩ Ω. In view of (3.1) we only need to prove the liminf inequality in (3.4). For all s ∈ R and k ∈ N let us denote by

C - k (s) = (x 1 , x ′ ) ∈ R × R N -1 : (x 1 -s) -> 2 k |x ′ | and C + k (s) = (x 1 , x ′ ) ∈ R × R N -1 : (x 1 -s) + > 2 k |x ′ |
the left and right circular infinite cone in R N whose axis is the x 1 -axis, having vertex in (s, 0) ∈ R × R N -1 , and whose opening angle is α = 2 arctan 1 k . We set

(3.5) Ω k = C - k d 2 ∩ C + k - d 2 .
In dimension N = 2, Ω k is nothing but a rhombus of diagonals d and 1/k. In higher dimension Ω k is obtained by gluing together the basis of two right circular cones of height d/2 and radii 1/(2 k) (see Figure 2). We claim that for this family (3.4) holds true. We start observing that whenever u belongs to W 1,p (Ω k ) then the rescaled function v(x 1 , x ′ ) = u (x 1 , x ′ /k) belongs to W 1,p (Ω 1 ) and we have

Ω 1 |∂ x 1 v| 2 + k 2 |∇ x ′ v| 2 p 2 dx = k N -1 Ω k |∇u| p dx, Ω 1 |v| p dx = k N -1 Ω k |u| p dx,
and

Ω 1 |v| p-2 v dx = k N -1 Ω k |v| p-2 v dx = 0.
Thus we obtain

µ p,p (Ω k ) = min u∈W 1,p (Ω k )\{0}        Ω k |∇u| p dx Ω k |u| p dx : Ω k |u| p-2 u dx = 0        , = min v∈W 1,p (Ω)\{0}        Ω 1 |∂ x 1 v| 2 + k 2 |∇ x ′ v| 2 p 2 dx Ω 1 |v| p dx : Ω 1 |v| p-2 v dx = 0        =: γ k (Ω 1 ).
Now we denote by u k a function which minimizes the Rayleigh quotient defining µ p,p (Ω k ) and by v k (x 1 , x ′ ) = u k (x 1 , x ′ /k) the corresponding function which minimizes the functional defining γ k (Ω). Without loss of generality we can assume that v k L p (Ω) = 1. Since inequality (3.1) implies that

(3.6) Ω |∂ x 1 v k | 2 + k 2 |∇ x ′ v k | 2 p 2 dx ≤ C N,p,d , for all k ∈ N,
then there exists w ∈ W 1,p (Ω) \ {0} so that v k → w weakly in W 1,p (Ω) and strongly in L p (Ω). Moreover we also have 4 ∇ x ′ w ≡ 0, and

Ω |w| p-2 w dx = 0.
Since w does not depend on the x ′ variable, we will write for simplicity w = w(x 1 ) with a slight abuse of notation. For all s ∈ [-d/2, d/2] we denote by Γ s the section of Ω which is 4 The bound (3.6) implies that for every given k0 ∈ N, we have

k p 0 Ω |∇ x ′ w| p dx ≤ Ω |∇x 1 w| 2 + k 2 0 |∇ x ′ w| 2 p 2 dx ≤ lim inf k→∞ Ω |∇x 1 v k | 2 + k 2 0 |∇ x ′ v k | 2 p 2 dx ≤ C,
which in turn gives ∇ x ′ w ≡ 0 by the arbitrariness of k0.

orthogonal to the x 1 -axis at x 1 = s and set g(s) = H N -1 (Γ s ). Then we get lim inf

k→∞ γ k (Ω) = lim inf k→∞ Ω 1 |∂ x 1 v k | 2 + k 2 |∇ x ′ v k | 2 p 2 dx Ω 1 |v k | p dx ≥ lim inf k→∞ Ω 1 |∂ x 1 v k | p dx Ω 1 |v k | p dx ≥ Ω 1 |w ′ | p dx Ω 1 |w| p dx = d/2 -d/2 |w ′ (s)| p g(s) ds d/2 -d/2
|w(s)| p g(s) ds

≥ min f ∈W 1,p (-d 2 , d 2 )\{0}          d/2 -d/2 |f ′ | p g ds d/2 -d/2 |f | p g ds : d/2 -d/2 |f | p-2 f g ds = 0          .
Let us denote by η the previous minimal value, then a minimizer f is a solution to the following boundary value problem s) it is easy to prove that f (0) = 0 and hence f solves

   -g |f ′ | p-2 f ′ ′ = η g |f | p-2 f, in (-d/2, d/2), f ′ (-d/2) = f ′ (d/2) = 0 Since g(s) = g(-
   -g |f ′ | p-2 f ′ ′ = η g |f | p-2 f, in (0, d/2), f (0) = f ′ (d/2) = 0
Finally, by reminding that g(s 

) = ω N -1 (s -d/2) N -1 , if we set h(r) = f (d/2 -r) then    -r N -1 |h ′ | p-2 h ′ ′ = η r N -1 |h| p-2 h, in (0, d/2), h ′ (0) = h(d/2) = 0 which means that H(x) = h(

The case p = q

In this section we discuss variants and extensions of Theorem 3.1 for the quantity µ p,q when p = q.

4.1. The case p < q. Actually, with the very same proof of Theorem 3.1 we can prove the following upper bound (see Remark 4.2 below for a discussion on its sharpness). Theorem 4.1. Let Ω ⊂ R N be an open bounded convex set and 1 < p < q < p * . Then we have (4.1) µ p,q (Ω) < λ p,q (B) diam(B) diam(Ω)

p+ N p q -N
, where B is any N -dimensional ball.

Proof. We use the same notation as in the proof of Theorem 3.

1. With u ∈ C 1,α (B) ∩ C ∞ (B \ {0}
) we now indicate the function achieving λ p,q (B), normalized by the conditions (4.2) u L q (B) = 1 and u > 0.

Though we do not need this, we recall that such a function is unique for B and radially symmetric decreasing (see [START_REF] Erbe | Uniqueness Theorems for Positive Radial Solutions of Quasilinear Elliptic Equations in a Ball[END_REF]Main Theorem]). Moreover it solves (4.3) -∆ p u = λ p,q (B) u q-1 and u = 0 on ∂B.

As before, we consider the two caps Ω 0 and Ω 1 and take

ϕ(x) = u(x -x 0 ) • 1 Ω 0 (x) -c u(x -x 1 ) • 1 Ω 1 (x) ∈ W 1,p (Ω),
where c ∈ R is now given by

c = Ω 0 u(x -x 0 ) q-1 dx Ω 1 u(x -x 1 ) q-1 dx
.

By using this function ϕ in the Rayleigh quotient defining µ p,q (Ω) and proceeding as in Theorem 3.1 we now end up with µ p,q (Ω) < λ p,q (B)

Ω 0 |u(x -x 0 )| q dx + c p Ω 1 |u(x -x 1 )| q dx Ω 0 |u(x -x 0 )| q dx + c q Ω 1 |u(x -x 1 )| q dx p q
.

Observe that the term on the right-hand side is of the form

A + t p q B (A + t B) p q .
For p < q the previous expression is maximal for t = 1. By observing that this maximal value is given by (A + B) 1-p/q , we thus get (4.4) µ p,q (Ω) < λ p,q (B)

Ω 0 |u(x -x 0 )| q dx + Ω 1 |u(x -x 1 )| q dx 1-p q .
We have 1 -p/q > 0 and the sum of the two terms into square brackets is less than 1 by (4.2), thus we can finally infer (3.1).

Remark 4.2 (About sharpness). This time, the estimate (4.1) is not sharp. We keep the same notation as in the proof of Theorem 4.1 and still consider q > p. By adding and subtracting the term λ p,q (B) on the right-hand side of (4.4), recalling (4.2) and using the concavity of t → t 1-p/q , we get µ p,q (Ω) < λ p,q (B) + λ p,q (B)

Ω 0 ∪Ω 1 |u| q dx 1-p q - B |u| q dx 1-p q ≤ λ p,q (B) + q -p q λ p,q (B) Ω 0 ∪Ω 1 |u| q dx - B |u| q dx ≤ λ p,q (B) - q -p q λ p,q (B) B\T Ω |u| q dx,
Since u is radially decreasing, a simple rearrangement argument finally gives (4.5) µ p,q (Ω) < λ p,q (B) -q -p q λ p,q (B)

B\T Ω |u| q dx
where T Ω is the ball centered at the origin, such that |T Ω | = |Ω 0 ∪ Ω 1 |. Now observe that by using the quantitative isodiametric inequality (see [START_REF] Maggi | Quantitative stability in the isodiametric inequality via the isoperimetric inequality[END_REF]Theorem 1])

|B \ T Ω | = |B| -|Ω 0 ∪ Ω 1 | ≥ |Ω| + |Ω| C N A(Ω) 2 -|Ω 0 ∪ Ω 1 | = |Ω| -|Ω 0 ∪ Ω 1 | + |Ω| C N A(Ω) 2 ,
where C N > 0 is a dimensional constant and A(Ω) is the Fraenkel asymmetry of Ω, defined by

A(Ω) = inf 2 |Ω \ Ω # | |Ω # | : Ω # ball with |Ω # | = |Ω| .
The estimate (4.5) shows that there can not exist a convex set Ω such that µ p,q (Ω) = λ p,q (B), for q > p. Indeed, it this were true, one would obtain The first condition in (4.6) implies that Ω is a ball, in contrast with the fact that |Ω| > |Ω 0 ∪ Ω 1 | for a ball (see Figure 3).

From Theorem 3.1, we can also infer a couple of upper bounds on µ p,q , in terms of measure and diameter. µ p,q (Ω) < λ p,p (B) |Ω|

1-p q diam(B) diam(Ω) p ,
and also

(4.8) µ p,q (Ω) < λ p,q (B) |B| |Ω| p N + p q -1
, where B is any N -dimensional ball.

Proof. We first observe that (4.7) with p = q coincides with (3.1). Let p < q, by applying Lemma 2.2 we get µ p,q (Ω) ≤ |Ω| 1-p q µ p,p (Ω). It is then sufficient to apply Theorem 3.1 with q = p in order to estimate the right-hand side. This proves (4.7).

In order to prove (4.8), we can use the isodiametric inequality Remark 4.4. From estimate (4.7), we have that for p < q the quantity µ p,q (Ω) can not be bounded from below in terms on diam(Ω) only. In other words, for q > p we have

inf{µ p,q (Ω) : Ω ⊂ R N convex, diam(Ω) ≤ c} = 0.
Indeed, for any sequence of convex sets

{Ω k } k∈N ⊂ R N such that lim k→∞ |Ω k | = 0 and diam(Ω k ) = c,
we have that µ p,q (Ω k ) converges to 0, as k tends to ∞.

As in the case p = q, we can then ask whether the following shape optimization problem (4.10) sup{µ p,q (Ω) : Ω open and bounded convex set, diam(Ω) ≥ c}, admits a solution or not. We have the following existence result.

Theorem 4.5 (Existence of a maximizer). Let 1 < p < q < p * , for every c > 0 problem (4.10) admits a solution. In other words, there exists an open and bounded convex set K ⊂ R N such that µ p,q (Ω) diam(Ω) 

p+ N p q -N ≤ µ p,q (K) diam(K) p+ N p q -N , for every Ω ⊂ R N open
µ p,q (Ω k ) ≥ N c 2 > 0, for every k ∈ N.
Since µ p,q scales like a length to a negative power, we can also assume that

diam(Ω k ) = c, for every k ∈ N.
Finally, thanks to (4.7) we can suppose that there exists a uniform constant δ > 0 such that (4.12)

|Ω k | ≥ δ, for every k ∈ N,
since otherwise we would have that µ p,q (Ω k ) goes to zero. Thanks to the bound on the diameters, we can assume that the whole sequence {Ω k } k∈N is contained in a common compact set D ⊂ R N . Thus the sequence is relatively compact for the complementary Hausdorff topology in D: more precisely, there exists an open set Ω ⊂ D such that Ω k (up to a subsequence) converges in the Hausdorff complementary distance to Ω (see [START_REF] Henrot | Shape variation and optimization] Une analyse géométrique[END_REF]Corollaire 2.2.24]). Moreover, Ω is still convex and its diameter equals c (see [START_REF] Henrot | Shape variation and optimization] Une analyse géométrique[END_REF]Section 2.2.3]). We also observe that the characteristic functions {1 Ω k } k∈N converges to 1 Ω strongly 5 in L 1 (D) and * -weakly in L ∞ (D).

Without loss of generality, we can assume that Ω contains the origin, since µ p,q (Ω) is not affected by translations. We are now going to prove that (4.13) lim sup

k→∞ µ p,q (Ω k ) ≤ µ p,q (Ω).
At this aim, let us take u ∈ W 1,p (Ω) a function attaining the infimum in the definition of µ p,q (Ω) > 0. Since Ω contains the origin, for every ε > 0 the set

Ω ε = (1 + ε) Ω is such that Ω ⋐ Ω ε ,
5 By convexity, a uniform bound on diam(Ω k ) implies a uniform bound on their perimeters and measures.

Then it is sufficient to use the compact embedding BV (D) ֒→ L 1 (D).

then by Hausdorff convergence for every ε > 0 there exists k ε ∈ N such that

Ω k ⊂ Ω ε , for every k ≥ k ε .
We also set

u ε (x) = u x 1 + ε , x ∈ Ω ε ,
then for every 0 < ε < 1 and every k ≥ k ε , we take t ε,k ∈ R such that

Ω k |u ε -t ε,k | q dx = min t∈R Ω k |u ε -t| q dx,
We claim that the sequence {t ε,k } k∈N in bounded uniformly in k and 0 < ε < 1, i.e. there exists C > 0 such that

(4.14) |t ε,k | ≤ C, for every 0 < ε < 1 and k ≥ k ε .
Indeed, observe that by convexity of the map τ → τ q and (4.12), we have

Ω k |u ε -t ε,k | q dx ≥ 1 2 q-1 |Ω k | |t ε,k | q - Ω k |u ε | q dx ≥ δ 2 q-1 |t ε,k | q - Ωε |u ε | q dx = δ 2 q-1 |t ε,k | q -(1 + ε) N Ω |u| q dx,
and on the other hand

Ω k |u ε -t ε,k | q dx ≤ Ω k |∇u ε | p dx µ p,q (Ω k ) ≤ 2 (1 + ε) N -p N c Ω |∇u| p dx,
where we used (4.11) and the very definition fo u ε . By keeping the two estimates together, we finally get (4.14).

Thus we can suppose that t ε,k converges (up to a subsequence) to t ε ∈ R as k goes to ∞, and t ε is in turn uniformly bounded. Then we get lim sup

k→∞ µ p,q (Ω k ) ≤ lim sup k→∞ Ω k |∇u ε | p dx Ω k |u ε -t ε,k | q dx p q ≤ Ω |∇u ε | p dx Ω |u ε -t ε | q dx p q
for every 0 < ε < 1, where we also used the * -weak convergence of the characteristic functions, recalled above. We now observe that

lim ε→0 Ω |u ε -t ε | q dx = Ω |u -t| q dx ≥ min t∈R Ω |u -t| q dx,
where t ∈ R is an accumulation point of the sequence {t ε } ε>0 , and also

lim ε→0 ∇u ε -∇u L p (Ω) = 0.
Thus it is now sufficient to take the limit as ε goes to 0 in order to get (4.13). This finally gives that Ω is a solution of (4.10). 4.2. The case p > q. In this case, we can show that an upper bound on µ p,q like that of (4.1) can not hold true and actually we have

sup{µ p,q (Ω) : Ω ⊂ R N convex, diam(Ω) ≥ c} = +∞. Indeed, for every sequence of open convex sets {Ω n } n∈N ⊂ R N such that diam(Ω n ) = c > 0 and lim n→∞ |Ω n | = 0,
we have lim

n→∞ µ p,q (Ω n ) = +∞.
Actually, this is a consequence of the following estimate.

Proposition 4.6. Let 1 < q < p and Ω ⊂ R N be an open and bounded convex set. Then we have

(4.15) π p diam(Ω) p |Ω| q p -1 ≤ µ p,q (Ω),
where the constant π p is given by

π p = 2 (p-1) 1 p 0 1 - t p p -1 -1 p dt.
Proof. Again by Lemma 2.2 with s = p > q, we get µ p,p (Ω) ≤ |Ω| 1-q p µ p,q (Ω).

By using the following lower bound on µ p,p (Ω) (see [9, Theorem 1.1])

µ p,p (Ω) ≥ π p diam(Ω) p ,
we can then conclude By combining (4.15) with the isodiametric inequality (4.9), we get the following counterpart of Theorem 4.1 for the case q < p (4.16)

µ p,q (Ω) ≥ π p |B| 1 q -1 p diam(B) p diam(B) diam(Ω) p+ N p q -N
, for every Ω ⊂ R N open and bounded convex set (as always B denotes any N -dimensional ball). Thus this time it is the minimum problem

inf{µ p,q (Ω) : Ω ⊂ R N convex, diam(Ω) ≤ c},
that actually makes sense. By proceeding as in the proof of Theorem 4.5, it is not difficult to see that the previous problem admits indeed a solution.

A nodal domain property

If u is a function achieving the infimum in the problem defining µ p,q (Ω), then by nodal domain we mean every connected component of the sets {x ∈ Ω : u(x) > 0} and {x ∈ Ω : u(x) < 0}.

As a consequence of Theorems 3.1 and 4.1, in the case p ≥ q we have the following result.

Proposition 5.1. Let Ω ⊂ R N be an open and bounded convex set and 1 < p ≤ q < p * . Then

(5.1) µ p,q (Ω) < λ p,q (Ω).

Moreover, every nodal domain of a function achieving µ p,q (Ω) has to intersect ∂Ω.

Proof. The proof of (5.1) immediately follows from (3.1) in connection with the Faber-Krahn inequality, i.e.

|B|

p q + p N -1 λ p,q (B) ≤ |Ω| p q + p N -1 λ p,q (Ω) and the isodiametric inequality.

To prove the second assertion, let us argue by contradiction. We take v achieving µ p,q (Ω) and we assume that the open set {x ∈ Ω : v > 0} has a connected component ω which is compactly contained in Ω. We can further suppose that v L q (Ω) = 1, then v ∈ W 1,p 0 (ω) and it solves -∆ p v = µ p,q (Ω) v q-1 , in ω, so that ω |∇v| p = µ p,q (Ω) ω |v| q dx ≤ µ p,q (Ω)

ω |v| q dx p q
, thanks to the fact that

1 = Ω |v| q dx ≥ ω |v| q dx,
and p/q ≤ 1. This implies that λ p,q (ω) ≤ µ p,q (Ω).

By using the strict monotonicity of λ p,q (Ω) with respect to set inclusion and (5.1), we then get λ p,q (Ω) < λ p,q (ω) ≤ µ p,q (Ω) < λ p,q (Ω), which gives the desired contradiction.

Remark 5.2. When p = q = 2, the previous argument to infer that first nontrivial Neumann eigenfunctions can not have a closed nodal line was originally due to Pleijel (see [START_REF] Pleijel | Remarks on Courant's nodal line theorem[END_REF]). For the Laplacian, inequality (5.1) was conjectured by Kornhauser and Stakgold (see [START_REF] Kornhauser | A variational theorem for 2u + u = 0 and its applications[END_REF]) and then proved by Szegő and Weinberger as a consequence of their celebrated inequality (1.4).

6. Limit cases 6.1. Sub-conformal case. We consider 1 < p < N and for an open bounded set Ω ⊂ R N we introduce the limit quantity

µ p,p * (Ω) = inf u∈W 1,p \{0}          Ω |∇u| p dx Ω |u| p * dx p p * : Ω |u| p * -2 u dx = 0          .
We also set

T N,p = min u∈W 1,p 0 (R N )\{0} R N |∇u| p dx R N |u| p * dx p p * ,
i.e. T N,p is the best constant in the Sobolev inequality for W 1,p 0 (R N ) (see for instance [START_REF] Talenti | Best constant in Sobolev inequality[END_REF]). We recall that the previous minimum is (uniquely) attained by functions of the form

x → c U x -x 0 λ , c ∈ R \ {0}, x 0 ∈ R N , λ > 0,
where U is the C ∞ decreasing function (6.1)

U (̺) = 1 1 + ̺ p/(p-1) N -p p , ̺ ≥ 0.
The following result is well-known. We provide a proof for the reader's convenience. Proof. At first we notice that by Lemma 2.2 λ p,p * (Ω) ≤ |Ω| p q -p p * λ p,q (Ω), while by the embedding W 1,p 0 (Ω) ⊂ W 1,p 0 (R N ) we get T N,p ≤ λ p,p * (Ω), thus we can conlude that T N,p ≤ lim inf q→p * λ p,q (Ω). To prove the limsup inequality, let r > 0 and x 0 ∈ Ω be such that the ball B r (x 0 ) is contained in Ω, which is always possible since Ω is open. Without loss of generality, we can suppose that r = 1 and x 0 = 0. By recalling the definition (6.1) of U , we define

u n (x) = U (n |x|) -U (n) + , n ∈ N,
which belongs to W 1,p 0 (Ω). We then observe that lim sup

q→p * λ p,q (Ω) ≤ lim sup q→p * R N |∇u n | p dx R N |u n | q dx p q = R N |∇u n | p dx R N |u n | p * dx p p * , n ∈ N.
By definition Proof. The equality (6.6) can be proved along the same lines as Lemma 2.3.

R N |∇u n | p dx = n p-N Bn(0) U ′ (
To prove the estimate (6.4) is sufficient to take the limit on both sides of (3.1) and use (6.6) and (6.2).

The simple estimate (6.4) can indeed be enhanced. 

µ p,p * (Ω) ≤ inf x 0 ∈∂Ω γ Ω (x 0 ) 1-p p * T N,p ,
where for every x 0 ∈ ∂Ω the quantity γ Ω (x 0 ) is the blow-up measure of Ω at x 0 , i.e.

γ Ω (x 0 ) = lim r→+∞ |r (Ω -x 0 ) ∩ B 1 (0)| ω N .
Proof. We define

u n (x) = U (n 2 |x|) -U (n), if |x| < 1/n, 0,
otherwise, where U is still defined by (6.1). For every n ∈ N, the function u n is radially symmetric decreasing, supported in the ball B 1/n (0). For x 0 ∈ ∂Ω we define

Ω n = x ∈ Ω : |x -x 0 | < 1 n ,
and consider the functions

ϕ n (x) = u n (x -x 0 ) • 1 Ωn . For every n ∈ N there exists a unique t n ∈ R such that Ω |ϕ n -t n | p * -2 (ϕ n -t n ) dx = 0.
and we have t n = o(1) as n goes to ∞. Then we get (6.5)

µ p,p * (Ω) ≤ lim n→∞ Ω |∇ϕ n | p dx Ω |ϕ n -t n | p * dx p p * = lim n→∞ Ω |∇ϕ n | p dx Ω |ϕ n | p * dx p p *
, where we used that

lim n→∞ Ω |ϕ n -t n | p * dx Ω |ϕ n | p * dx = 1
With a change of variables, we get

Ω |∇ϕ n | p dx = n 2 (p-N ) n 2 (Ω-x 0 )∩Bn(0) |U ′ (|y|)| p dy,
and

Ω |ϕ n | p * dx = n -2 N n 2 (Ω-x 0 )∩Bn(0) |U (|y|) -U (n)| p * dy.
By using these in (6.5), we get

(6.6) µ p,p * (Ω) ≤ lim n→∞ n 2 (Ω-x 0 )∩Bn(0) |U ′ (|y|)| p dy n 2 (Ω-x 0 )∩Bn(0) |U (|y|) -U (n)| p * dy p p * .
We then observe that by convexity of Ω, the sets n (Ω-x 0 )∩B 1 (0) have uniformly bounded measures and perimters. Then we get that n (Ω -x 0 ) ∩ B 1 (0) converges (up to a subsequence) in the sense of characteristic functions to a set V. Here V ⊂ B 1 (0) has measure

|V| = γ Ω (x 0 ) ω N ,
and is a conical set in the following sense if x ∈ V then t x ∈ V for every t ∈ 0, 1 |x| .

This in turn implies that n 2 (Ω -x 0 ) ∩ B n (0) converges to the infinite cone centered at the origin and generated by V, i.e.

x ∈ R N \ {0} :

x |x| ∈ ∂V .

By using this information in (6.6), the radial symmetry of the functions involved gives the desired result

Observe that for a convex set we have γ(x 0 ) ≤ 1/2 for every x 0 ∈ ∂Ω. Moreover, if the convex set is C 1 , then γ(x 0 ) = 1/2 for every x 0 ∈ Ω. In this case, we have the following consequence. T N,p .

6.2. Conformal case. We consider the conformal case, i.e. we take p = N in (3.1) which gives (6.7)

µ N,q (Ω) < λ N,q (B) diam(B) diam(Ω) N 2 q
, where B is any N -dimensional ball. In what follows we set

α N = N (N ω N ) 1 N -1 .
We have the following preliminary result. Proposition 6.5. Let Ω ⊂ R N be an open and bounded convex set. There exists a dimensional constant β N such that we have

N N -1 β N e N -1 ≤ lim q→∞ q µ N,q (Ω) ≤ N N -1 α N e N -1
.

For β N we have the estimate α N 2 1/(N -1) ≤ β N ≤ α N .

Proof. To prove the upper bound, it is sufficient to multiply (6.7) by q and then use that lim q→∞ q λ N,q (B) = N N -1

α N e N -1 , which follows from 6 [17, Lemma 2.2]. To prove the lower bound, we can adapt the proof of [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF]Lemma 2.1]. First of all, we recall that in [START_REF] Cianchi | Moser-Trudinger inequalities without boundary conditions and isoperimetric problems[END_REF] it is shown that sup α N 2 1/(N -1) , since t = u Ω is always an admissible competitor. For every q ≥ N , let u q ∈ W 1,N (Ω) be a function achieving µ N,q (Ω), normalized by

Ω |∇u q | N dx = 1, q ≥ N.
We also set t q to the the minimizer of t → Ω exp α N |u q -t| N ′ dx, then we have min t∈R Ω |u q -t| q dx ≤ Ω |u q -t q | q dx = α

-q N ′ N Ω α N |u q -t q | N ′ q N ′ dx ≤ Γ q N ′ + 1 Ω exp α N |u q -t q | N ′ dx ≤ Γ q N ′ + 1 M N (Ω), which in turn implies 1 Γ q N ′ + 1 1 M N (Ω) ≤ 1 min t∈R Ω |u q -t| q dx = Ω |∇u q | N dx q N min t∈R Ω |u q -t| q dx , that is q   1 Γ q N ′ + 1 1 M N (Ω)   N q
≤ q µ N,q (Ω). By using Stirling formula, we can conclude. 6 The result in [START_REF] Ren | On a two-dimensional elliptic problem with large exponent in nonlinearity[END_REF] is for N = 2, but the very same argument can be easily adapted for a geneal N ≥ 2.

For completeness, we give the following technical result which shows that the maximization problem defining M N (Ω) is unchanged if we replace W 1,N (Ω) by any dense subset. Observe that we have Then there exists t ∈ R such that t n converges (up to a subsequence) to t. By Fatou Lemma we then get lim inf

M N (Ω) ≥ Ω exp β N |v n -t n | N ′ ≥ |Ω| + β N Ω |v n -t n | N ′ dx ≥ |Ω| + β N 2 N ′ -1 |Ω| |t n | N ′ -β N Ω |v n | N ′ dx,
n→∞ Ω exp β N |v n -t n | N ′ dx ≥ Ω exp β N |u -t| N ′ dx ≥ Ω exp β N |u -t u | N ′ dx ≥ M N (Ω) -ε,
thanks to the minimality of t u . Since the sequence {v n } n∈N is admissible for the problem defining M ′ N (Ω), we thus get M ′ N (Ω) ≥ M N -ε. which in turn gives the desired result, thanks to the arbitrariness of ε > 0.
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  which implies that the sequence of real numbers {t n } n∈N is bounded, sincelim n→∞ Ω |v n | N ′ dx = Ω |u| N ′ dx < +∞.

  and bounded convex set.Proof. By Theorem 3.1 we already know that this supremum is finite. Let us call N c this supremum and take a maximizing sequence of admissible sets {Ω} k∈N ⊂ R N , of course we

	can suppose that
	(4.11)
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