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Abstract

Today, more and more bicycle sharing systems (BSS) are being in-
troduced in big cities. These transportation systems generate sizable
transportation data, the mining of which can reveal the underlying ur-
ban phenomena linked to city dynamics. This paper presents a statistical
model to automatically analyze the trips data of a bike sharing system.
The proposed solution partitions (i.e. cluster) the stations according to
their usage profiles. To do so, count series describing the stations’ usage
through departure/arrival counts per hour throughout the day are built
and analyzed. The model for processing these count series is based on
Poisson mixtures and introduces a station scaling factor which handles the
differences between the stations’ global usage. Differences between week-
day and weekend usage are also taken into account. This model identifies
the latent factors which shape the geography of trips and the results may
thus offer insights into the relationships between station neighborhood
type (its amenities, its demographics, etc.) and the generated mobility
patterns. In other words, the proposed method brings to light the dif-
ferent functions in different areas which induce specific patterns in BSS
data. These potentials are demonstrated through an in-depth analysis of
the results obtained on the Paris Vélib’ large-scale bike sharing system.

1 Introduction

With a growing population and more and more people living in cities, as well as
the increase in nuisance factors such as pollution, noise, congestion, and green-
house gas emissions, the development of new sustainable mobility strategies in
urban areas has become a necessity. Public authorities need to deploy urban
mobility policies in order to organize passenger mobility differently and thus
lessen the negative impact of mobility demands. One possible approach is the
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promotion of soft modes of transport such as walking and cycling, which are eco-
nomical, healthy, less pollutant and more equitable Pucher and Buehler [2008],
Büttner et al. [2011], Dill [2009].

The implementation of Bike Sharing Systems (BSSs) is one of the urban
mobility measures proposed in many cities all over the world as an additional
means of sustainable intermodal transport. Over the last few years, different
BSSs have been implemented in European cities, the main motivation being
to provide users with free or rental bicycles especially suited for short-distance
trips in urban areas, thus reducing traffic congestion, air pollution and noise. In
Europe BSSs are most popular in southern European countries, where a cycling
tradition does not exist. Thanks to their unquestionable success De Maio [2009],
Büttner et al. [2011], more and more cities want to provide this mode of mobility
in order to show that they are sustainable and modern. In France, since the
implementation of the first BSS in Lyon in 2005 (it is called Vélo’v), BSSs
have been launched in twenty French cities, including Paris, one of the most
large-scale BSSs implemented in France (it is called Vélib’).

The key to its success is having good knowledge of BSS usage and per-
formance. This knowledge can then be transferred to other cities wishing to
introduce BSSs. Several studies Froehlich et al. [2009], Borgnat et al. [2011],
Vogel and Mattfeld [2011], Lathia et al. [2012] have shown the usefulness of
analyzing the data collected by BSSs operators and city authorities. A sta-
tistical analysis of such data helps in the development of new and innovative
approaches for a better understanding of both urban mobility and BSS use and
performance. The design of BSSs, the adjustment of pricing policies, the im-
provement of service level of the system (redistribution of bikes over stations)
can all benefit from this kind of analysis Dell’Olio et al. [2011], Lin and Yang
[2011], APUR [2006], which also helps sociologists and planners to understand
user mobility patterns within the cities.

However, the amount of data collected on such systems is often very large. It
is therefore difficult to acquire knowledge using it without the help of automatic
algorithms which extract mobility patterns and give a synthetic view of the
information. This paper presents one such automatic algorithm based on a
new statistical model which will automatically cluster BSS stations according
to their usage profile. The analysis will help us to understand the BSS station’s
attractiveness, with respect to city geography and demographics, by identifying
different functions in different areas, which give rise to specific usage patterns
in BSS data. The model proposed here therefore shares some of the objectives
highlighted in Yuan et al. [2012], i.e., finding functional areas in a city through
the mining of mobility data (taxi journeys in this application). However, the
specific nature of the transport mode analyzed here (which is mainly used for
short distance trips) requires the development of a particular model more fitted
to these data. The clustering of the BSS stations is closely related to the city’s
activities (transportation, leisure, employment) and can be helpful for a variety
of applications, including urban planning and the choice of business location,
as mentioned by the previous authors. In addition, the analysis of the results
provided by the model provides insights into the relations between the kind of
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neighborhood of the stations (the type of amenities it offers, its demographics,
etc.) and their associated usage profiles. Crossing the results of the model
with sociological and economic data is carried out to this end, and shows the
close links between these two aspects and the use of a bike sharing transport
scheme, which may be useful for bike redistribution planning and for designing
new BSSs.

This paper presents a dedicated model based upon count series clustering
which has been developed in order to highlight mobility patterns in the BSS
usage data. The model, which uses trips data to describe station usage, is
a generative mixture model; an EM algorithm is derived to learn the model
parameters and to perform the station clustering. The formalization of the
model is general enough to take into account specific hypotheses related to
the BSS case study. The proposed approach is validated through extensive
investigations carried out on data collected on the Paris large-scale BSS (Vélib’).

This paper is organized as follows, Section 2 presents a survey of related
work in the relevant literature. Section 3 introduces the proposed statistical
model based upon count series clustering. The Vélib’ example is detailed in
Section 4, the results are given and discussed in Section 5, followed by a general
discussion and conclusion in Section 6.

2 Related work

Mobility patterns are traditionally analyzed using human and social science
methodologies. The data used for these studies are collected either from sens-
ing devices or through observational mechanisms, e.g. surveys. However, the
emergence of information and communication technologies, as well as the ad-
vent of new observation and tracking capabilities, has boosted the availability
of sizable mobility datasets. Indeed, most people carry passive urban mobile
sensors including mobile phones, GPSs, etc., and leave digital traces through
ticketing data of public transportation systems. All these datasets can be used
to recover mobility footprints and the development of such new sensors therefore
greatly benefits urban mobility studies. This leads to the emergence of a new
field of research, namely urban computing. The type of dataset used and the
applicative objectives addressed by this research are many and various: human
mobility can be captured through GPS trajectories of vehicles or pedestrians
Wangsheng et al. [2012], cell phone usage Ratti et al. [2006], as well as data
related to bicycle sharing systems as is the case here. Such digital traces can
then be used to extract mobility patterns as in Calabrese et al. [2013] and Yuan
et al. [2012], to estimate traffic information Hofleitner et al. [2012] or to detect
traffic problems Yuan et al. [2010]. Another example of such new usage of these
data is the work of Zheng et al. [2011] where GPS trajectories of taxicabs have
been used to detect flawed urban planning in a city. Finally, the aim of such
research may also be to design new smart services, as in the work of Ma et al.
[2013] who proposed a large-scale taxi ridesharing service, for example. In this
instance, real-time requests sent by taxi users are taken into account in order
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to generate ridesharing schedules that reduce the total travel distance signifi-
cantly. More generally, the availability of these new data sources underlines the
importance of the development of novel approaches based upon engineering and
computer sciences. Tools for processing mobility data are needed for a better
understanding of mobility patterns of travelers and goods, as well as of the use
and performance of transportation systems.

For the specific case of BSSs, several requirements have motivated ear-
lier studies from the urban computing field: improvement of existing systems,
growth of knowledge on urban mobility and, more generally, developing the BSSs
of tomorrow. The design of new BSSs can benefit from the experience gathered
on existing systems, the analysis of which can help us to better understand their
usage. The long-term goal is to be able, before and after BSS implementation,
to optimize station planning in terms of urban planning, mobility needs and the
redistribution capacities of the system.

One of the main issues raised by users in recent surveys is the availability
of bikes: users find themselves with empty stations when renting or borrowing
bikes, and full stations when returning them. Redistribution of bikes is indeed
necessary in most BSSs to compensate for the uneven demand of users by relo-
cating the bikes among the stations, thus ensuring a good quality of service of
the system. This is generally performed by redistribution trucks driving around
the city which move bikes between stations. Several studies address the issues
related to the optimization of bike redistribution policies, including Benchimol
et al. [2011], Chemla et al. [2011], Nair et al. [2012].

Other work from computer science or signal processing domains has involved
the study of existing BSSs. These approaches vary according to the kind of
data they use and the goal they set out to reach. The collected data on exist-
ing systems might correspond to station occupancy statistics, such as station
occupancy over the day or over several time frames, but trips data could also
be available i.e. for each trip made using the system, in which case the de-
parture station and starting time, and the arrival station and stopping time are
recorded. This last form of dataset is interesting since it provides information on
the users’ starting place and destination and therefore enables the construction
of OD matrices indexed by time.

Using these types of datasets two main topics have been investigated by
researchers, namely clustering and prediction. Whereas the aim of clustering
is to identify mobility patterns in BSS usage by partitioning the stations into
different clusters having a similar usage, prediction focuses on developing models
able to predict the occupancy of the stations or more globally the state of the
network over time.

The prediction problem has been studied by Froehlich et al. [2009], Borgnat
et al. [2009], Kaltenbrunner et al. [2010], Michau et al. [2011] and Vogel et al.
[2011]. In the first study, the problem of forecasting near-term station usage is
addressed using Bayesian Networks, the performance of which is analyzed with
respect to factors such as time of day and station activity. The same problem
is addressed in Kaltenbrunner et al. [2010], Vogel et al. [2011] using a time
series analysis. Borgnat et al. [2009] predicts the global rental volume using
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the cyclostationarity of the temporal series while Michau et al. [2011], using a
parsimonious statistical regression model, seeks to relate social, demographic
and economic data of the various neighborhoods of the city with the actual
number of trips made from and to the different parts of the city.

In almost all of the clustering studies carried out until now, the bicycle
sharing stations are grouped according to their usage profiles, thus highlighting
the relationships between time of day, location and usage. Depending on how
the station usage is described and the clustering technique they use, different
approaches have been proposed. The first attempt in this line of work is due
to Froehlich et al. [2008], who analyzed a dataset from the Barcelona Bicing
system by means of clustering techniques. The data correspond to station occu-
pancy statistics in the form of free slots, available bikes over several time frames
and other station activity statistics derived from station occupancy raw data
collected every 5 minutes. The clustering is then performed using a Gaussian
Mixture model estimated by an EM algorithm. In Froehlich et al. [2009] two
clusterings are compared, both being performed by hierarchical aggregation.
The first one uses activity statistics derived from the evolution of station oc-
cupancy while the second uses directly the number of available bicycles along
the day. Other studies like Lathia et al. [2012] use similar clustering techniques
and data to study the effect of changing the user-access policy in the London
Barclays cycle hire scheme. The authors investigate how the change affected
the system usage throughout the city via both spatial and temporal analysis of
station occupancy data. As in Froehlich et al. [2009], each station is described
by a time series vector which corresponds to the normalized available bicycle
value of the station along the day. Each element of the feature vector is there-
fore equal to the number of available bicycles divided by the station size (the
95th percentile of the sums of free slots and available bikes). These time series
are then smoothed using a moving average and clustered using a hierarchical
agglomerative algorithm [Duda et al., 2001, see p. 552], with a cosine distance.

Other approaches closer to the one proposed here use trips data to build sta-
tion usage profiles and perform the clustering on this basis. One such example
is the recent study of Borgnat et al. [2013], who uses different graphs to describe
the similarity of usage profiles (in terms of arrivals/departures count correla-
tions) between pairs of stations for weekdays and weekends. The resulting four
graphs (departures weekdays, arrivals weekdays, departures weekends, arrivals
weekends) are then thresholded and summed together to provide a single graph
that gives the global similarity in terms of usage between the stations. This
final graph is then analyzed using a community detection algorithm, based on
modularity optimization [see Newman, 2006, for details on modularity cluster-
ing], which provides clusters of stations with similar usage profiles. Another
piece of research that uses the same type of data was proposed by Vogel and
Mattfeld [2011], Vogel et al. [2011]; it aims to identify station clusters in order
to better understand temporal and spatial causes of imbalances between BSS
stations. The proposed methodology, based on the Geographical Business In-
telligence process, was successfully applied to data collected from Vienna’s BSS
(Citybike Wien). It used feature vectors to describe the stations that come from
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normalizing arrival and departure counts per hour, and also handled weekdays
and weekends separately. Classical clustering algorithms, namely, K-means,
Gaussian mixture model estimated through the EM algorithm and sequential
Information-Bottleneck (sIB), were then compared.

Lastly, Borgnat et al. [2011, 2013] considers other approaches that do not
partition stations with respect to their usage profiles but with respect to the way
they exchange bikes. This dynamic complex network view of the problem uses
graph clustering algorithms to identify communities of stations that exchange
bikes in a preferential way. Using several temporal aggregation schemes enable
the investigation of the dynamics of the system in particular contexts. Another
line of work is also investigated in Borgnat et al. [2011], where clustering tools
are used to partition the flows between stations which exhibit similar usage
profiles and not the stations themselves.

In this paper we investigate the analysis of BSS systems through the clus-
tering of their stations with respect to their usage data. Before detailing the
proposed model and the estimation procedure, we position our work with re-
spect to the related work presented above and describe the counts statistics used
by the model to achieve the clustering.

3 Count series clustering

The approach undertaken here follows the line of research initiated by Froehlich
et al. [2008] and pursued in Vogel et al. [2011], Borgnat et al. [2013], Lathia
et al. [2012], but with a new tool tailored to fit the specificity of the data. As in
the previous studies related to BSS station clustering, the method investigated
here aims to identify groups of stations with similar usage profiles, but it differs
from these studies on a number of points. First, it differs from the work of
Froehlich et al. [2008] and Lathia et al. [2012] since it does not use the station
occupancy data but arrivals/departures count time series derived from trips data
to describe the stations. This description of the stations is significantly more
detailed than station occupancy statistics. In particular, it is able to differentiate
between situations when a lot of bikes come to and leave from a station and
the cases where there is no activity at the station, whereas the descriptions
built from station occupancy data cannot account for such a difference. The
proposed model can also deal with the differences in behavior observed during
weekdays and at weekends. As noted by several authors Borgnat et al. [2013],
Vogel et al. [2011], there are great differences between the two and this must
be taken into account when performing the clustering. These differences are
handled directly by the model proposed in this paper whereas it was handled
through data preprocessing and feature construction in the two previous studies.
Furthermore, the station usage count for each available day will be processed
by the model and not a summary over a long period which may be affected
by seasonal or meteorological factors. Lastly, the proposed model can handle
the specific nature of the observations, i.e. that they are counts and therefore
belong to N, whereas previous solutions do not use this particularity.
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To achieve these goals, we propose a generative mixture model and derive
the associated EM algorithm to estimate the parameters of the model and the
clustering. This work adopts, therefore, the model-based clustering framework
Mclachlan and Peel [2000], Fraley and Raftery [2002], with specific hypotheses
related to the phenomena under analysis as discussed in the following para-
graphs. We begin with a more formal description of the count time series con-
struction, and then introduce the notations used in the rest of the paper.

3.1 Trips data and count time series

The target dataset of the proposed method corresponds to classical trips data
recorded on BSS systems. It contains the following information for each trip:
station of departure, time of departure, station of arrival, time of arrival and
possibly a type of user subscription (day/year). This last piece of information
is not used in the proposed model since its nature may depend on the BSS
implementation and is therefore not generic enough. These raw data can be
used to derive the following counts statistics to describe station usage:

• Xout
sdh: departure count for station s ∈ {1, . . . , S} during day d ∈ {1, . . . , D}

and at hour h ∈ {1, . . . , 24};

• X in
sdh: arrival count for station s ∈ {1, . . . , S} during day d ∈ {1, . . . , D}

and at hour h ∈ {1, . . . , 24}.

The aggregation at 1 hour was used to produce the counts since it gives a good
trade-off between resolution of details and fluctuations Borgnat et al. [2011].
These two time series of counts are then concatenated in a vectorXsd describing
the arrival and departure activity of station s during day d:

Xsd = (X in
sd1, . . . , X

in
sd24, X

out
sd1 , . . . , X

out
sd24). (1)

These activity vectors can then be arranged in a tensor (or three-way array)
of size N ×D × T , with N the number of stations, D the number of available
days in the dataset and T the length of the description vector, here 48 since
non-overlapping windows of one hour are used to compute the arrivals and
departures counts.

3.2 Poisson mixture model

Since the observed data are counts, we propose to use Poisson mixtures to build
the generative model. Poisson mixtures have already been used successfully in
several applicative domains, and can take different forms depending on specific
assumptions Rau et al. [2011], Thomas [2010], Karlis and Meligkosidou [2003],
Govaert and Nadif [2010]. As in this earlier work we will consider that condition-
ally on the clusters the observed variables are drawn from Poisson distributions,
but we will adapt the model to our needs by making further hypotheses on
the model parametrization. The generative model which we propose uses two
additional sets of variables. The first is a classic one corresponding to indicator
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variables (denoted by Zs) encoding the cluster membership of the stations and
taking their values in Z =

{

{0, 1}K :
∑

k Zsk = 1
}

, with K the number of sta-
tion clusters; these variables are not observed and must be obtained. The vari-
ables in the second set denoted by Wd are also indicator variables, but they are
attached to the days and encode the differences between weekdays and weekends
(which present very different usage profiles). These variables take their value
in W =

{

{0, 1}2 :
∑

l Wdl = 1
}

and we consider that they are observed. Using
these two sets of variables the following generative model is then assumed for
the observed data:

Zs ∼ M(1, π)

Xsd1 ⊥⊥ . . . ⊥⊥ XsdT | {Zsk = 1,Wdl = 1}

Xsdt|{Zsk = 1,Wdl = 1} ∼ P(αsλklt),

with P(λ) the Poisson distribution of parameter λ and M(1, π) the multinomial
distribution of parameter π. This generative model assumes therefore that,
knowing the cluster of the station and the cluster of the day, the departure
and arrival counts of each hour are independent, and that they follow a Poisson
distribution of parameter αsλklt. The parameter αs is a scaling factor specific
to station s and will capture the global activity of the station. The parameters
λklt describe the temporal variations of departures/arrivals and are specific to
each station cluster and day type (weekday/weekend). For the parameters to be
identifiable we must have constraints on the λ. The following constraints will
ensure that the model is identifiable up to the permutation undetermination
which is unavoidable in all mixture models:

s.t.
∑

l,t

Dlλklt = DT, ∀k ∈ {1, . . . ,K}, (2)

with Dl =
∑

d Wdl the number of days in day cluster l. The conditional inde-
pendence assumption relates this model to the naive Bayes model, and can be
criticized; it is nonetheless a good first approximation. The Poisson hypothesis
is natural for count data and furthermore it enables the introduction of the
station scaling factor αs Rau et al. [2011], Govaert and Nadif [2010]. These
scaling factors are necessary to produce useful results since stations may share
a common usage profile but differ strongly in terms of departure/arrival volume.
Using these assumptions the conditional density of an activity vector xsd can
be derived as:

f(xsd|{Zsk = 1,Wdl = 1}) =
∏

t,l

p(xsdt;αsλklt)
Wdl

=
∏

t,l

(

(αsλklt)
xsdt

xsdt!
exp−αsλklt

)Wdl

,

with p(., λ) the density of a Poisson distribution of mean λ. Parameter esti-
mation and station clustering with such a model is performed in the classical
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maximum likelihood framework. The log-likelihood must therefore be derived.
It is given by:

L(Θ;X|W) =
S
∑

s=1

log





K
∑

k=1

πk

∏

d,t,l

p(Xsdt;αsλklt)
Wdl



 (3)

The maximization of this quantity can be achieved by an EM-type algorithm
described in the next section.

3.3 EM Algorithm

The EM algorithm Dempster et al. [1977], Mclachlan and Krishnan [1996] is
a popular algorithm for maximum likelihood estimation in statistics when the
problem involves missing values or latent variables. It is an iterative algorithm

ALGORITHM 1: EM algorithm to estimate the model’s parameters and clustering

Input: Data X: tensor of size (N ×D × T ), W indicators of day clusters: matrix of
size (D × 2), desired number of cluster K

Output: Estimated parameters Θ = (α, λ, π), posterior probabilities tsk
Initialization;
for each station s in {1, . . . , N} do

compute the station’s scaling factor;
αs = 1

DT

∑
d,t

Xsdt;

end

for each cluster k ∈ {1, . . . ,K} do

initialize π̂
(0)
k ;

end

for each station s ∈ {1, . . . , N}, cluster k ∈ {1, . . . ,K} and day cluster l ∈ {1, 2} do

initialize λ̂
(q)
klt;

end

repeat

E step: compute the a posteriori probabilities;
for each station s ∈ {1, . . . , N} and cluster k ∈ {1, . . . ,K} do

tsk =
π
(q)
k

∏
d,t,l p(Xsdt;αsλ

(q)
klt

)Wdl

∑
k π

(q)
k

∏
d,t,l p(Xsdt;αsλ

(q)
klt

)Wdl
;

end

M step: update the parameters;
for each cluster k ∈ {1, . . . , K} do

π̂
(q)
k = 1

N

∑
s
tsk;

end

for each station s ∈ {1, . . . , N}, cluster k ∈ {1, . . . ,K} and day cluster l ∈ {1, 2}
do

λ̂
(q)
klt =

1∑
s tskαs

∑
d Wdl

∑
s,d

tskWdlXsdt;

end

until convergence;
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which alternates between maximizing a lower bound of the log-likelihood and
updating the bound. This bound is classically obtained from the completed
likelihood which introduces the latent variable Z:

Lc(Θ;X,Z) =
∑

s,k

Zsk log



πk

∏

d,t,l

p(Xsdt;αsλklt)
Wdl



 (4)

During the E step of the algorithm the conditional expectation of this function
over Z with respect to the current parameter values is computed. This expecta-
tion will provide the lower bound of the log-likelihood which will be maximized
during the M step. This expectation is given by:

E[Lc(Θ;X,Z)|X,Θ(q)] =
∑

s,k

tsk log



πk

∏

d,t,l

p(Xsdt;αsλklt)
Wdl



 , (5)

where the tsk are the a posteriori probabilities (given the current parameters

estimate Θ
(q)) of each cluster given by:

tsk =
π
(q)
k

∏

d,t,l p(Xsdt;α
(q)
s λ

(q)
klt)

Wdl

∑

k π
(q)
k

∏

d,t,l p(Xsdt;α
(q)
s λ

(q)
klt)

Wdl

. (6)

These quantities are computed during the E step of the algorithm. During the
M step, this expectation is maximized with respect to the parameters in order
to increase the likelihood. This maximization, detailed in Appendixes A and B,
leads to the following update rules:

α̂s =
1

DT

∑

d,t

Xsdt , π̂k =
1

N

S
∑

s=1

tsk (7)

λ̂klt =
1

∑

s tskαs

∑

d Wdl

∑

s,d

tskWdlXsdt (8)

The update formulas have natural interpretations, the scale factor of station s,
αs is simply given by the average of its activity vectors along all the time frames
and days. Since they do not depend on the tsk, they can be computed only once.
The proportions πk are classically updated using the a posteriori probabilities of
each cluster. The λklt are given by a weighted mean of the activity of cluster k
stations in day cluster l and time frame t. Lastly the E and M steps are iterated
to build an EM algorithm (see Algorithm 1) which will converge towards a
local maxmimum of the log-likelihood. This algorithm was implemented in R R
Core Team [2012] and the source code of this implementation is available upon
request to the author.

Before exploring the results obtained with this model on a one-month trips
dataset recorded in April 2011 on the Vélib’ BSS, a general view of this system
and some historical background are provided in the next section.
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4 The Vélib’ case

4.1 History

Since 2001, the city of Paris has deployed urban policies aiming to favor pub-
lic transportation and soft modes of transport such as bicycles, walking, etc.
Within this context, the Vélib’ bike sharing system was launched in July 2007.
Vélib’ is operated as a concession by Cyclocity, a subsidiary company of the
French advertising corporation JCDecaux. 7,000 bikes were initially distributed
on 750 fixed stations. Five years ago, the Vélib’ system was extended to 20,000
bikes spread out over 1,208 fixed stations, with 224,000 annual subscribers mak-
ing on average 110,000 trips each day. Vélib’ is a large-scale scheme, the second
largest BSS in the world after a BSS launched in China. Vélib’ is available
mainly in Paris intramuros, some stations being located in the suburbs.

Vélib’ offers a non stop service (24/7). Each Vélib’ station is equipped
with an automatic rental terminal. The whole network includes 40,000 docking
points (between 8 and 70 per station). The bikes are locked to the electronically
controlled docking points. Users can purchase a short-term daily or weekly
subscription, or a long-term annual subscription. The subscription allows an
unlimited number of rentals, the first half hour (or the first 45 minutes for a
long-term subscription) of every individual trip being free. Registration of users
is required. The bicycles can be hired at any of the stations and at any time
and returned back at any other station and at any time.

Despite the boost in bike use in Paris which followed the introduction of the
BSS, the cycling modal share is still very low compared to other cities in Europe.
Analyzing modal splits Büttner et al. [2011] in Paris can give hints about the
local cycling culture. Cycling share is still very low in Paris (3%) but has been on
the increase in the last few years. The modal share of BSS is about 2%. Public
transport has an estimated modal share of 40% while car share is estimated at
21% APUR [2006]. Even if France does not have a strong cycling culture (the
primary purpose of cycling is leisure), people seem to be very enthusiastic about
public bike plans. Bikes are considered to be environmentally friendly by 62%
of people in France APUR [2006].

4.2 General view of the system

The aim here is to obtain some general statistics to highlight global trends in
Vélib’ usage. The dataset used to estimate these global statistics and analyze
the results of the proposed methodology corresponds to one month of trips
data recorded in April 2011. This corresponds to roughly 2,500,000 trips after
data cleansing. The data were cleansed by just removing trips with a duration
of less than one minute and with the same station as point of departure and
destination. These trips correspond to user misoperation and not to real trips.

Figure 1 shows the whole number of recorded Vélib’ trips per hour and day
of the week during a month, with respect to the type of subscription (day or
year). It shows that Vélib’ usage is closely linked not only to the hour and
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Figure 1: Number of recorded trips per hour and day of the week during April
2011 with respect to the type of subscription (long: one year, short: one day).

the day but also to the kind of day (weekday or weekend) and to the type of
subscription.

A first significant difference in Vélib’ usage between short-term and long-
term subscribers can be seen. This difference is reflected in terms of the usage
volume: most of the Vélib’ trips are generated by long-term subscribers, even if
the difference between the two subscriptions is smaller during the weekend. This
can be linked to the fact that short-term subscriptions are mainly associated
with leisure, while long-term subscriptions tend to cover the users’ daily mobility
routines.

Figure 2: Average number of trips per hour during weekdays (continuous blue
line) and at the weekend (dashed red line).

This figure also shows a difference in Vélib’ usage during weekdays and at
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the weekend. A cyclostationarity pattern can be seen in Vélib’ usage during
weekdays. Three peaks of weekday usage can be observed in Figure 2: the
two most significant correspond to the commutes (8am and 6pm) while the
third one at 12 noon corresponds to the lunch break. As can be expected,
the morning peak usage disappears during the weekend, where Vélib’ usage
gradually increases to reach a maximum in the afternoon. It should be noted
that Friday is the peak usage for weekdays. These temporal trends of BSS

Figure 3: Average activity of stations (number of actions: departure or arrival)
per hour with respect to the distance of the stations from the center of Paris
(“Les Halles”).

usage can provide information on the sociological characteristics of the city.
Considering the study carried out by Froehlich et al. [2009] on the Barcelona
Bicing system, some sociological differences between the two cities can indeed be
highlighted. The lunch peak occurring at 2pm in Barcelona Bicing data occurs
at 12 noon in Vélib’ data, reflecting thus the late lunch culture of Spain (resp.
the earlier lunch culture of France). Secondly, Friday is the least active day in
Barcelona Bicing usage (resp. the most active one in Vélib usage).

In addition to these temporal trends in the use of Vélib bicycles, spatial
trends closely linked to geographical aspects of the city can also be identified.
Figure 3 shows the average number of observed departures and arrivals per hour
with respect to the distance from the station to the center of Paris. It is clear
that the closer the station to the center of Paris, the greater this mean activity.
Furthermore, the duration and distance of trips can also be used as indicators of
Vélib’ usage. As shown in Figure 4, half of the Vélib’ trips last twelve minutes.
This can be linked to the Vélib’ pricing policy (free for half an hour). It should
be noted that the trips recorded with null distances correspond to round trips,
i.e. users rent bikes from and return them to the same station.

These first statistics show the global dynamic of the Vélib’ system. Let us
now examine the clustering results obtained using the proposed statistical model
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Figure 4: Histogram of trip length in kilometers (left) and of trip duration in
minutes (right).

to automatically extract finer details from BSS data.

5 Clustering results and discussion

Count series for each station were derived from the cleansed raw trips data as
described in section 3.1 and used for the algorithm. The final formated data
correspond in the Vélib’ case to a tensor of size 1185 (the number of stations)
times 30 (the number of available days) times 48 (the number of counts in
the station profiles). Before discussing in detail the results obtained with a
particular number of clusters, it is necessary to look at the methodology and
the results that we used to select this value.

5.1 Selection of the number of clusters

The proposed algorithm was tested on these data with a varying number of
clusters from 1 to 25. To pick an appropriate value for the number of clusters
the evolution of the model log-likelihood with respect to the number of clusters
was analyzed. This curve is depicted in Figure 5 and presents an elbow around
eight clusters; above this value the gain in log-likelihood is linear with respect
to K. According to the elbow heuristic a value of eight seems therefore to be
a good candidate for the number of clusters. We therefore choose to analyze in
more detail the clustering found for K = 8 in this section.

5.2 Results

A first way to investigate the nature of the different clusters found is to look at
their temporal profiles given by the parameters λ of the model. In order to give

14



Figure 5: Evolution of the model’s log-likelihood with respect to the number of
clusters K.

a clear overview of these profiles we organize them according to the nature of
the count (departures/arrivals), in rows, and to the day type (week/weekend),
in columns.

The results for two specific clusters are presented in Figure 6. We name
the first cluster “Railway stations” and the second “Parks”, because these two
clusters correspond to stations close to these two kinds of amenities. This can
easily be seen from the corresponding maps also presented in Figure 6, which
show the cluster station positions above a map background which presents the
metro and railway lines, the parks and the Seine. The relationship between these
two clusters and their corresponding amenity is clearly shown. The temporal
profiles of these two clusters also present interesting points: the profile of the
“Railway stations” cluster shows much activity around peak hours for both
departures and arrivals, the other time frame being the average of the total
station population. The “Parks” profiles give a totally different picture, with
a rush of activity during the weekend afternoons and a low activity during the
weekday peak hours. The maps (see Figure 6) which depict the positions of the
cluster stations confirm the interpretation of these two usage clusters. All the
railways stations of Paris are clearly visible on the first map, along with several
important metro stations like Nation, Denfert-Rochereau, Porte d’Orléans and
Vincennes. The map of the stations which belong to the “Parks” cluster also
gives a clear view of the nature of this cluster: all the stations are close to parks
like Vincennes, Buttes-Chaumont, Montsouris, La Villette, etc.

The remaining clusters shown in Figures 9 and 10 can also be explained
in terms of geography and demographics. The “Spare-time (1)” and “Spare-
time (2)” clusters present high activity values during the night. The difference
between these two sets of stations appears during the weekend, when the “Spare-
time (2)” cluster has a higher activity. From a geographical point of view these
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Cluster “Railway stations”

Cluster “Parks”

Figure 6: Maps of station positions for “Railway stations” and “Parks” clusters.
The map background presents the metro and railway lines, the parks and the
Seine. The areas of the dots representing the stations are proportional to the
station scaling factor αs. Each cluster map is completed with the temporal
profile of the cluster; to this end the parameters λklt are arranged according
to departure/arrival and weekday/weekend. The quantiles 0.25 and 0.75 of the
total population of station activity (scaled by their average activity) are also
shown in order to highlight the temporal specificities of each cluster.

stations also correspond to specific parts of the city that are close to impor-
tant tourist places like the Eiffel Tower, the Cité des sciences et de l’industrie
(science museum complex), the old historical center of Paris, etc. whereas the
stations from the “Spare-time (1)” cluster are in neighborhoods with known
night activities like Pigalle, Mouffetard, etc.
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Figure 7: Map of station positions for the “ Housing” cluster. The map back-
ground presents the density of inhabitants per hectare. The areas of the dots rep-
resenting the stations are proportional to the station scaling factor αs (Sources
”Recensement 2008” (2008 Census), ”Base permanente des équipements”, Fa-
cilities Database) Insee).

The “Housing” cluster has an asymmetrical profile, with a lot of departures
during the morning rush but few arrivals, and the reverse during the end of
the work peak. These stations belong to a belt surrounding the center of Paris
which presents the high population density visible in Figure 7.

The next two clusters, “Employment (1)” and “Employment (2)”, present a
reverse asymmetry to that of the “Housing” clusters: a lot of arrivals during the
morning rush but few departures, and the reverse during the end of work peak.
These two clusters are correlated to the employment density as shown in Figure
8. During the weekend the two clusters present differences, with more activity
in stations from “Employment (2)”. Finally, the last “Mixed” cluster appears
to be the stations having a mixed usage with an average temporal profile and
no specific features.

5.3 Relations between clusters and additional socio-economic

variables

The above observations concerning the relationships between the clusters and
the nature of the neighborhoods of the stations that belong to them made
through the analysis of the maps presented in Figure 7 and 8 can be quan-
titatively investigated. To this end the per cluster average of additional socio-
economic variables (population density, employment density, services (restau-
rants, hairdressers, etc.) and shops density) have been computed (see Table
1). An analysis of variance confirms that the station clusters derived from BSS
usage data are significantly different with respect to these four variables. As
expected, the local density of inhabitants is particularly high for the “Housing”
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Figure 8: Map of station positions for the “Employment (1)” cluster, with light
green dots, and the “Employment (2)” cluster, with light blue dots. The map
background presents the density of jobs per hectare. The areas of the dots rep-
resenting the stations are proportional to the station scaling factor αs (Sources
”Recensement 2008” (2008 Census), ”Base permanente des équipements”, Fa-
cilities Database) Insee).

cluster, the density of employment being, at the opposite end, high for the “Em-
ployment (1)” and ”Employment (2)” clusters. Finally, the shops and services
densities are high for the “Spare-time” clusters.

Table 1: Mean of each cluster with respect to population density (number of
inhabitants per hectare), employment density (number of jobs per hectare),
services density (number of personal services such as restaurants, hairdressers,
etc. per hectare) and shops density (number of shops per hectare). Sources ”Re-
censement 2008” (2008 Census), ”Base permanente des équipements” (Facilities
Database), Insee.
Cluster name inhabitants/ha jobs/ha services/ha shops/ha

All 162 237 4.2 3.7
“Spare-time (1)” 367 189 6.3 4.4

“Spare-time (2)” 261 322 7.7 6.9

“Parks” 172 90 2 1.7
“Railway stations” 209 206 2.4 1.8
“Housing” 375 108 3.8 2.7
“Employment (1)” 138 409 4.5 2.8
“Employment (2)” 157 456 5.7 5.6
“Mixed” 301 163 3.8 2.8
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Cluster “Spare Time (1)”

Cluster “Spare Time (2)”

Cluster “Housing”

Figure 9: Maps of station positions for “Spare-time (1)”, “Spare-time (2)” and
“ Housing” clusters. The map background presents the metro and railway lines,
the parks and the Seine. The areas of the dots representing the stations are
proportional to the station scaling factor αs. Each cluster map is completed
with the temporal profile of the cluster; to this end the parameters λklt are
arranged according to departure/arrival and weekday/weekend. The quantiles
0.25 and 0.75 of the total population of station activity (scaled by their average
activity) are also shown, in order to highlight the temporal specificities of each
cluster.
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Cluster “Employment (1)”

Cluster “Employment (2)”

Cluster “Mixed”

Figure 10: Maps of stations positions for “Employment (1)”, “Employment (2)”
and “ Mixed” clusters. The map background presents the metro and railway
lines, the parks and the Seine. The areas of the dots representing the stations
are proportional to the station scaling factor αs. Each cluster map is completed
with the temporal profile of the cluster; to this end the parameters λklt are
arranged according to departure/arrival and weekday/weekend. The quantiles
0.25 and 0.75 of the total population of station activity (scaled by their average
activity) are also shown, in order to highlight the temporal specificities of each
cluster.
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6 Conclusion

This paper has presented a new model-based clustering methodology to explore
the usage statistics generated by BSSs. This model introduces a latent variable
to encode station cluster membership, and an observed variable which deals with
the difference in usage between weekdays and weekend. Conditionally on these
variables the observed counts are assumed to be Poissonians and independent.
Their intensities take into account a station scaling factor which handles the
differences between the global station activities. An EM algorithm was then
derived to estimate the parameters of the model. The methodology was tested
to mine one month of usage data from the Paris Vélib’ system. The clustering
found is rich with interpretable clusters which are easily linked to the presence of
certain types of amenities such as parks and railway stations, and to sociological
variables like population, job and service densities.

Such a clustering tool, which is an exploratory technique may serve as a first
step towards the initial applicative objectives: urban planning, firm location
and BSS fleet management. The clustering model results can be particularly
used to calibre simulation tools from the operational-research field with realistic
values to optimize bike redistribution policies and plan new BSS systems (po-
sition, size of the stations, bike fleet size, ...). Furthermore, the crossing of the
clustering results with socio-economical and geographical variables give clues on
the important aspects of the city that explain the demand-variation and may
therefore help to design new predictive demand models used by urban planners
to position and dimension the BSS stations. Eventually, the spatial analysis of
the discovered clusters may be helpful to understand a complex metropolitan
and can benefit from a variety of applications, such as location choosing for a
business, advertisement casting, and social recommendations Yuan et al. [2012].

The proposed methodology is obviously very general and can be applied to
many other problems involving data that could be obtained on urban activity.
Data produced by a self-service vehicle system obviously can be analyzed using
the same methodology. Similarly, data collected by public transportation fare
collection systems if available in the origin-destination form can be analyzed by
the proposed methodology in order to extract mobility patterns.

Concerning the BSS application of the method, interesting open questions
remain. For example, previous studies carried out on BSSs mainly use station
occupancy statistics to describe station usage. It would be interesting to conduct
a comparative study to quantify how the clustering results are affected by the
type of data (occupancy statistics/trips data) we use to obtain the partition.
This will require availability of both types of data collected over the same time
period. Such a dataset will also be helpful to address the problem of demand
estimation. This problem affects all the studies done with usage data since, by
definition, they only contain information on the satisfied part of the demand.
The unsatisfied part of the demand, which corresponds to the users that have
left the system for bike unavailability reasons, do not leave numerical traces in
the system records. Developing tools to handle this issue by trying to estimate
the unsatisfied part of the demand is therefore a challenging and interesting

21



direction for future research.
From a methodological point of view there is also room for possible improve-

ments. Because of the limited data size (one month) used during the experi-
ments, further investigations involving a larger dataset (collected over the year
for example) have to be made in order to take into account the influence of sea-
sons and weather conditions. The proposed mixture model framework is flexible
enough to easily take into account this season variability. Adding an observed
variable linked to weather conditions could be an interesting way to handle this
issue. Also, the naive assumption of conditional independence between the time
frames could perhaps be removed with profit using approaches like Karlis and
Meligkosidou [2003] and Thomas [2010]. The use of Zero inflated Poisson or
Negative Binomial laws to model the observed counts would also deserve to be
tested and compared with the approach proposed here. Lastly, the use of a
mix-membership mixture model like LDA Blei et al. [2003] will be interesting
in order to describe the mixed nature of the city neighborhoods.
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APPENDIX

A Maximization of the lower bound with re-

spect to λklt

The optimization must take into account the constraints
∑

l,t Dlλklt = DT, ∀k ∈
{1, . . . ,K}, with Dl =

∑

d Wdl the number of days belonging to cluster l. The
Lagrangian associated with these K equality constraints is given by:

L(α,λ) =
∑

s,d,t

∑

k,l

tskWdl (Xsdt log(αsλklt)− αsλklt))+
∑

k

γk(DT−
∑

l,t

Dlλklt),

(9)
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with γk the Lagrange multiplier associated with the kth constraints. The partial
derivative of this lower bound with respect to λklt is given by :

∂L(α,λ)

∂λklt

=
∑

s,d

tskWdl

(

Xsdt

λklt

− αs

)

− γkDl (10)

The Lagrange multipliers can be obtained by setting these equations to zeros as
follow:

∂L(α,λ)

∂λklt

=
∑

s,d

tskWdl

(

Xsdt

λklt

− αs

)

− γkDl = 0 (11)

⇒
∑

s,d

tskWdlXsdt −
∑

s

tskαsDlλklt − γkDlλklt = 0

⇒
∑

s,d

tskWdlXsdt −Dlλklt

(

∑

s

tskαs + γk

)

= 0

⇒
∑

l,t





∑

s,d

tskWdlXsdt −Dlλklt

(

∑

s

tskαs + γk

)



 = 0

⇒
∑

s,d,t

tskXsdt −
∑

l,t

Dlλklt

(

∑

s

tskαs + γk

)

= 0

⇒
∑

s,d,t

tskXsdt −DT

(

∑

s

tskαs + γk

)

= 0

⇒ γk =
1

DT

∑

s,d,t

tskXsdt −
∑

s

tskαs. (12)

The update formulas for the λklt are then given by:

⇒
∑

s,d

tskWdlXsdt −Dlλklt

1

DT

∑

s,d,t

tskXsdt = 0

⇒
∑

s,d

tskWdlXsdt −Dlλklt

1

DT

∑

s

tsk
1

DT

∑

d,t

Xsdt = 0

⇒
∑

s,d

tskWdlXsdt −Dlλklt

∑

s

tskα̂s = 0

⇒ λ̂klt =
1

∑

s tskα̂sDl

∑

s,d

tskWdlXsdt (13)
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B Maximization of the lower bound with re-

spect to αs

The partial derivative of the lower bound with respect to αs is given by:

∂L(α,λ)

∂αs

=
∑

d,t

∑

k,l

tskWdl

(

Xsdt

αs

− λklt

)

(14)

The update rules for these parameters are obtained by setting these derivatives
to zero, this leads to:

⇒
∑

d,t

∑

k,l

tskWdl (Xsdt − αsλklt) = 0

⇒
∑

d,t

Xsdt − αs

∑

k

tsk
∑

l,t

∑

d

Wdlλklt = 0

⇒
∑

d,t

Xsdt − αs

∑

k

tsk
∑

l,t

Dl

∑

t

λklt = 0

⇒
∑

d,t

Xsdt − αsDT = 0

⇒ α̂s =
1

DT

∑

d,t

Xsdt (15)
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