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Abstract

A sixth-order finite volume method is proposed to solve the Poisson equation for
two- and three-dimensional geometries involving curved boundaries. A specific poly-
nomial reconstruction is used to provide accurate fluxes for diffusive operators even
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1 Introduction

Very high-order finite volume method (higher than the second-order) for elliptic and parabolic
operators is a recent trend and has received considerable attention during the last decade.
The coupling of the Euler system with a viscous term [1–6] or the shallow-water system with
turbulence [7] are, among others, strong motivations to design efficient and accurate schemes
for elliptic operators in the finite volume context. There exists a large literature on second-
order approximations and convergence analysis [8–15] but few studies have been done for very
high-order [16,17]. In a recent paper [18], a new high-order finite volume method for convection-
diffusion problem has been developed for two-dimensional geometries providing up to sixth-
order approximations. The technique is based on specific polynomial reconstructions to evaluate
the fluxes across the cell interfaces. Nevertheless, the original technique does no take into
account curved boundaries (non-polygonal domains) and the method accuracy is lowered to a
second-order one due to the approximation of arcs by segments. The goal of the present study
is, on the one hand, to achieve an extension for the three-dimensional case and, on the other
hand, to develop a new class of polynomial representation for the boundary to preserve an
effective sixth-order approximation even with curved boundaries.

When dealing with second-order finite volume schemes for elliptic operator, the curved bound-
ary is substituted by a polygon or a polyhedra and the Dirichlet condition is evaluated at the
vertices or the midpoint of the boundary edges. Very few papers in the finite volume community
tackles the question of curved boundary since the problem is relevant for at least third-order
schemes. In [3], the authors propose a polynomial reconstruction which exactly matches the
Dirichlet condition at the Gauss points on the curved boundary. The procedure then involves
two new linear constraints added to the matrix system we use to compute the polynomial
coefficients. Such an algorithm is extended to the Neumann condition on curved boundary.
Another approach consists to apply a local mapping px, yq Ñ pξ, ηq to transform the cell into a
new computational domain which matches the boundary [19]. Integrals therefore involves the
Jacobian matrix of the transformation and polynomial reconstruction procedure is performed
in the local basis leading to a rather complex algorithm. The method we propose in the present
study is related to the works of [3] but the Dirichlet condition is enforced in a different way by
using the mean value on the edge as a free parameter to fit with the boundary condition at the
Gauss points. On the other hand, very high-order method leads to an important computational
effort due to the reconstruction process and a large part of the time consuming derives from the
polynomial coefficients evaluation. We proposed a new procedure to dramatically reduce the
computational cost by a pre-evaluation of local vector for each Gauss point one can identify as
a partial assembly procedure. It results that the polynomial evaluation at the Gauss points is
reduced to a simple inner product between the local vector and the data saving a lot of memory
and time.

In the present document, we do not deal with the convective part on purpose since the main
difficulty concerns the diffusive contribution so we only focus on the Poisson problem. The
second section is devoted to the generic very high-order finite volume scheme while the third
section focus on the polynomial reconstruction and detail all the improvements we propose.
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Numerical experiments are presented in the four section to assess the scheme accuracy and
robustness as well as the efficiency of the iterative solver coupling with a new preconditioning
strategy.

2 Generic high-order Finite Volume Scheme

We consider an open bounded domain Ω of R2 or R3 with a piecewise regular curved boundary.
ΓD and ΓN define a partition of the boundary BΩ where we shall prescribe the Dirichlet and the
Neumann conditions respectively. We intend to compute accurate approximations of function
V solution of the Poisson equation

´∇.pε∇V q “ g, in Ω, ε∇V.n “ 0, on ΓN , V “ VD on ΓD, (1)

with ε a positive function which may present some discontinuities, VD is a given function defined
on ΓD and g is the source term. We assume that boundary ΓN is composed of lines (2D case)
or planes (3D case) while ΓD is curved. In some applications, we shall split the domain into
two sub-domains Ω1 and Ω2 shared by an interface Γ and we denote by εℓ “ ε|Ωℓ

, ℓ “ 1, 2 the
restrictions on each sub-domain. Functions ε1 and ε2 are regular but ε presents a discontinuity
at the interface Γ. Such an assumption is required when dealing with two different materials
(for instance the air and a dielectric material).

We introduce the notations to derive the finite volume scheme (see Fig. 1). For the two-
dimensional case, the domain is divided into non-overlapping convex polygonal cells ci, i “
1, . . . , I and we denote by eij “ ci X cj the common interface shared by two adjacent cells while
nij stands for the unit normal vector from ci towards cj. To handle the edges on the boundary,
we introduce the notation eiD which corresponds to an edge of cell ci which belongs to ΓD while
niD is the unit outward normal vector. In the same way we define eiN and niN for the edge
associated to ΓN . At last νi is the index subset of the adjacent cells including symbols D,N

when dealing with a boundary edge. To perform accurate numerical integration, we denote by
qij,r, r “ 1, . . . , R2 the Gauss points on edge eij while ξr, r “ 1, . . . , R2 represent the respective
weights. We adopt a similar notation setting qiD,r (resp. qiN,r) for the Gauss points on edge eiD
(resp, eiN).

The three-dimensional situation is more complicated due to the existence of possible non-
coplanar interfaces. For the sake of simplicity, we shall only consider tetrahedral cells ci, i “
1, . . . , I with triangular faces fij “ ci X cj with nij the unit normal vector from ci pointing to
cj. As in the two-dimensional case, we use symbol D (resp. N) to represent a boundary face
fiD (resp. fiN) and its associated outward normal vector niD (resp. niN). We also introduce the
set νi to represent the index of the neighbour cells which share a common face, including D,N

for the boundaries. Since the face are triangular, we denote by qij,r, r “ 1, . . . , R3 the Gauss
points with their associated weights ξr.

Remark 2.1 We use the same notation qij,r and ξr for the two- and three-dimensional case

for the sake of simplicity since it will not give rise to any confusion.
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Fig. 1. Notation for the two-dimensional (left) and three-dimensional mesh

Integration by part on cell ci Ă R
2 (resp. ci Ă R

3) and substituting the exact integration on
edge (resp. faces) with their respective quadrature formula provide the relations

Gi “
ÿ

jPνi

|eij|
|ci|

R2ÿ

r“1

ξrFij,r ´ ḡi, (resp.) Gi “
ÿ

jPνi

|fij|
|ci|

R3ÿ

r“1

ξrFij,r ´ ḡi,

where |eij|, |fij|, |ci| represent the respective measures of the geometrical entities while ḡi “
1

|ci|

ż

ci

gpxq dx stands for the mean value of function g on cell ci and Fij,r “ εpqij,rq∇V pqij,rq.nij.

We substitute the exact (but unknown) flux by a numerical approximation Fij,r at each Gauss
points we shall detail in the next section and introduce the residual form

Gi “
ÿ

jPνi

|eij|
|ci|

R2ÿ

r“1

ξrFij,r ´ gi, (resp.) Gi “
ÿ

jPνi

|fij|
|ci|

R3ÿ

r“1

ξrFij,r ´ gi,

where gi is a sixth-order approximation of the source term mean value using the Gauss points
on cells ci.

3 Polynomial reconstructions

Polynomial reconstructions in the finite volume context has been introduced by [20] but we use
the technique initially proposed for hyperbolic system [21–23] and adapted for the convection-

diffusion situation in [18]. Let us denote by Vi an approximation of V̄i “ 1

|ci|

ż

ci

V pxq dx and

V “ pViq P R
I be the vector which gathers all the components (reps. V̄ with components

V̄i). The section aims to define the numerical fluxes across edges or faces in function of vector
V . Basically the idea is to build local polynomial representations based on the mean value
approximations Vi and the boundary conditions. We have to distinguish several situations to
adapt the polynomial reconstruction whether the edge (or the face) is on the boundary, on
the interface Γ or is an inner edge. We rephrase the method presented in [18] for the sake
of consistency and to introduce the notations but we highlight that several important new
improvements will also be detailed: curved boundaries are now considered, a faster algorithm
to compute values and derivatives at the Gauss points is designed and a new preconditioning
matrix is proposed.

4



3.1 Inner face situation

We first consider the situation of cells and faces fij (or eij) which do not belong to the boundary.
The case for eiD and fiD as well as eiN and fiN will be treated in the next subsections. We
present the reconstruction for faces (3D case) but a very similar reconstruction is available for
edges as presented in [18].

3.1.1 Conservative reconstruction for Cell

We first start with the conservative reconstruction associated to a cell. Such a reconstruction is
usually dedicated to the convection contribution but, in the present study, we need it for cells
in contact with the interface Γ. Let ci be a cell, d the degree of the polynomial reconstruction
we intend to build, and Spci, dq the associated stencil constituted of cells belonging to the

same sub-domain of cell ci. We assume that the approximation Vi on ci is given and the
polynomial function of degree d writes

pVipx; dq “ Vi `
ÿ

1ď|α|ďd

R
d,α
i

!
px ´ miqα ´ Mα

i

)
, (2)

with α “ pα1, α2, α3q, |α| “ α1 ` α2 ` α3, x “ px1, x2, x3q, mi the cell centroid, and we adopt

the convention xα “ xα1

1 xα2

2 xα3

3 . We set Mα
i “ 1

|ci|

ż

ci

px ´ biqα dx such that the conservation

property
1

|ci|

ż

ci

pVipx; dq dx “ Vi (3)

holds. To fix the coefficients Rd,α
i of polynomial function (2) we assume that values Vℓ on cells

cℓ, ℓ P Spci, dq are known, and we introduce the functional

EipRd
i ; dq “

ÿ

ℓPSpci,dq

” 1

|cℓ|

ż

cℓ

pVipx; dq dx ´ Vℓ

ı2
, (4)

where R
d
i is the vector gathering all the coefficients R

d,α
i . Existence and uniqueness of the

functional minimizer pRd
i is guaranteed and provides the best approximation. We refer to [18]

for a detailed description of the method and the pre-conditioning strategy to obtain vector pRd
i .

3.1.2 Conservative reconstruction for a face on interface Γ

We assume that fij Ă Γ such that fij “ ci X cj with ci Ă Ω1 and cj Ă Ω2. To compute an
accurate diffusion flux across interface Γ with a continuous transition of function V , we consider
a polynomial function under its conservative form

qVjpx; dq “ Vj `
ÿ

1ď|α|ďd

R
d,α
j

!
px ´ mjqα ´ Mα

j

)
.
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where we assume that Vj is a relevant information on cell cj. We slightly modify the former
functional to minimize, namely

EjpRd
j ; dq “

ÿ

ℓPSpcj ,dq

” 1

|cℓ|

ż

cℓ

qVjpx; dq dx ´ Vℓ

ı2
` ωij

” 1

|fij|

ż

fij

qVjpx; dq ds ´ Vij

ı2
(5)

introducing a positive weight ωij while Vij is a relevant information on face fij. The functional
takes the continuity condition into account across Γ, controlled by parameter ωij to be fixed in

the numerical applications. The minimizing vector qRd
j is solution of an over-determined system,

in the least-square sense, pre-conditioned as in [18].

3.1.3 Non-conservative reconstruction for an inner face

An inner face of Ω1 or Ω2 is a face of the form fij “ ci X cj such that cells ci, cj both belong
to the same sub-domain. For a given degree d, we associate a stencil Spfij, dq constituted of

cells of the same sub-domain than fij. We consider the polynomial reconstruction

rVijpx; dq “
ÿ

0ď|α|ďd

R
d,α
ij px ´ mijqα, (6)

where mij is the centroid of face fij. Assuming that we know Vℓ on cells cℓ, ℓ P Spfij, dq, we
introduce the functional

EijpRd
ij; dq “

ÿ

ℓPSpfij ,dq

ωij,ℓ

” 1

|cℓ|

ż

cℓ

rVijpx; dq dx ´ Vℓ

ı2
, (7)

where ωij,ℓ are positive weights and R
d
ij is the vector gathering all the coefficients R

d,α
ij . As

mentioned in [18], weights are introduced to provide the positivity preserving property (see
the numerical test 4.1) and are defined in the following way: if ℓ “ i, j, ωij,ℓ “ ω ě 1 else

ωij,ℓ “ 1. Vector rRd
ij stands for the unique vector minimizing the functional and provides the

best approximation.

3.2 Polynomial reconstruction for the Dirichlet condition on curved boundary

When dealing with curved boundaries, the substitution of domain Ω with the polygonal (or

polyhedral) domain Ωh “
ď

i“1,...,I

ci dramatically reduces the method order due to a rough

approximation of the boundary with line segments. A specific treatment of the polynomial
reconstruction associated to edge eiD or face fiD is required. For the Neumann case, we have
assumed that ΓN is polygonal (or polyhedral) in the present study for the sake of simplicity
hence no particular treatment is required.
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3.2.1 Second-order approach

As a first approach, we recall the simple second-order method where one uses the mean value of
the Dirichlet condition on the boundary edge. We present the two-dimensional situation since
the extension for the three-dimensional case is straightforward. Let eiD be an edge situated

on the boundary ΓD and set the mean value V̄iD “ 1

|eiD|

ż

eiD

φDpsq ds. In [18] the following

conservative polynomial function of degree d has been considered

pViDpx; dq “ ViD `
ÿ

1ď|α|ďd

R
d,α
iD

!
px ´ miDqα ´ Mα

iD

)
, (8)

taking ViD “ V̄iD, miD the midpoint of edge eiD and Mα
iD “ 1

|eiD|

ż

eiD

px ´ miDqα ds such

that the conservative property
1

|eiD|

ż

eiD

pViDpx; dq ds “ ViD holds. To fix the coefficients, we

introduce the functional

EiDpRd
iD; dq “

ÿ

ℓPSpfiD,dq

ωiD,ℓ

” 1

|cℓ|

ż

cℓ

pViDpx; dq dx ´ φℓ

ı2
, (9)

where ωiD,ℓ are positive weights and vector pRd
iD stands for the unique vector minimizing the

functional and providing the best approximation. The three-dimensional situation is identical
(just substitute eiD with fiD).

If the boundary is a line (a plane), we get a d`1th-order method but such an approach achieves,
at most, a second-order approximation when we substitute the mean value on a curved arc by
the mean value on edge eij. The key-point is to evaluate the polynomial reconstruction with
a better ViD choice in formulae (8), different to the candidate V̄iD proposed above, in order to

provide better approximations of pViDpx; dq in the sense we shall specify in the sequel.

3.2.2 The two-dimensional case

3.2.2.1 Geometrical ingredients To provide a better approximation of the boundary
condition, a local parametrization is introduced and a new quadrature formula is used to per-
form accurate numerical integrations on the arc. Let e be a generic boundary edge. We denote
by v1, v2 the vertices and by e “ v1v2 the segment with length |v1v2| while Ŋv1v2 represents the
boundary arc between v1 and v2 with length | Ŋv1v2| (see Fig. 2 left panel).
We introduce the edge parametrization qptq “ p1 ´ tqv1 ` tv2, t P r0, 1s which satisfies |q1ptq| “
|v1v2| while pptq is a parametrization of the arc such that

pp0q “ v1, pp1q “ v2, |p1ptq| “ | Ŋv1v2| is constant.

Let us denote by q1, . . ., qR2
the Gauss points on edge e associated to parameters t1, . . ., tR2

,
then p1 “ ppt1q, . . ., pR2

“ pptR2
q are the corresponding Gauss points on the boundary arc.

7



b

b

b

b

b

b

v1

v2

qr

pr

c

b

b
v1 v2

v3

b

b

b

c

qr

pr

Fig. 2. Geometrical ingredients for the sixth-order approximation of the Dirichlet condition with curved
boundary: the two-dimensional (left) and three-dimensional case (right). Points qr are the Gauss points
on the edge (face) while points pr are the Gauss points on the curved boundary.

Indeed, using the quadrature rule for the numerical integration over the arc, one has

ż

Ŋv1v2
VDppqdp “

ż 1

0

VDppptqq|p1ptq|dt «
R2ÿ

r“1

ξrVDpprq|p1ptrq| “ | Ŋv1v2|
R2ÿ

r“1

ξrVDpprq.

Notice that the following property then holds for r “ 1, ¨ ¨ ¨ , R2

| Ŋv1pr|
|v1qr|

“ | Ŋv2pr|
|v2qr|

“ | Ŋv1v2|
|v1v2|

which, in practice, enable to determine the location of points pr on the arc.

3.2.2.2 The polynomial reconstruction on boundary Let us now consider ueiD the
boundary arc associated to the edge eiD and assume that mean value approximations Vi, i “
1, . . . , I are given. We consider the following linear operator deriving from equation (8)

ViD Ñ pViDpx; d, ViDq P Pd

where ViD represents an approximation of the mean value on eiD. We explicitly mention the
variable ViD in the polynomial function arguments since the dependence is of crucial impor-
tance in the procedure we shall implement. The main difficulty we have to face is that the
Dirichlet condition is defined on ueiD and not on eiD. To overcome the problem, we introduce
the functional

HpViDq “
R2ÿ

r“1

´
pViDppij,r; d, ViDq ´ VDppij,rq

¯2

which corresponds to the error between the polynomial approximation and the real Dirichlet
condition at the Gauss points on the boundary arc. Since we are dealing with a quadratic func-
tional, existence and uniqueness of the minimum V ‹

iD is guaranteed and pViDpx; dq “ pViDpx; d, V ‹
iDq

will be the polynomial reconstruction we use to compute the diffusive flux on edge eiD.
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To determine V ‹
iD in practice, we propose the following simple algorithm. We consider the

sequence V k
iD initialized with V 0

iD “ V̄iD and given by

(1) with V k
iD in hand, compute the associated polynomial function pViDpx; d, V k

iDq,
(2) evaluate the errors δkr “ VDppij,rq ´ ViDppij,r; d, V k

iDq at the Gauss points of the arc,

(3) update the mean value on eiD with V k`1
iD “ V k

iD `
R2ÿ

r“1

ξrδ
k
r ,

(4) stop if |V k`1
iD ´V k

iD| ă ǫDV̄iD where the tolerance ǫD has been prescribed and set V ‹
iD “ V k`1

iD ,
else goto step (1).

Numerical experiments shows that we quickly converge with two or three steps using ǫD “ 10´12.
Furthermore, when |V̄iD| ă ǫD, we use the absolute error criterion |V k`1

iD ´ V k
iD| ă ǫD in place

of the relative error criterion.

Remark 3.1 Notice that the method only requires the arc length |ueiD|, the Gauss points qiD,r

on the edge and the associated Gauss points piD,r on the boundary arc. No geometrical trans-

formation is performed which provides a very simple method, easy to implement. The main

difficulty is the determination of piD,r for a general arc of curve.

3.2.3 The three-dimensional case

Let fiD be a triangular face situated on the boundary ΓD and set the mean value V̄iD “
1

|fiD|

ż

fiD

VDpsq ds. As in the two-dimensional case, the polynomial reconstruction pViD with

ViD “ V̄iD only provides at most a second-order approximation with curved boundary. We
propose an extention of the method to achieve an effective sixth-order accuracy.

3.2.3.1 Geometrical ingredients Let f be a boundary triangle face characterized by
vertices v1, v2, v3. We set f “ v1v2v3 with area |v1v2v3| while uf “ Ŕv1v2v3 represents the boundary
surface between v1, v2, v3 with area | Ŕv1v2v3| (see Fig. 2 right panel). Let △ “ tps, tq P r0, 1s2
such that s ` t ď 1u. We introduce the parametrization qps, tq “ p1 ´ t ´ sqv1 ` sv2 ` tv3,
ps, tq P △ of face f which provides |Bsq ^ Btq| “ |v1v2 ^ v1v3| “ 2|v1v2v3|. On the other hand,
we assume that pps, tq, ps, tq P △ is a parametrization of the surface uf such that

pp0, 0q “ v1, pp1, 0q “ v2, pp0, 1q “ v3, |Bsp ^ Btp| “ 2| Ŕv1v2v3| is constant.

Let denote by q1, . . ., qR3
the Gauss points on f associated to parameters ps1, t1q, . . ., psR3

, tR3
q,

then p1 “ pps1, t1q, . . ., pR3
“ ppsR3

, tR3
q are the corresponding Gauss points on the boundary

surface and the quadrature rule for the numerical integration over the surface writes

9



ż

Ŕv1v2v3
VDppqdp“

ż

△

VDppps, tqq|Bsp ^ Btp|dsdt psee that|∆| “ 1

2
q

« 1

2

R2ÿ

r“1

ξrVDpprq|Bsppsr, trq ^ Btppsr, trq| “ | Ŕv1v2v3|
R2ÿ

r“1

ξrVDpprq.

Notice that the following property holds for r “ 1, ¨ ¨ ¨ , R3

| Ŕv1v2pr|
|v1v2qr|

“ | Ŕv2v3pr|
|v2v3qr|

“ | Ŕv3v1pr|
|v3v1qr|

“ | Ŕv1v2v3|
|v1v2v3|

(10)

which enable, in practice, to determine points pr. Indeed, the main difficulty is the determination
of the Gauss points pr associated to qr for any surface Ŕv1v2v3. To this end, assume that there
exists a function such that for each point p P Ŕv1v2v3 provides the three areas | Őv1v2p|, | Őv2v3p|,
| Őv3v1p|. Based on that function, we determine point pr associated to qr using relation (10) where
we introduce the functional

p Ñ
ˆ | Őv1v2p|

|v1v2qr|
´ χ

˙2

`
ˆ | Őv2v3p|

|v2v3qr|
´ χ

˙2

`
ˆ | Őv3v1p|

|v3v1qr|
´ χ

˙2

with χ “ | Ŕv1v2v3|
|v1v2v3|

. The Gauss point pr corresponds to the minimum of the quadratic functional.

3.2.3.2 The polynomial reconstruction on boundary Let us denote by ufiD the bound-
ary surface associated to the triangular face fiD and assume that mean value approximations
Vi, i “ 1, . . . , I are given. We consider one more time the following linear operator

ViD Ñ pViDpx; d, ViDq P Pd

where ViD represents an approximation of the mean value on fiD while the Dirichlet condition
are defined on ufiD. As in the two-dimensional case, we introduce the functional

HpViDq “
R3ÿ

r“1

´
pViDppij,r; d, ViDq ´ VDppij,rq

¯2

which corresponds to the error between the polynomial approximation and the real Dirichlet
condition at the Gauss points of the boundary surface. Existence and uniqueness of the mini-
mum V ‹

iD is obtained and pViDpx; dq “ pViDpx; d, V ‹
iDq will be the polynomial reconstruction. The

algorithm to provide V ‹
iD is the same as the one proposed in the two-dimensional case.

3.3 Numerical fluxes

With the the polynomial reconstructions in hand, we explicit the fluxes in function of the face.
One has to distinguish four cases.
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(1) Assume that fij is an inner face of Ω1 or Ω2, then we define the flux at the quadrature
point by

Fij,r “ ´εpqij,rq∇rVijpqij,r; dq.nij.

(2) Assume that fiD belongs to ΓD, then the flux at the quadrature point writes

FiD,r “ ´εpqiD,rq∇pViDpqiD,r; dq.niD.

Notice that we compute the flux at the Gauss points of the edge qiD,r and not at the Gauss
points piD,r of the boundary.

(3) Assume that fiN is on ΓN , then the flux at the quadrature point writes

FiN,r “ 0.

(4) Assume that fij Ă Γ. We first compute pVipx; dq for the cell in ci Ă Ω1 which shares the
face fij. Then, we evaluate the quantity

Vij “
R3ÿ

r“1

ξr pVipqij,r; dq

which provides the mean value of pVi over fij. At last, we compute qVjpx; dq on the other
side of the interface for cell cj Ă Ω2. To determine the flux across the face, we then use
the formula

Fij,r “ ´ε2pqij,rq∇qVjpqij,r; dq.nji.

For any vector V P R
I , we define the residual operator on cell ci by

GipV q “
ÿ

jPνpiq

|fij|
|ci|

R3ÿ

r“1

ζrFij,rpV q ´ gi (11)

and introduce the affine operator GpV q “ pG1pV q, . . . , GIpV qqT from R
I into R

I . The solution
is vector V ‹ such that GpV ‹q “ 0 while the consistency error is given by GpV q with V “ pV iq
the vector of the mean values of the exact solution. We get a matrix-free problem we solve
using the GMRES method (see [24,25] for a detail review of the method).

3.4 Improvements

Several modifications have been introduced to increase the method efficiency and reduce the
computational cost in regards to the former version developed in [18].

3.4.1 Faster polynomial evaluation

Polynomial reconstructions are always evaluated at the Gauss points so it is a waste of compu-
tational resource to evaluate several times the same monomial functions such as px ´ miqα at
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the same points. To cut the time consumption, we take advantage of the linearity of the recon-
struction with respect to vector V . New notations are required to present the fast evaluation
since we need local indexations for the stencil and the polynomial coefficients.

3.4.1.1 Polynomial rVij We start with polynomial function rVij associated to stencil Spfij, dq.
Let #Spfij, dq be the number of elements of the stencil. We define a local indexation setting

λ P t1, . . . ,#Spfij, dqu Ñ ℓpλq P Spfij, dq.

On the other hand, we introduce the one-parameter indexation for the multi-index α. Let denote

#d “ dpd ` 1qpd ` 2q
6

and Mpdq “ tα P N
3; |α| ď du. We define the one-to-one mapping by

κ P t1, . . . ,#pd ` 1qu Ñ αpκq “ pα1, α2, α3q P Mpdq

corresponding to the following sequence

κ

α

ˇ̌
ˇ 1

p0,0,0q
, 2

p1,0,0q
, 3

p0,1,0q
, 4

p0,0,1q
, 5

p2,0,0q
, 6

p1,1,0q
, 7

p0,2,0q
, 8

p1,0,1q
, 9

p0,1,1q
, 10

p0,0,2q
, 11

p3,0,0q
, 12

p2,1,0q
, 13

p1,2,0q
, 14

p0,3,0q
, 15

p2,0,1q
, . . .

such that αpκq, κ P t1, . . . ,#pd`1qu ranges all the coefficients Rk,α of any polynomial function
of degree d. The reciprocal operator from Mpdq onto t1, . . . ,#pd ` 1qu is given by

α Ñ κpαq “ #|α| ` α3pα1 ` α2q ` α3pα3 ` 3q
2

` α2 ` 1.

Thanks to the mapping, we introduce the local one-parameter indexation for coefficients setting
rRij,κ “ rRα

ij with κ “ κpαq and we denote by rRij “ p rRij,κqκ“1,...,#pd`1q the vector which gathers
all the components. In the same way, for a given stencil Spfij, dq, we denote by Wij,λ “ Vℓ with
ℓ “ ℓpλq and define Wij “ pWij,λqλPt1,...,#Spfij ,dqu the vector which gathers all the components. At

last, the minimization of functional (7) writes in the least square sense (see [18]) rAij
rRij “ Wij

with
rAij “ p rAij,λκqλ“1,...,#Spfij ,dq

κ“1,...,#pd`1q

where the coefficients are determined in function of the stencil and the geometrical data of the
mesh. The problem is equivalent to the matrix-vector product

rRij “ rA:
ijWij, rA:

ij “ p rA:
ij,κλq κ“1,...,#pd`1q

λ“1,...,#Spfij ,dq

with rA:
ij the Moore-Penrose pseudo-inverse matrix computed during a pre-processing stage.

Moreover the corresponding tables λ Ñ ℓpλq and κ Ñ αpκq are also stored in memory at the
beginning of the computation.
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For each Gauss point qij,k, we define the vector

Qij,r “

¨
˚̊
˚̊
˚̊
˝

pqij,r ´ mijqαp1q

pqij,r ´ mijqαp2q

. . .

pqij,r ´ mijqαp#pd`1qq

˛
‹‹‹‹‹‹‚

P R
#pd`1q.

and one has

rVijpqij,k, dq “
#pd`1qÿ

κ“1

rRij,κpqij,r ´ mijqαpκq “ QT
ij,r

rRij “ pQT
ij,r

rA:
ijqWij.

We also introduce the column vector

rχij,r “ prχij,rλqλ“1,...,#Spfij ,dq “ QT
ij,r

rA:
ij P R

#Spfij ,dq,

and the polynomial value at the Gauss point is then evaluated with the product

rVijpqij,r; dq “
#Spfij ,dqÿ

λ“1

rχij,rλVℓpλq “ rχT
ij,rWij. (12)

We now deal with the gradient of the polynomial reconstruction. We introduce the #pd ` 1q-
length vector of elements of R3 (or a 3 ˆ #pd ` 1q real matrix)

JQij,r “

¨
˚̊
˚̋

¨
˚̊
˚̋

0

0

0

˛
‹‹‹‚,

¨
˚̊
˚̋

1

0

0

˛
‹‹‹‚,

¨
˚̊
˚̋

0

1

0

˛
‹‹‹‚,

¨
˚̊
˚̋

0

0

1

˛
‹‹‹‚, . . .

¨
˚̊
˚̋

α1pqij,r ´ mijqα´p1,0,0q

α2pqij,r ´ mijqα´p0,1,0q

α3pqij,r ´ mijqα´p0,0,1q

˛
‹‹‹‚, . . .

˛
‹‹‹‚

with the rule α ´ β “ pα1 ´ β1, α2 ´ β2, α3 ´ β3q. In other words, for any κ “ 1, ¨ ¨ ¨ ,#pd ` 1q,
we have the R

3-value entries

JQij,rκ “

¨
˚̊
˚̋

α1pκqpqij,r ´ mijqαpκq´p1,0,0q

α2pκqpqij,r ´ mijqαpκq´p0,1,0q

α3pκqpqij,r ´ mijqαpκq´p0,0,1q

˛
‹‹‹‚.

Applying the same procedure, we deduce that

∇rVijpqij,k, dq “
#pd`1qÿ

κ“1

JQij,rκp rA:
ijWijqκ.
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Setting matrix ĂJχij,r with entries

ĂJχij,rλ “
#pd`1qÿ

κ“1

JQij,rκ
rA:
ij,κλ P R

3,

the polynomial gradient at each Gauss point then corresponds to the product

∇rVijpqij,r; dq “
#Spfij ,dqÿ

λ“1

ĂJχij,rλVℓpλq “ ĂJχij,rWij. (13)

The main advantage is that coefficients rχij,rλ P R and ĂJχij,rλ P R
3 are pre-computed just

one time at the initial stage. Hence, evaluations of rVijpqij,r; dq or ∇rVijpqij,r; dq turn to be very
efficient and the storage is strongly reduced since we just need several small vectors for each
Gauss point to use relations (12) or (13). We dramatically reduce the computational effort
since neither the polynomial coefficients, nor the monomial expressions have to be recomputed.
Moreover the Moore-Penrose matrices used in [18] are now useless. We save a lot of memory

since the coefficients storage is really lower that the storage of the Moore-Penrose matrix rA:
ij

and the polynomial coefficients rRij for each face fij.

3.4.1.2 Polynomial pViD We now turn to the case of a conservative reconstruction for the
faces associated to the Dirichlet condition. The main difference with the former case is the
indexation since we the value on face fiD is prescribed. Let #SpfiD, dq be the number of stencil
elements. We define a local indexation

λ P t1, . . . ,#SpfiD, dqu Ñ ℓpλq P SpfiD, dq

and introduce vector WiD P R
#SpfiD,dq`1 adding the extra-component W0 “ ViD and WiD,λ “

Vℓpλq for λ P t1, . . . ,#SpfiD, dqu. Using similar notations, vector

pRiD “ p pRiD,κqκ“1,...,#pd`1q

is evaluated with pRiD “ pA:
iDWiD where

pA:
iD “ p pA:

iD,κλq κ“1,...,#pd`1q
λ“0,...,#SpfiD,dq

.

Notice that the conservative property yields pRiD,1 “ ViD.
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For each Gauss point qiD,k P fiD, we define vector

QiD,r “

¨
˚̊
˚̊
˚̊
˝

pqiD,r ´ miDqαp1q

pqiD,r ´ miDqαp2q

. . .

pqiD,r ´ miDqαp#pd`1qq

˛
‹‹‹‹‹‹‚

P R
#pd`1q.

and one has

pViDpqiD,k, dq “
#pd`1qÿ

κ“1

pRiD,κpqiD,r ´ miDqαpκq “ QT
iD,r

pRiD “ pQT
iD,r

pA:
iDqWiD.

Setting
pχiD,r “ ppχiD,r,λqλ“0,...,#SpfiD,dq “ QT

iD,r
pA:
iD P R

#SpfiD,dq`1,

the polynomial value at each Gauss point is then evaluated with the product

pViDpqiD,r; dq “ ViD `
#SpfiD,dqÿ

λ“1

pχiD,rλVℓpλq.

For the gradient evaluation, we introduce the vector of elements of R3

JQiD,r “

¨
˚̊
˚̋

¨
˚̊
˚̋

0

0

0

˛
‹‹‹‚,

¨
˚̊
˚̋

1

0

0

˛
‹‹‹‚,

¨
˚̊
˚̋

0

1

0

˛
‹‹‹‚,

¨
˚̊
˚̋

0

0

1

˛
‹‹‹‚, . . .

¨
˚̊
˚̋

α1pqiD,r ´ miDqα´p1,0,0q

α2pqiD,r ´ miDqα´p0,1,0q

α3pqiD,r ´ miDqα´p0,0,1q

˛
‹‹‹‚, . . .

˛
‹‹‹‚

and we write

∇pViDpqiD,k, dq “
#pd`1qÿ

κ“1

JQiD,rκp pA:
iDWiDqκ.

Setting for λ “ 0, ¨ ¨ ¨ ,#SpfiD, dq

xJχiD,rλ “
#pd`1qÿ

κ“1

JQiD,rκ
pA:
iD,κλ P R

3,

the polynomial gradient at each Gauss point then corresponds to the product

∇pViDpqiD,r; dq “ xJχiD,r0ViD `
#SpfiD,dqÿ

λ“1

xJχiD,rλVℓpλq “
#SpfiD,dqÿ

λ“1

xJχiD,rλVℓpλq.

3.4.2 A new preconditioning matrix

Due to the linearity of the problem and the reconstruction process, operator GpV q is an affine
mapping V Ñ GpV q “ AV ´ b with b P R

I and A a I ˆ I real numbers matrix. In [18], a new
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preconditioning matrix method has been proposed taking advantage that the problem derived
from the finite volume method. With coefficients xJχij,rλ in hand, we propose an other efficient
preconditioning matrix, that is a matrix P : P R

IˆI such as one solves the problem P :GpV q “ 0
in place of GpV q “ 0. Clearly the two problems are equivalent (P : is assumed non-singular)
but we expect a better conditioning problem by multiplying with P :.

To this end, we slightly modified some previous notations and introduce new ingredients. For
a given cell ci and j P νpiq, the face fij is associated to a stencil Spfij, dq. Let #Spfij, dq be the
number of elements of the stencil. We redefine the local indexation setting

λ P t1, . . . ,#Spfij, dqu Ñ ℓpi, j;λq P Spfij, dq

to highlight the dependence of function ℓpi, j; .q to face fij. Since the function is one-to-one,
there exists a unique reciprocal function

ℓ P Spfij, dq Ñ λpi, j; ℓq P t1, . . . ,#Spfij, dqu.

Index i always belongs to Spfij, dq by construction, then λpi, j; iq is the local index associated
to i. For j P νpiq, if fij is an inner cell, i.e. cell cj exists, then by construction j P Spfij, dq
and λpi, j; jq is the local index associated to j. If fij is on the boundary, we skip the index and
denote by νpiq Ă νpiq the index set such that fij only are inner faces. Matrix P P R

IˆI is then
defined as follow: for the diagonal coefficient we set

P pi, iq “
ÿ

jPνi

|fij|
|ci|

ÿ

r“1,...,R3

ξr xJχij,rλpi,j;jq.nij,

and the extra-diagonal coefficients for j P νi writes

P pi, jq “ |fij|
|ci|

ÿ

r“1,...,R3

ξr xJχij,rλpi,j;iq.nij.

Matrix P is not necessary symmetric but have a symmetric structure i.e. the non-null entries
are symmetric. In some extent, matrix P is the main part of matrix A where we have performed
the assembly procedure only for specific entries, namely the diagonal and the extra-diagonal
entries corresponding to the adjacent cells.

To provide the preconditioning matrix, we consider a matrix P : with the same null entries

than matrix P (the other entries still unknown) and denote by C “ P :P the product of the
two matrices. Since a face fij, j P νi, only shares two cells, the following equalities hold

Cpi, iq “P :pi, iqP pi, iq `
ÿ

jPνi

P :pi, jqP pj, iq,

Cpi, jq “P :pi, jqP pj, jq ` P :pi, iqP pi, jq, @j P νi.

To fix the P : matrix coefficients, we state that C “ I only for the non-null entries and we get
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the system

P :pi, iqP pi, iq `
ÿ

jPνi

P :pi, jqP pj, iq “ 1, P :pi, jqP pj, jq ` P :pi, iqP pi, jq “ 0, @j P νi.

After some algebraic manipulations, we obtain an explicit expression for P :, namely

P :pi, jq “ ´P pi, jqP
:pi, iq

P pj, jq , j P νi, with P :pi, iq “ 1

P pi, iq ´
ÿ

jPνpiq

P pi, jqP pj, iq
P pj, jq

.

4 Numerical tests

The present section is dedicated to the quantitative and qualitative assessments of the scheme
robustness and accuracy. We first tackle the stability question, then we propose convergence
tests for regular and discontinuous diffusion coefficients. Numerical simulations with curved
boundary are carried out to show the critical issues that a specific treatment is mandatory for
the polynomial reconstruction to preserve the optimal order. At last, we present some numerical
experiences deriving from a concrete physical application to highlight the performances of the
improvements proposed in section 3.4

To compare the numerical approximation with the exact solution, we introduce two kinds of
errors, namely:

E1 “
Iÿ

i“1

|ci||φi ´ φ̄i|, E8 “ max
i“1,¨¨¨ ,I

|φi ´ φ̄i|,

while the convergence order between two successive meshes of N1 and N2 cells is given by

O1 “ d
lnpE1

1{E1
2q

lnpN2{N1q , O8 “ d
lnpE8

1 {E8
2 q

lnpN2{N1q ,

with d the space dimension. In this study, we employ triangular meshes for the two-dimensional
geometries and tetrahedral meshes for the three-dimensional simulations. Figures are obtained
using the gmsh software [29].

4.1 Maximum principle

We first assess the scheme ability to preserve the positivity or satisfy the maximum principle.
Indeed, in [18], numerical tests show that the choice of the weights in the non-conservative
reconstruction process is of crucial importance. We have proceeded in the same way as [18],
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experimenting several weight values and check the non-negativity of the inverse matrix of
the global linear system. To this end, let consider the unit-length cube. Function V px, y, zq “
sinpπxq sinpπyq sinpπzq is the solution of problem ´∆V “ g with g “ 3π2 sinpπxq sinpπyq sinpπzq
and homogeneous boundary condition VD “ 0 hence the exact solution ranges in the interval
r0, 1s. The polynomial reconstruction process on face fij depends on weights ωij,ℓ we introduce
in the functional (7). We fix the values in the following way: if ℓ “ i, j we prescribe ωij,ℓ “ ω

whereas ωij,ℓ “ 1 for the other cells. All the numerical tests have been performed with the P1

reconstruction but the conclusion holds with a P3 or a P5 reconstruction.

Table 1
Minimum and maximum of the approximations with respect to the weight with a 2321 cells mesh
(left) and a 6327 cells mesh (right). We have use the P1 reconstruction to compute the diffusive flux.

ω min max

1.7 -1.25 1.71

2.0 0.0013 1.01

4.0 0.0241 0.99

ω min max

1.7 -0.02 1.01

2.0 0.0004 0.99

4.0 0.0008 0.99

Table 1 provides the minimum and the maximum of the approximations in function of ω for
two different meshes. We plot in Fig. 3 three simulations performed with three different values
of ω. We clearly observe that the maximum principle is not fulfilled for ω “ 1.7 and ω “ 2
but, in the second case, we obtain a lower number of non-physical cells i.e. cells associated to
a negative value or a value larger to 1. For ω large enough, (here ω “ 4), the inverse matrix
has all the coefficients non-negative and the numerical solution ranges in r0, 1s. In the following
tests, we shall use the value ω “ 4 to fulfil the maximum principle and provide the stability.

Fig. 3. Maximum principle property for different weights ω: the adjacent cells have a weight equal
to 1.7 (left), the adjacent cells have a weight equal to 2 (middle) while the right panel displays the
approximation for ω “ 4 (very close to the exact solution). White cells correspond to negative values
while black cells correspond to values larger than one.
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4.2 Convergence test

Convergence tests are carried out to check the order of accuracy of the scheme in the three-
dimensional context. In the unit-length cube domain, we compute approximations of the solu-
tion for problem ´∆V “ g with g “ 3π2 sinpπxq sinpπyq sinpπzq and homogeneous boundary
condition VD “ 0 that we compare with the exact solution V “ sinpπxq sinpπyq sinpπzq. We
have experimented three reconstructions and reported in Table 2 the error in L1- and L8-norm
with the associated convergence orders. We obtain an effective second-order, fourth-order and
sixth-order of convergence using the P1, P3 and P5 reconstructions respectively. To highlight the
efficiency of very high-order methods, a simple extrapolation shows that the error of 4.84e´ 08
obtained with the sixth-order method with 32408 tetrahedra will require around 63 billions of
cells to achieve the same error with a second-order method and a huge computational effort.

Table 2
L1 and L8 errors and convergence rates for a smooth solution of the Poisson problem.

Nb of P1 P3 P5

Cells err1 err8 err1 err8 err1 err8

2321 4.31e-03 — 1.93e-02 — 2.03e-04 — 1.72e-03 — 1.63e-05 — 7.61e-05 —

6371 2.28e-03 1.9 1.18e-02 1.5 4.95e-05 4.2 4.64e-04 3.9 1.52e-06 7.1 1.52e-05 4.8

16020 1.24e-03 2.0 6.09e-03 2.2 1.51e-05 3.9 1.88e-04 2.9 1.92e-07 6.7 2.90e-06 5.4

32408 7.54e-04 2.1 4.33e-03 1.5 5.41e-6 4.4 7.01e-05 4.2 4.84e-08 5.9 8.34e-07 5.3

4.3 Simulation with discontinuous dielectric coefficients

We tackle the important situation where the domain is constituted of two sub-domains with
different dielectric coefficients leading to a discontinuity of the electrical field at the interface.
Of course the test can be generalized to several domains with discontinuous coefficients. We
consider the unit-length cube such that ε1 “ 1 in Ω1 “ tx, y, z ă 0.5u and ε2 “ 10 in Ω2 “
tx, y, z ą 0.5u i.e. the discontinuity interface Γ is located in the plane z “ 0.5. The potential
function V is composed of two functions V1 “ V|Ω1

and V2 “ V|Ω2
and the flux conservation

condition across the interface Γ writes

ε1∇V1.nΓ “ ε2∇V2.nΓ, (14)

while we assume the continuity of the potential function V1 “ V2 on Γ.

One can check that the functions

V1px, y, zq “ A

ε1

ˆ
1

π

˙2

sinpπzq ` a

ε1
z ` VD1, V2px, y, zq “ A

ε1

ˆ
1

π

˙2

sinpπzq ` a

ε2
pz ´ 1q ` VD2

19



x

z

Ω1

Ω2

Γ

ΓD2

ΓD1

ΓN

Fig. 4. The domain is constituted of two sub-domains with constant dielectric coefficients with a
discontinuity at the interface Γ. We prescribe Dirichlet conditions on ΓD1 and ΓD2 and homogeneous
Neumann condition on the lateral faces ΓN .

with

a “ 1
1

2ε1
` 1

2ε2

˜
A

ˆ
1

π

˙2 ˆ
1

ε2
´ 1

ε1

˙
` VD2 ´ VD1

¸
,

are the solution of the electrical problem with the source term g “ A sinpπzq with homogeneous
Neumann condition on the lateral sides ΓN (see Fig. 4) while we prescribe the Dirichlet condition
V px, y, 0q “ VD1 on ΓD1 and V px, y, 1q “ VD2 on ΓD2. All the numerical simulations are carried
out using A “ 1, VD1 “ 1 and VD2 “ 10

Table 3
Poisson problem with discontinuous coefficients. L1 and L8 errors and convergence rates for the P1,
P3 and P5 reconstructions.

Nb of P1 P3 P5

Cells err1 err8 err1 err8 err1 err8

2495 4.55e-02 — 2.70e-01 — 1.23e-04 — 7.58e-04 — 1.30e-05 — 9.50e-06 —

5404 2.81e-02 1.87 1.79e-01 1.6 5.15e-05 3.38 2.78e-04 3.9 3.36e-06 5.25 1.57e-06 7.0

11546 1.59e-02 2.25 1.01e-01 2.25 1.74e-05 4.29 1.24e-04 3.19 6.25e-07 6.65 4.26e-07 5.65

24848 9.2e-03 2.14 9.58e-02 2.15 5.54e-06 4.48 3.84e-05 4.6 1.52e-07 5.55 1.08e-07 4.9

Table 3 shows that we obtain an effective second-, fourth- and sixth-order of convergence when
using the P1, P3 and P5 reconstructions respectively. The low regularity of the solution in the
vicinity of Γ is well-treated by the specific reconstruction given in section 3.1.2 and does not
keep the scheme from achieving very high-order approximations.

4.4 A non-homogeneous test case

We now assess the convergence order when dealing with a non-constant smooth dielectric co-
efficient and non-homogeneous boundary conditions. The goal is to check that the scheme
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effectively provides the optimal convergence order. To this end, we assume that the solution is
V px, y, zq “ lnp1`x` yqzp1´ zq and the dielectric coefficient is given by εpx, y, zq “ 1`x` y.
Hence, one has to solve ´∇ ¨ pε∇V q “ g with the right-hand side source term gpx, y, zq “
2 lnp1`x`yqp1`x`yq and the Dirichlet condition is given by the exact solution on the whole
boundary.

Fig. 5. A view of the solution for the Poisson equation with non-constant dielectric coefficient and a
non-homogeneous boundary condition.

We display a cut of the numerical solution in Fig. 5 while we report in Table 4 the L1 and L8

errors and convergence rates. Effective second-, fourth- and sixth-order of accuracy are obtained
for the L1 norm while the accuracy with the L8 norm is slightly worse but no instabilities are
reported. To highlight the efficiency of the very high-order scheme, we observe that the sixth-
order scheme cuts the error with an order of six magnitudes (in L1-norm) in relation with the
second-order one (for example with the 32048 cells mesh).

Table 4
L1 and L8 errors and convergence rates using non-constant dielectric coefficient and non-homogeneous
Dirichlet condition.

Nb of P1 P3 P5

Cells err1 err8 err1 err8 err1 err8

2321 1.03e-03 — 4.76e-03 — 1.72e-06 — 2.01e-05 — 2.75e-08 — 6.50e-06 —

6327 5.01e-04 2.16 2.85e-03 1.53 4.41e-07 4.07 5.07e-06 4.12 3.2 e-09 6.43 1.39e-06 4.61

16020 2.7e-04 2.0 1.39e-03 2.32 1.32e-07 3.9 2.05e-06 2.92 5.7 e-10 5.57 2.49e-07 5.55

32048 1.7e-04 2.0 9.5e-04 1.65 4.82e-08 4.36 8.71e-07 3.7 1.32e-10 6.32 7.7e-07 5.08
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4.5 Two-dimensional problem with curved boundary

An important goal of the present study is to achieve very high accuracy even with curved
boundary. Indeed, a formal sixth-order scheme may be spoiled by a rough approximation of
the boundary condition leading to, at most, a second-order method. We start with the two-
dimensional case and assess the efficiency of the methods detailed in section 3.2.2 where the
straightforward approximation on edge (Dirichlet condition applied on edges) is substituted
by an algorithm to recover the optimal convergence order. We consider an annulus of external
radius R1 “ 10´6 and internal radius r2 “ 10´7. We prescribe Dirichlet condition on the
boundaries, namely V “ V1, V “ V2 on the external and internal circles respectively. The

solution of problem ´∆V “ 0 is given by V px, yq “ a lnp
?
x2 ` y2q`b with a “ V1 ´ V2

lnpR1q ´ lnpR2q
and b “ V2 lnpR1q ´ V1 lnpR2q

lnpR1q ´ lnpR2q (see Fig. 6).

Fig. 6. Solution of the Poisson equation for the annulus problem.

Table 5 reports the errors and convergence orders using the simple approximation of the Dirich-
let condition as proposed in section 3.2.1 (the Dirichlet condition is directly involved in the mean
value over the face) while we report in Table 6 the errors and convergence orders when using
the correction proposed in section 3.2.2.

Numerical evidences show that prescribing the Dirichlet on the edge in a straightforward man-
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Table 5
L1 and L8 errors and convergence rates for the two-dimensional annulus using the straightforward
approximation of the Dirichlet condition.

Nb of P1 P3 P5

Cells err1 err8 err1 err8 err1 err8

804 9.26E-02 — 1,95E-01 — 3,80E-02 — 1,50E-01 — 5.10E-02 — 1,38E-01 —

2178 3.09E-02 2.0 7.50E-02 1.9 9.46E-03 2.8 1.54E-02 4.1 9.60E-03 3.0 1.46E-02 4.10

8226 7.17E-03 2.2 2.14E-02 1.9 2.09E-03 2.3 4.43E-03 1.9 1.98E-03 2.4 4.19E-03 1.88

24502 2.92E-03 1.7 9.98E-03 1.1 8.05E-04 1.4 2.50E-03 0.9 7.79E-04 1.3 2.46E-03 0.75

Table 6
L1 and L8 errors and convergence rates for the two-dimensional annulus using the correction method
for the Dirichlet condition.

Nb of P1 P3 P5

Cells err1 err8 err1 err8 err1 err8

804 6.40E-02 — 1,66E-01 — 1.98E-02 — 1.39E-01 — 2.40E-02 — 1.28E-01 —

2178 2.20E-02 2.2 6.65E-02 1.9 1.00E-03 5.1 7.48E-03 5.9 8.84E-04 6.6 4.34E-03 6.8

8226 5.19E-03 2.2 1.81E-02 2.0 4.87E-05 4.6 6.59E-04 3.7 4.99E-06 7.8 6.33E-05 6.0

24502 1.20E-03 2.1 4.35E-03 2.1 3.60E-06 3.7 7.49E-04 3.1 9.09E-08 5.9 2.26E-06 5.5

ner provides at most a second-order scheme where the limitation is clearly due to a poor
evaluation of the Dirichlet condition define on a curved boundary. The technique we propose to
overcome that limitation provides an excellent result since we recover the optimal sixth-order
in the case of the P5 reconstruction (and the fourth-order with the P3 reconstruction). Such
an example underlines that a correct approximation of the boundary condition in the case of
curved boundary is crucial.

4.6 Three-dimensional problem with curved boundary

We now turn to the three-dimensional case following the strategy proposed for the two-dimensional
annulus. The domain is situated between two spheres of radius R1 “ 1 and R2 “ 0.1 and we
prescribe the Dirichlet condition V “ V1 and V “ V2 respectively. The solution of problem

´∆V “ 0 is given by V px, y, zq “ a

r
` b with a “ R1R2pV1 ´ V2q

R2 ´ R1

and b “ R2V2 ´ R1V1

R2 ´ R1

as

shown in Fig. 7.

In Table 7, we report the errors and convergence orders using the straightforward approximation
(the Dirichlet condition is directly involved in the mean value over the face) while we report
in Table 8 the errors and convergence orders using the correction proposed in section 3.2.3.
Alike the two-dimensional case, the poor approximation of the boundary ruins the efforts of
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Fig. 7. Numerical approximation of the electrical potential between two spheres.

the polynomial reconstruction to achieve high accuracy whereas the corrected version recover
the optimal orders.

Table 7
L1 and L8 errors and convergence rates for the three-dimensional case using the straightforward
method for the Dirichlet condition

Nb of P1 P3 P5

Cells err1 err8 err1 err8 err1 err8

2924 5.19E-01 —- 9.11E-01 —– 6.41E-02 —- 3.17E-01 —- 2.24E-01 —- 7.83E-01 —-

7917 3.02E-01 1.63 5.87E-01 1.32 2.52E-02 2.81 1.59E-01 2.07 8.77E-02 2.82 2.96E-01 2.93

17901 1.96E-01 1.59 4.30E-01 1.15 1.27E-02 2.52 7.72E-02 2.66 4.39E-02 2.54 9.15E-02 4.32

31976 1.50E-01 1.38 3.06E-01 1.75 7.47E-03 2.75 4.33E-02 2.99 2.33E-02 3.28 5.90E-02 2.27

Table 8
L1 and L8 errors and convergence rates for the three-dimensional case using the correction method
for the Dirichlet condition

Nb of P1 P3 P5

Cells err1 err8 err1 err8 err1 err8

2924 4.17E-01 — 8.34E-01 — 3.94E-02 — 2.77E-01 — 1.55E-01 — 5.60E-01 —

7917 2.06E-01 2,1 5.20E-01 1,4 1.07E-02 3.9 9.47E-02 3.2 7.33E-03 9.2 2.89E-02 8.9

17901 1.21E-01 1,9 3.27E-01 1,7 3.50E-03 4.1 2.90E-02 4.4 1.17E-03 6.8 4.54E-03 6.8

31976 8.11E-02 2,1 2.40E-01 1,6 1.72E-03 3.7 1.40E-02 3.8 4.11E-04 5.4 1.73E-03 5.0
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4.7 A real test case: the micro-tip problem

To end the section we propose a concrete example and assess the efficiency of the new polyno-
mial reconstruction detailed in section 3.4.1. The micro-tip is the main piece in Atomic Force
Microscopy (AFM) set-up [26]. Fig. 8 left panel represents a general view of the micro-tip while
the middle panel shows a zoom of the tip extremity which is the critical part of the piece.
We aim at computing the electrostatic field since electrostatic interactions at the nano-scale
are among those of greatest strength and longer interaction distance, compared to the other
relevant forces such as van der Waals and capillarity [27]. We use a realistic model based on the
Poisson equation to reproduce the electrostatic interaction in AFM working conditions [28].

ΓN

Γ0

Γ1

Ωa

Ωd

Γ

Fig. 8. The micro-tip.

Fig. 8 right panel sketches a longitudinal cut of the three-dimensional computational domain Ω
constituted of air (domain Ωaq and a dielectric (domain Ωd). The boundary is partitioned into
Γ0 where we prescribe the null voltage condition, Γ1 where we prescribe the bias voltage while
we have an homogeneous Neumann condition on ΓN since no current crosses the boundary. The
model then writes

´∇ ¨ pε∇V q “ ρ

with V the electrical potential, ρ the charge density, ε the dielectric coefficient and E “ ´∇V

the electric field. We prescribe

V “ 0 on Γ0, V “ Vb on Γ1, ∇V ¨ n “ 0 on ΓN , εa “ 8.85 10´12, εd “ 10εa.

We here highlight the two main difficulties of the exercise: the dielectric coefficient is discon-
tinuous at the interface Γ which shares the two domains and the tip extremity is spherical
hence the boundary condition is not supported by the polyhedral mesh boundary. To overcome
the difficulties, we have applied the techniques tested in section 4.3 and section 4.6. Numerical
simulations have been carried out with a 88645 tetrahedra mesh where the tip extremity has
been locally refined. Fig. 9 displays the electrical potential (left panel) and the electrical field
(right panel) for a bias Vb “ 25V .

To assess the performances of the improvements proposed in section 3.4, we have computed the
electrical potential following two different methods. Method M1 uses the fast reconstruction
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Fig. 9. The electrical potential (left) and electrical field (right) around the tip.

where polynomial functions are pre-calculated at the Gauss points (see section 3.4.1) and used
the preconditioning matrix proposed in section 3.4.2. Method M2 is the original (or former)
method where we recompute all the polynomial coefficients while the preconditioning matrix
is based on an ersatz of Patankar matrix (see [18]). Table 9 provides the computational time
(in second) and the number of iterations for both the methods using the P1, P3 and P5 re-
constructions. Numerical simulations are carried out with three levels of meshes: very coarse,
coarse and fine to evaluate the computational performances. Notice that method M2 with the
P5 reconstructions has fail (the GMRES procedure does not converge) or the computational
time is too large.

Table 9
Computational time (in seconds) and number of iterations between the M1 (improved) and the M2

(original) method.

Nb of P1 P3 P5

Cells M1 M2 M1 M2 M1 M2

time iter time iter time iter time iter time iter time iter

3663 3 51 98 215 15 105 181 288 38 200 — —

11339 13 75 361 237 27 147 711 340 112 237 — —

22590 55 93 697 311 65 183 1263 512 204 321 — —

Clearly, the new version requires three or four times less iterations to converge (the residual
norm in the GMRES method is lower than 10´10) and the computational time is cut by ten or
more. We also observe that the computational effort of the new method is less sensitive to the
polynomial degree in comparison with the original method. Notice that we do not have taken
advantage of the high capacity of parallelization of the scheme (each evaluation of the flux is
independent) which will provide very good speed-up.
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5 Conclusions

We have proposed several extensions of the sixth-order finite volume method initially developed
for two-dimensional geometries in [18]: an accurate method to prescribe the Dirichlet condition
on bended boundary for the two- and the three-dimensional case which provide the optimal
order; a new strategy to reduce the computational effort. Numerical tests have been carried to
assess the technique efficiency in particular the question of curved boundary has been tackled.
Extension of the method for the Stokes problem is the next step to demonstrate the versatility
and the competitiveness of very high-order finite volume methods.
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