Transmission de phonons acoustiques dans des cristaux phononiques asymétriques

Thu Trang NGHIEM THI 1* , Pierre-Olivier CHAPUIS 1* 1 Centre de Thermique de Lyon, CETHIL UMR 5008, Bât. Sadi Carnot, 9 rue de la Physique, INSA de Lyon, 69621 Villeurbanne cedex * (auteur correspondant : trang.nghiem@insa-lyon.fr, olivier.chapuis@insa-lyon.fr ) Résumé -Les propriétés de conduction thermique des solides cristallins dépendent de la géométrie des matériaux. Les phonons acoustiques transportent l'essentiel de la chaleur : il est donc possible de contrôler les flux de chaleur si la dispersion de ces phonons est modifiée. Nous montrons que pour un réseau périodique bidimensionnel de triangles creux dans une matrice de silicium la conduction n'est plus isotrope. Nous déterminons aussi les directions privilégiées lorsque les phonons traversent un réseau périodique de triangles, un phénomène mis à profit pour la « rectification acoustique ». 

Nomenclature

Introduction : vers la rectification thermique dans les cristaux phononiques

Au cours des dernières années, les cristaux phononiques ont attiré l'attention dans le domaine acoustique [1] et thermique [2]. Ce sont des structures périodiques bidimensionnelles ou éventuellement tridimensionnelles, composées de deux matériaux différents dont les constantes élastiques et/ou les densités volumiques ne sont pas identiques (voir Figure 1). De nombreux travaux sur ces cristaux analysent les structures de bandes en fonction des paramètres géométriques. L'intérêt principal de ces matériaux est qu'il est possible de choisir le motif et la taille des éléments afin de créer des gammes de fréquences permises ou interdites, pour lesquelles aucune onde élastique ne peut se propager, quels que soient la polarisation et le vecteur d'onde [3][4]. 

M X 

Le contrôle de la propagation des ondes acoustiques dans les structures périodiques est très prometteur pour les technologies de filtrage et de guidage en acoustique [5][6][7]. Des configurations géométriques similaires à ces cristaux phononiques ont aussi été proposées pour la réalisation de diodes thermiques ou acoustiques, analogues à la diode électronique familière [8][9]. Il s'agit de concevoir un dispositif à deux terminaux qui transmet le signal plus favorablement dans une direction que dans la direction opposée : il y a alors rectification. Il est possible de rectifier les ondes acoustiques (phonons cohérents) [10][11] ou la chaleur (phonons incohérents) [12][13]. Cette application requiert alors une structure de dimension finie. La rectification thermique par les phonons acoustiques pourrait avoir lieu prioritairement à basse température, car les longueurs d'onde des phonons thermiques doivent être proches des dimensions envisagées. A température ambiante, la longueur d'onde maximale des phonons thermiques  max est de l'ordre du nanomètre mais, aux basses températures,  max est inversement proportionnelle à la température (suivant une loi de Wien pour les phonons) et peut atteindre plusieurs dizaines de nanomètres. Les effets de dispersion atomique sont négligés dans la suite car ils sont faibles à basse température.

Le principe de ce travail est de comparer la transmission via les cristaux dans les deux sens. Il paraît intéressant d'observer si l'onde envoyée vers le côté des triangles est plus réfléchie que l'onde envoyée vers le sommet : il a été montré en acoustique [9] que la transmittivité est bien différente dans ces deux cas. Cette conclusion est possible lorsqu'une seule direction de propagation est considérée. Si nous excitons tous les angles de transmission, nous observons des composantes de l'onde diffractée à des angles différents de l'angle d'incidence. A.A. Maznev et al. [14] ont rappelé théoriquement que la matrice des coefficients de réflexion-transmission est symétrique (S ij = S ji ), et que la « rectification acoustique » dans des systèmes linéaires n'est donc qu'un effet de filtrage. Créer une diode thermique n'est possible qu'en utilisant des systèmes non-linéaires.

Dans la suite, nous calculons la dispersion des ondes acoustiques pour un cristal bidimensionnel de triangles creux dans une matrice de silicium et en déduisons le flux de chaleur associé dans les directions principales du cristal. Ensuite, nous observons la possibilité de l'utilisation des cristaux dans un but de filtrage. Nous concevons alors des expériences numériques de transmission dans le domaine temporel en discrétisant les équations de l'acoustique linéaire sous forme d'éléments finis, dans un logiciel commercial, pour une ligne de triangles. La transformée de Fourier spatio-temporelle est alors appliquée afin de déterminer numériquement les angles de diffraction. Contrairement à des travaux précédents, nous n'excitons pas uniquement les ondes acoustiques qui sont perpendiculaires à la direction périodique : les phonons excités thermiquement sont susceptibles de se propager dans toutes les directions. Ces travaux sont une première étape vers le design d'une expérience de rectification thermique dans ce type de structure.

Configuration étudiée et modèle physique 2.1. Configuration étudiée

La structure périodique infinie bidimensionnelle (x, y) est illustrée sur la Figure 1. Les mailles sont carrées de côté a=100 nm, de motifs creux triangulaires. Le facteur de remplissage est f = 20%. Pour la transmission par une structure finie (voir Figure 2), nous mettrons les cristaux triangulaires au milieu du système en silicium. La source et un détecteur sont placés à L S = 10a en distance du centre des triangles. Les conditions périodiques sont appliquées aux deux bords haut et bas du domaine. Des flux nuls sont imposés aux parois à droite et à gauche. 

Acoustique des milieux continus : équation des milieux élastiques linéaires

Propagation dans le domaine d'étude

La propagation des ondes élastiques dans un milieu linéaire solide est gouvernée par l'équation du mouvement et la loi de Hooke. Ainsi, on peut écrire :
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1 le tenseur des contraintes. En 2D, le champ de déplacement contient deux composantes u = (u x , u y ). Dans cette étude, nous présentons des résultats pour le silicium dans l'approximation isotrope. A l'aide des constantes C 11 et C 44 [START_REF] Auld | Acoustic fields and waves in solids[END_REF] (C 11 = 16,57×10 10 Nm -2 , C 44 = 7.692×10 10 Nm -2 ), nous définissons C 12 = C 11 -2C 44 comme proposé par [START_REF] Auld | Acoustic fields and waves in solids[END_REF].

Propagation dans le domaine absorbant -Perfectly Matched Layer (PML)

Les études dans les milieux finis requièrent une excitation avec une onde. Un problème peut se poser : lorsqu'on envoie régulièrement de l'énergie (portée par l'onde) dans une structure finie, elle s'accumule au cours du temps s'il n'y a pas de mécanisme pour l'absorber. Il convient donc de créer des couches absorbantes aux parois du domaine de simulation. Nous avons appliqué les conditions absorbantes PML [START_REF] Beranger | [END_REF][START_REF] Johnson | Notes on perfectly matched layers (PMLs)[END_REF]. Des couches situées aux parois absorbent totalement l'onde quand elle frappe l'interface entre la zone simulée et la couche absorbante, sans aucune réflexion. La démarche pour déduire l'équation de l'élasticité dans le domaine PML est détaillée en Annexe.

Transformée de Fourier et coefficients de transmission/réflexion

La transformée de Fourier (TF) est fréquemment utilisée pour analyser les signaux en acoustique et électromagnétique [START_REF] Alleyne | [END_REF]. Pour élucider les processus de transmission et de réflexion, la TF spatio-temporelle est employée [7,[19][20]. Pour un espace infini et un temps également infini, cette transformée s'écrit comme suit [20]:
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Nous excitons uniquement des modes de fréquence donnée et de polarisation connue. En nous limitant à un domaine spatial typique, nous intégrons sur une période T. La TF devient : Grâce à cette relation, le flux thermique, qui traverse les cristaux le long de l'axe x, est calculé suivant l'expression :
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où v g est la vitesse de groupe, ω est la fréquence correspondant au vecteur d'onde
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est la fonction de distribution de Bose-Einstein choisie dans ce cas-test à T = 300 K, k B est la constante de Boltzmann, et α = arctan(k y /k x ) est l'angle entre g v et l'axe des x. a = 100 nm est la dimension de la maille élémentaire.

Dans l'état stationnaire sans excitation, il est évident que le flux est nul puisque la température est homogène. Pour voir l'influence de la constitution du cristal, seuls les vecteurs d'onde positifs sont pris en compte. La Figure 3b représente les flux dans les trois directions [10], [01] et [11] en fonction du facteur de remplissage. Il est remarquable que le flux J 11 est le plus important que les flux J 01 et J 10 , qui sont très proches. Cela montre que le flux est plus favorable selon la direction où il y a plus de matière.

Domaine fini : transmission de l'onde en incidence normale

Nous considérons maintenant le domaine fini de la Figure 2. Nous excitons le domaine avec une onde longitudinale en incidence normale (perpendiculaire à la direction périodique), donc u x = Acos(ωt), u y = 0, où A est l'amplitude de l'onde. La pulsation d'excitation
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, où v est la vitesse du son dans le silicium, et N ω est un facteur numérique. Dans le domaine phononique, la fréquence doit être proche de la taille des éléments et ce facteur N ω est donc utilisé pour faciliter la normalisation. Nous avons choisi N ω =2,5, en conséquence la longueur d'onde est =2,5a = 40 nm.

Lorsque l'onde atteint le cristal, une partie est réfléchie vers la source, et une autre se propage de l'autre côté du cristal. Ces ondes secondaires peuvent être diffractées vers différentes directions selon la loi de Bragg : Afin d'observer plus finement la diffraction par le cristal, nous effectuons la TF spatiotemporelle. Les cartographies des transformées des composantes u x et u y sont présentées dans la Figure 6 (vue dans l'espace réciproque). Les cercles représentent les iso-vecteurs d'onde pour les ondes longitudinale (k longitudinal =ω/v longitudinale ) et transverse (k transverse =ω/v transverse ). Comme la vitesse longitudinale v longitudinale est plus importante que v transverse , le cercle intérieur correspond à k longitudinal et le cercle extérieur correspond à k transverse . Sur la Figure 6a, l'onde incidente est représentée par le point à droite sur le cercle longitudinal, qui montre la propagation selon la direction positive. Sur ce cercle, les points en k x négatif illustrent les ondes diffractées : le point au milieu est associé à l'onde réfléchie (ordre 0), les deux points pour lesquels le rapport |k y /k|  1/2,5 sont associés aux diffractions d'ordres ±1, les deux points plus éloignés de l'axe et de rapport |k y /k|  2/2,5 sont associés aux ordres ±2. Comme ces ondes se propagent vers la direction négative en x, elles sont représentées par des points de k x négatif. Il est intéressant de remarquer que des ondes diffractées sont aussi présentes sur le cercle extérieur, qui signifie qu'elles sont de polarisation transverse. Ceci montre l'effet de conversion de polarisation dû au réseau triangulaire. Les ondes transverse et longitudinale de même ordre de diffraction ont la même composante k y : ces ondes diffractées respectent donc bien la loi de Snell [START_REF] Auld | Acoustic fields and waves in solids[END_REF].



Les ondes diffractées qui ont traversé la structure, et sont donc situées de l'autre côté des triangles, sont observées sur les points en k x positif (Fig. 6c,d 

Domaine fini : transmission de l'onde en incidence oblique

Contrairement aux travaux précédents, nous voulons calculer et comparer le coefficient de transmission également pour les ondes en incidence oblique. Les directions d'incidence doivent être définies théoriquement par la loi de Bragg, car la périodicité du réseau impose des contraintes : u(x, y) = u(x, y ± a). Les expressions des composantes d'une onde en incidence oblique qui satisfait les conditions périodiques s'écrivent :
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Nous présentons des résultats pour des ondes issues de la droite cette fois-ci, avec un angle d'incidence qui est choisi égal à un des angles de diffraction présenté précédemment. Pour ce cas, l'onde est incidente vers le sommet des triangles dans la direction x négative (voir Figure 7). Cette configuration permet de vérifier numériquement la réciprocité [13] comme indiqué dans l'introduction. Nous avons choisi l'angle  1  23.6°, et les composantes u x et u y sont définies par l'Equation 8. Les transformées normalisées par la TF de l'onde incidente correspondante sont présentées sur la Figure 7. En comparant les cartographies (a) et (b) de la Figure 7, on observe que les deux composantes sont réfléchies principalement vers la direction opposée. De l'autre côté des triangles, les ondes transmises obéissent à la loi de Bragg, mais différemment pour chaque composante. Les ondes transverses sont aussi présentes dans ce cas de l'incidence oblique. De plus, seule l'onde u x est diffractée en créant une onde de direction d'incidence normale, qui est représentée par le point sur l'axe k y = 0 (Figure 7c). Le taux de transmission de l'onde d'incidence oblique à  1  23.6° vers l'onde portée par l'axe Ox est donc significatif. Cela montre qualitativement que la transmission via cette structure satisfait aux conditions de réciprocité. Le taux de transmission t( 1 ,  0 ) des ondes peut être calculé à partir de ces données. Le même travail peut être effectué pour le vecteur de Poynting acoustique, qui porte l'énergie associée à l'onde.

Conclusion

Nous avons calculé la dispersion et le flux thermique dans des cristaux linéaires de motif triangulaire. Nous avons observé que le flux est plus favorable dans la direction dans laquelle la densité de matière est plus importante. Nous avons ensuite réalisé des simulations de transmission en envoyant des ondes acoustiques en incidence normale et également, pour la première fois, en incidence oblique. La transformée de Fourier spatio-temporelle nous permet d'observer les directions de diffraction. Nos résultats montrent qualitativement que la transmission via cette structure asymétrique satisfait aux conditions de réciprocité. C'est une étape importante vers les calculs quantitatifs, par exemple des taux de transmission t( 1 ,  0 ). L'objectif ultime de ce travail est de déterminer quelles sont les conditions pour qu'il y ait rectification thermique ; les mécanismes non-linéaires devront alors être pris en compte.

Annexe

Nous rappelons la dérivation de l'équation utilisée pour les zones absorbantes PML. L'équation du mouvement s'écrit 
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. Cette équation peut être alors être réécrite dans l'espace réel comme suit :
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Figure 1 :

 1 Figure 1 : (a) Exemple d'une structure périodique « cristal phononique » pour des trous triangulaires isocèles. Les vecteur a 1 et a 2 sont les vecteurs périodiques. (b) La première zone de Brillouin et trois points symétriques importants (0,0), X(1,0) et M(1,1).

Figure 2 :

 2 Figure 2 : La structure simulée contient ici deux rangées de cristaux. Les deux régions en bleu sont les couches absorbantes (voir section 2.2.2).

3. Résultats et discussions 3 . 1 .Figure 3 :

 313 Figure 3 : (a) Dispersion dans les cristaux phononiques de type triangulaire avec un facteur de remplissage de 20%. (b) Les flux de chaleur J dans les trois directions [10], [01] et [11] sont tracés en fonction du facteur de remplissage.

Figure 5 :

 5 Figure 5 : Images du champ de déplacement en régime stationnaire pour la composante u x (a) et de la composante u y (b). La flèche indique l'incidence et  est l'angle de diffraction.

Figure 6 :

 6 Figure 6 : Transformée de Fourier spatiale du champ de déplacement : diffraction dans l'espace réciproque. (a)-(b) représentent les TF spatio-temporelles normalisées dans la région où l'onde est incidente et réfléchie, (c)-(d) les TF dans la région où l'onde est transmise. (a) -(c) la composante u x ; (b)-(d) u y . Les traits pointillés jaunes permettent de surligner les directions importantes.

Figure 7 :

 7 Figure 7 : Diffraction vue dans l'espace réciproque : (a)-(c) la TF spatio-temporelle normalisée dans la région incidente et réfléchie (à droite du triangle), (b)-(d) la TF dans la région transmise (à gauche du triangle). (a) -(b) sont pour la composante u x ; (c)-(d) pour u y .

  zone PML, on introduit une nouvelle densité et de nouvelles constantes élastiques en gardant la même impédance acoustique Puisque nous cherchons une solution sous forme d'onde plane

  est un instant où le régime stationnaire est déjà établi ; a x -b x /2, a x +b x /2, a y -b y /2, a y +b y /2 sont les limites en x et y de la zone d'analyse choisie.
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