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Transfert thermique conductif balistique-diffusif

Pierre-Olivier CHAPUIS 1* , Yunxin WANG 1 , Nabil DJATI 1 1 Centre d'Energétique et de Thermique de Lyon, CETHIL UMR 5008, Bât. Sadi Carnot, 9 rue de la Physique, INSA de Lyon, 69621 Villeurbanne cedex * (auteur correspondant : olivier.chapuis@insa-lyon.fr ) Résumé -L'équation de transport de Boltzmann est l'outil requis pour le calcul du flux thermique dès que la conduction n'est plus diffusive. La résolution directe reste peu aisée et une étape d'approximation supplémentaire peut alors être effectuée : l'approximation balistique-diffusive. Celleci consiste notamment à résoudre deux équations couplées, l'une considérant l'émission des phonons par les frontières du domaine et l'autre l'interaction locale dans le milieu. Nous présentons des résultats pour la configuration monodimensionnelle, une première étape vers l'étude détaillée de constrictions thermiques en géométrie bidimensionnelle. 

Nomenclature

Introduction

Les porteurs de chaleur dans les milieux solides isolants électriquement sont principalement les phonons acoustiques [1]. A une échelle supérieure à leurs longueurs d'onde caractéristiques (de l'ordre de quelques nanomètres à température ambiante), les phonons peuvent être considérés comme des quasi-particules qui interagissent après un libre parcours moyen . Le nombre de Knudsen Kn est défini comme le rapport /D, où D est la taille caractéristique du milieu considéré : distance entre les parois d'un solide, taille d'un grain pour un matériau polycristallin, etc. Dans l'air, les porteurs de chaleur sont les molécules du gaz et le même nombre de Knudsen est défini. On s'intéresse ici à la transition entre le régime de conduction diffusive (Kn<<1) et le régime de conduction balistique (Kn>>1). Dans ce second régime, les porteurs de chaleur n'interagissent plus entre eux mais principalement avec les parois du domaine : la loi de Fourier est inapplicable. L'équation de transport de Boltzmann (BTE, sous son acronyme anglais) est alors utilisée pour calculer le champ de température dans les micro ou nanostructures. Elle permet de traiter les transferts d'énergie locaux, et aussi les transferts à distance, dits non-locaux ou balistiques. Il est cependant compliqué d'utiliser la BTE. Il est donc utile d'utiliser une approximation de cette équation qui soit pertinente pour les régimes balistique et diffusif.

On rappelle ici brièvement les étapes qui mènent à l'une de ces approximations : les « équations balistique-diffusives » (BDE) [START_REF] Chen | [END_REF][3][4][5]. L'énergie est séparée en deux composantes, dites balistique et diffusive. L'énergie balistique est calculée de manière simple (parfois analytique) et l'énergie diffusive est approchée grâce à la méthode des harmoniques sphériques dans l'approximation P1 [START_REF] Modest | Radiative Heat Transfer[END_REF]. Pour la condition aux limites, on utilise la condition dite de Marshak [START_REF] Modest | Radiative Heat Transfer[END_REF]. Le développement est effectué en régime permanent pour un libre parcours moyen fixé. On considère ici le transfert conductif dans le silicium en configuration monodimensionnelle. Ces calculs servent à valider les méthodes utilisées en comparant les résultats avec d'autres résultats publiés précédemment.

Dérivation des équations balistique-diffusive

Equation de Boltzmann

L'équation de transport de Boltzmann fait intervenir la fonction de distribution (quantité de particules dans un volume élémentaire et qui possède une quantité de mouvement donnée) hors équilibre notée , qui dépend de sept variables : est la position, est la quantité de mouvement du porteur de chaleur (par exemple pour une molécule de gaz, où m est la masse et la vitesse de la particule, ou pour un phonon, où est la constante de Planck et le vecteur d'onde) à l'instant t. La fonction de distribution permet de calculer le flux thermique et la densité volumique d'énergie locale . Les particules portent chacune une énergie élémentaire E( ) à une vitesse . En intégrant sur d 3 , on obtient les expressions suivantes :

(1)

Dans les cas des particules sans interactions, la fonction de distribution s'écrit sous la forme suivante en l'absence de force extérieure :

. Les collisions subies par les particules peuvent changer brutalement l'état d'une particule donnée avec une échelle de temps et d'espace infiniment petite. Cette expression est alors modifiée :

(3) où représente la variation de la fonction de distribution par unité de temps due aux collisions. Le terme de collision peut être exprimé dans certains cas sous une forme assez complexe. Dans divers domaines, il est courant d'introduire une approximation basée sur l'hypothèse qu'un gaz de particules libre dans une situation hors d'équilibre évolue asymptotiquement vers un état d'équilibre, les collisions étant responsables de ce retour à l'équilibre. On écrit alors :

(4) où τ( ) est le temps de relaxation pour retourner à l'équilibre du système. La fonction est alors une distribution d'équilibre locale. Le temps de relaxation est assimilé au temps de collision et dépend a priori de la vitesse des particules.

Approximation balistique-diffusive

L'approximation balistique-diffusive [2-5] consiste à séparer la fonction de distribution en deux composantes : une composante balistique, exprimée avec un indice b, et une composante diffusive, exprimée avec un indice m. Par conséquent, la fonction de distribution s'écrit :

(5) L'idée est qu'en régime purement balistique, une particule entre en collision avec la paroi chaude, puis est réfléchie et dirigée directement vers l'autre paroi, sans collision durant le parcours. On peut donc dire que la fonction de distribution balistique provient essentiellement de la frontière ou des sources de chaleur ; elle est « non-locale ». Les particules qui subissent un grand nombre de collisions après avoir interagi avec la première paroi ne vont pas être comptées dans la partie balistique, mais dans la partie diffusive. Elles sont considérées comme des porteurs diffusés ou émis à partir d'autres points internes. La distribution d'énergie de ces porteurs est censée être plus isotrope que celle des particules qui proviennent de la frontière et peut être considérée comme locale.

A l'aide de cette séparation, on peut exprimer le flux de chaleur et l'énergie interne en fonction des fonctions de distribution. En séparant la fonction de distribution en deux composantes, on sépare aussi le flux et l'énergie interne en deux composantes : (6) [START_REF] Majumdar | [END_REF] qui définissent donc la « température balistique » et la « température diffusive » , grandeurs cinétiques et non thermodynamiques (il n'y a pas nécessairement équilibre thermodynamique local), reliées à l'énergie interne via un constante de proportionnalité identifiée à une capacité calorifique (c). La seconde égalité de l'équation (7) permet de « mesurer » la quantité d'énergie balistique et la quantité d'énergie diffusive, et ainsi de les comparer entre elles. Pour des tailles importantes, on s'attend notamment à ce que la température balistique soit négligeable devant la température diffusive.

Flux balistique

Le flux issu des parois du domaine s'écrit [START_REF] Chen | [END_REF][3][4][5] :
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où f w est la fonction de distribution sur la paroi du domaine,  est le vecteur unitaire dans la direction du vecteur vitesse, et (s-s 0 ) est la distance entre le point courant r et la paroi dans la direction portée par  . ds est le déplacement élémentaire dans cette direction. Cette expression consiste à dire que la densité de porteurs f b dans une direction donnée est celle de la frontière pondérée par un facteur d'amortissement lié à la diffusion des porteurs le long du chemin qu'ils ont parcourus depuis la frontière. Dans le cas monodimensionnel, on peut réarranger cette expression et calculer directement le flux balistique reçu en fonction de l'angle entre la normale aux parois et  . Par exemple, le flux reçu en z>0 et issu de la face située en z=0 vaut alors : (9) où  est le libre parcours moyen : =  On s'intéresse ici au cas d'un « milieu gris », pour lequel est constant. On fait aussi l'hypothèse dans la suite que et sont des constantes.

Equations balistique-diffusive

La dérivation rigoureuse des équations balistique-diffusive est assez longue [5] et n'est pas reproduite ici. On en présente cependant la philosophie et les principales étapes. Il est important de noter que cette dérivation mène à deux équations. La première est une équation de conservation pour l'énergie balistique :

. ( 10 
)
On remarque que cette équation permet de calculer aisément la température balistique à partir du flux (7) lorsque l'on est en régime stationnaire :

. ( 11 
)
La seconde équation est une équation de conservation de l'énergie diffusive. Cette équation est obtenue grâce au développement de f m en harmoniques sphériques et à sa troncature à l'ordre 1 [5-6] : c'est donc une approximation importante. On obtient : (12) qui est une équation de Cattaneo-Vernotte pour l'énergie diffusive. Il a été montré que cette équation seule n'est pas satisfaisante pour représenter l'énergie totale du milieu [START_REF] Chen | [END_REF][3] : dans l'approximation balistique-diffusive, elle n'en représente qu'une partie. En combinant (10) et ( 12) avec l'équation de conservation de l'énergie, on obtient : (13) où représente une éventuelle source volumique de chaleur. Cette expression permet de relier la température diffusive et le flux balistique en utilisant la définition ( 7) : (14) Dans la suite, on ne considère que le régime permanent et on suppose que =0, d'où l'équation simple : (15) Dès que l'on a résolu l'équation différentielle (15), on est capable de déterminer le champ de température totale T=T b +T m .

Conditions aux limites pour le flux diffusif

L'expression (15) est une équation différentielle qui requiert des conditions aux limites pour la variable T m . Il a été montré dans [START_REF] Chen | [END_REF][3][4][5] que le flux diffusif à la paroi peut s'exprimer en fonction de et . En régime stationnaire, on obtient la condition de bord, appelée condition de Marshak [START_REF] Modest | Radiative Heat Transfer[END_REF] en rayonnement thermique : . ( 16)

Résultats dans la configuration monodimensionnelle

La Figure 1 présente les deux cas de conditions aux limites que nous étudions dans ce paragraphe : il s'agit d'un cas où la température de la paroi froide est égale à la température de référence T 0 et celle de la paroi chaude est supérieure de T=10 K (conditions aux limites asymétriques) et d'un autre cas pour lequel la température de la paroi froide est diminuée de T/2=5 K et celle de la paroi chaude est augmentée de ce même écart (conditions aux limites symétriques). Les calculs ont été effectués pour une distance D=3 m choisie arbitrairement. 

Conditions aux limites asymétrique et symétrique

Les profils de températures sont représentés sur la Figure 2 pour différentes valeurs du nombre de Knudsen Kn=/D. La Figure 2a (cas des conditions aux limites asymétriques) présente deux caractéristiques qu'il convient de souligner. D'une part, le profil de température n'est pas linéaire près de la paroi chaude, contrairement à la zone située près de la paroi froide (cercle pointillé). Lorsque le nombre de Knudsen augmente (cercle en trait continu), la température décroit de manière non-linéaire lorsqu'on observe le profil vers l'abscisse normalisée z=0,4. Pour les faibles nombres de Knudsen, la température peut également devenir légèrement supérieure à celle de la paroi chaude, un artefact dû à l'approximation balistique-diffusive ; l'effet de cet artefact peut cependant être amoindri si l'on diminue la taille de la maille. D'autre part, les profils de températures ne sont pas symétriques puisque toutes les courbes ne passent pas par l'origine (0,0) comme souligné par le cercle en traits discontinus. Il est intéressant de comparer ces résultats au cas des conditions aux limites symétriques, car le profil de température de ce second cas est bien symétrique. Cependant, les zones près des parois ont cette fois-ci toutes deux un comportement qui n'est pas linéaire. a.

b. 

Flux thermique en fonction de Kn et approximation analytique simple

Nous avons calculé dans la Figure 3b le flux thermique en fonction du libre parcours moyen. Il s'avère que celui-ci peut être approché très aisément par l'expression suivante :
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Cette expression analytique est très simple. Il est souvent important de connaître également la température locale. La Figure 2 nous a montré que le profil de température calculé avec l'approximation balistique-diffusive est proche d'une courbe linéaire. [START_REF] Modest | Radiative Heat Transfer[END_REF] et [9], par exemple, ont aussi présenté des profils quasi-linéaires : il est donc intéressant de proposer une expression simple pour la température également. Ces profils de température sont nécessairement liés au flux thermique ; nous avons donc comparé les pentes des droites de la Figure 2 à une expression simple intuitée de l'Equation (1), qui est expliquée sur la Figure 4b. La Figure 4 présente les deux courbes des pentes des droites ajustées aux profils de températures de la Figure 2, et, en traits pointillés, la courbe intuitée. On constante tout d'abord que les pentes extraites de la Figure 2 valent plus que l'unité pour les faibles nombres a.

b.

de Knudsen : ceci est un artefact dû au décalage près des frontières sources de chaleur. On constate aussi que l'inflexion est supérieure pour les pentes extraites que pour l'expression intuitée ; cependant cette expression semble valable à 10% près. 

Temps requis pour atteindre le régime stationnaire

Nous avons comparé nos résultats en régime stationnaire à ceux obtenus par G. Chen et al. en régime transitoire pour des temps longs [3]. Il est intéressant de remarquer que les résultats de G. Chen obtenus après un temps adimensionné t* = t/= 100, où  est le temps de relaxation ( = v) sont encore assez éloignés de ceux du régime stationnaire. La Figure 5 permet d'observer la différence assez nette pour la configuration monodimensionnelle déjà présentée plus haut. Celle-ci peut s'expliquer en écrivant le temps caractéristique de diffusion habituel t diff = L 2 /a, où a = /c est la diffusivité thermique. Si l'on considère l'expression cinétique de la conductivité thermique  il s'avère que le temps caractéristique de diffusion peut alors être réécrit sous la forme : 

Figure 1 :

 1 Figure 1 : Configuration monodimensionnelle : les deux cas étudiés ont des conditions aux limites asymétrique et symétrique

Figure 2 :

 2 Figure 2 : (a) Profil de température normalisé pour un écart de température compris entre 0 et 10K par rapport à la température de référence. (b) Profil de température normalisé pour un écart de température symétrique compris entre -5 et 5K.

Figure 3 :

 3 Figure 3 : (a) Profil de flux thermique normalisé par c v T dans le cas des conditions aux limites asymétriques. Il y a un décalage près de la paroi chaude. (b) Flux thermique normalisé par le flux balistique limite, et comparaison avec l'expression analytique La Figure 3a permet également de rappeler que le flux balistique ( ) vaut = c v T/4 [8-9] lorsque la différence de température T est faible devant la température de référence T 0 (linéarisation de la différence des puissances quatrième des températures) [8].

Figure 4 :

 4 Figure 4 : (a) Pentes de la courbe du profil de température pour les cas symétrique et asymétrique et comparaison avec une expression analytique simple. (b) Expression analytique simple et son origine.

  qui fait clairement apparaître que l'établissement du régime diffusif peut être extrêmement long pour les faibles nombres de Knudsen. Ainsi, Kn=0,1 dans la Figure5et le régime stationnaire n'est pas atteint. Inversement, le régime stationnaire est atteint très rapidement en régime balistique, car il suffit d'à peine quelques vols balistiques des porteurs de chaleur pour que celui-ci soit établi.

Figure 5 :

 5 Figure 5 : Profil de température et composantes balistique et diffusive obtenues à l'aide d'une résolution des équations balistique-diffusive au bout d'un temps adimensionné t*=100 (G. Chen et al. [3]) et en régime stationnaire.
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