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Abstract—This paper deals with the problem of detection 
and diagnosis of induction motor faults. Using the fuzzy logic 
strategy, a better understanding of heuristics underlying the 
motor faults detection and diagnosis process can be achieved. 
The proposed fuzzy approach is based on the stator current 
Concordia patterns. Induction motor stator currents are 
measured, recorded and used for Concordia patterns 
computation under different operating conditions, particularly 
for different load levels. Experimental results are presented in 
terms of accuracy in the detection motor faults and knowledge 
extraction feasibility. The preliminary results show that the 
proposed fuzzy approach can be used for accurate stator fault 
diagnosis if the input data are processed in an advantageous 
way, which is the case of the Concordia patterns. 

 
Index Terms—Induction motor, fault detection, diagnosis, 

fuzzy logic, stator currents, Concordia pattern. 
 

I. INTRODUCTION 
 

There are many published techniques and many 
commercially available tools to monitor induction motors to 
ensure a high degree of reliability [1]. One of the most widely 
used techniques to obtain information on the health state of 
induction motors is based on the processing of the stator line 
current [2]. Typically, in the motor fault diagnosis process, 
sensors are used to collect time domain current signals. In recent 
years, the monitoring and fault detection of electrical machines 
have moved from traditional methods to artificial intelligence 
techniques (i.e. neural networks, fuzzy logics, and genetic 
algorithms). Such techniques require a minimum of intelligent 
configuration since no detailed analysis of the fault mechanism is 
necessary and no system modeling is required [3]. 

As experienced engineers often need to interpret 
frequently inconclusive measurement data, a fuzzy logic 
approach could be helpful in the handling of this kind of data 
to achieve a diagnosis task (e.g. detection of induction motor 
faults). In fact, fuzzy logics is reminiscent of human thinking 
processes and of natural language, enabling decisions to be 
made based on vague information. 
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Moreover, a fuzzy logic based system allows the 
transformation of heuristic terms into numerical values via 
fuzzy rules and membership functions. It is also able to 
approximate the complex relationship related to a diagnosis 
task. Fuzzy logics allows items to be described as having a 
certain membership degree in a set [4]. When conducting 
fault diagnosis, several situations may occur in which an 
object is not obviously “good” or “bad”, but may fall in 
between [5-7]. Considering that the interpretation of the 
condition of the induction motor is a fuzzy concept [8], 
researchers have proposed some fuzzy logic based diagnosis 
approaches in the past few years [9-22]. A major difficulty 
was the lack of appropriate processing of the fuzzy input data. 

This paper then describes the application of a fuzzy logic 
approach to the diagnosis of induction motor stator and phase 
conditions [23]. The proposed fuzzy approach is based on the 
stator current Concordia patterns. It uses pattern errors to 
overcome the effect of time-varying loads on the diagnosis 
process [24-25]. Experimental results on a 4-kW squirrel-cage 
induction motor are presented in terms of fault detection 
accuracy and knowledge extraction feasibility to highlight the 
generality of the proposed diagnosis approach. 

 

II.  THE CONCORDIA VECTOR APPROACH 
 

In three-phase induction motors, the connection to the 
mains does not usually use the neutral. Therefore, the mains 
current has no homopolar component. A two dimensional 
representation can then be used to describe three-phase 
induction motor phenomena. A suitable two dimensional 
representation is based on the current Concordia vector; 
sometimes erroneously called Park vector [26-27]. 

The current Concordia vector components (I, I) are a 
function of mains phase variables (Ia, Ib, Ic) as: 
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In ideal conditions, three-phase currents lead to a 
Concordia vector with the following components: 
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Where IM is the supply phase current maximum value and s 
is the supply frequency. 

The current Park components are calculated by the 
following expression: 
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Where s = ts represents the angle between the stator and the 
rotating reference frames. In a steady state, the current Park 
components are dc values and the locus in the d-q plane is a 
point (Fig. 1a) [28]. 
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On the contrary, the current Concordia vector is a circular 

pattern centered on the origin of the coordinates as shown in 
Fig. 1b. Due to language misuse, the Concordia vector is 
sometimes called Park vector. This is a very simple reference 
figure that allows the detection of abnormal conditions by 
monitoring the deviations of acquired patterns. 
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(a) Park pattern (point).   (b) Concordia pattern (circle). 
 

Fig. 1. Current patterns for ideal conditions. 
 

III.  EXPERIMENTAL SETUP AND AVAILABLE DATA  
 

A. Description of the Experimental Setup 
 

Figures 2 and 3 illustrate the experimental setup. It 
consists in a 4 kW, 220/380 V, 15/8.6 A, 50 Hz, 4 poles, -
connected squirrel-cage induction motor. A mechanical load 
is provided by a separate dc generator feeding a variable 
resistor. In order to allow tests to be performed at different 
load levels, the dc excitation current and the load resistor are 
both controllable. 
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Fig. 2. Structure of the experimental setup. 
 

 
 

Fig. 3. View of the experimental setup. 
 

The stator currents are sampled with a 1 kHz sampling 
rate and interfaced to a computer by a data acquisition board. 

 

 

B. Available Experimental Data 
 

The induction motor has been initially operated without 
faults in order to determine the reference current Concordia 
pattern corresponding to the supposed healthy motor (Fig. 4). 
This pattern differs slightly from the expected circular one, 
because the supply voltage is not exactly sinusoidal. Then, 
two kinds of experiments have been carried out. In the first 
one, stator voltages were unbalanced by adding a 0.2 p.u. 
resistance to one phase. The second experiment has 
concerned a stator open phase effect. The current Concordia 
patterns corresponding to these faulty conditions are shown in 
Fig. 4. The occurrence of a voltage unbalance or of an open 
phase manifest themselves in the deformation of the current 
Concordia pattern corresponding to a healthy condition. This 
deformation leads to an elliptic pattern whose major axis 
orientation is associated to the faulty phase. 



IV.  THE FUZZY DIAGNOSIS APPROACH 
 

Fuzzy systems rely on a set of rules. These rules, while 
superficially similar, allow the input to be fuzzy, i.e. more 
like the way humans tend to express their way of thinking. 
Thus, a power engineer might refer to an electrical machine 
as “somewhat secure” or a “little overloaded”. This linguistic 
input can be expressed directly by a fuzzy system. Therefore, 
the natural format greatly eases the interface between the 
engineer’s knowledge and the domain expert. Furthermore, 
infinite graduations of truth are allowed, a characteristic that 
accurately mirrors the real world, where decisions are seldom 
“crisp” [4]. 

Figure 5 schematically summarizes the fuzzy logic based 
diagnosis approach. 

 

A. Design of the Fuzzy Fault Detector 
 

The practical implementation of the Fuzzy Fault Detector 
(FFD), using the Concordia pattern, is shown in Fig. 6. The 
fuzzy diagnosis procedure is based on a suitable set of fuzzy 
rules, carried out both from the induction motor knowledge 
and the experiments (Fig. 4). 
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(a) Unloaded motor. 
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(b) Loaded motor. 
 

Fig. 4. Induction motor stator current Concordia patterns. 
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Fig. 5. Scheme of the fuzzy based diagnosis approach. 
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Fig. 6. Practical implementation of the fuzzy fault detector. 
 

1) Input-output variables. In this work, stator current 
Concordia patterns of healthy and faulty motor are used to 
compute the FFD input variables. These are defined as 
follows 
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Where Ph is the healthy motor stator current Concordia 
pattern “Healthy Pattern” that is considered as the reference. 
Pf is the faulty motor Concordia pattern or “faulty Pattern”. It 
is variable with operating conditions. For simplicity, only 
Negative (N), Zero (Z), and Positive (P) labels are considered 
for the input variables. Input variable e2 gives accurately the 
threshold between healthy and faulty conditions. 

With the proposed Fuzzy Fault Detector, there is no 
consideration of the diagnosis sensitivity to measurement 
errors. In fact, the use of these input variables (error signals) 
reduces the influence of measurement errors and therefore 
increases the robustness of the proposed approach against the 
system uncertainties. 

When an abnormality develops in the drive system, the 
induction motor current, torque and speed are typically 
affected in a periodic manner [1]. In the case of periodic 
disturbances, all three-line currents Ia, Ib, and Ic are 
simultaneously modulated with the fundamental frequency f0 
of the fault-induced oscillation of motor variables [29]. The 
value of the modulation depth (modulation index m) depends 
on the severity of the abnormality [30]. For the purpose of 
this study, the FFD output is modulation index severity ms 
(severity index) that should be able to assess the fault 
severity. In terms of linguistics variables, four conditions are 
taken for this variable: Zero (Z), Light (L), Medium (M), and 
High (H). 

For the input-output fuzzy sets, the membership functions 
are centered on suitable point and have been chosen as shown 
in Fig. 7. 

 

2) Extracted knowledge. Once the membership function 
forms have been determined, the fuzzy if-then rules can be 
derived. The list of the extracted rules is given in Table 1. The 
rules are observed to be in agreement with the working 
principle of the system. 
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Fig. 7. Membership functions. 
 

Table 1. Linguistic Rules. 
 

If e1 is and e2 Then ms is 

N N M 

Z N L 

P N M 

N Z H 

Z Z Z 

P Z M 

N P H 

Z P L 

P P H 

 

As an illustration: 
– If ( e1 is N and e2 is P) Then ms is H: This extracted 

rule suggests that when the error between a healthy pattern 



and a faulty one is negative and if this error increases, the 
output will apply a high severity index. This case corresponds 
in our experiment to an open phase for a loaded motor. 

– If ( e1 is P and e2 is N) Then ms is M: When the error 
between a healthy pattern and a faulty one is positive and if 
this error decreases, the output will apply a medium severity 
index. The fault severity is less significant than in the above 
situation In fact, this case corresponds in our experiment to a 
voltage unbalance of a loaded motor. 

– If ( e1 is Z and e2 is P or N) Then ms is L: Both 
patterns are equal but the error may increase or decrease. In 
this case, the output will apply a light severity index that 
indicates the presence of an incipient fault. 

These rules constitute one of the important improvements 
brought by the proposed approach according to the previously 
published works, even the neural networks approach [27] or 
the fuzzy one [22]. In fact, the proposed diagnosis scheme 
addresses the problem of fault detection in presence of an 
oscillating or position-varying load torque. 

 

B. Application and Results Analysis 
 

Figure 8 shows the FFD output (severity index ms) in 
different operating and load conditions. 

Figure 8a shows the FFD output (severity index) in the 
case of the induction motor running at no load and in normal 
conditions. It was theoretically predicted that, in normal 
circumstances, the severity index would be Zero (ms = Z). 
That is also the case for a loaded motor as it is shown by Fig. 
8b (ms = Z). The FFD was then tested in the case of a faulty 
motor. It is clear that the severity index increases not only 
with the occurrence of a fault (Fig. 8c – ms = L) but also 
depending on its severity (Fig. 8e and Fig. 8c). It is clear that 
an open phase is less severe than a voltage unbalance for an 
unloaded motor. Furthermore, the severity index is a good 
indicator to evaluate the influence of the motor load level on 
the occurred fault (Figs. 8d and 8f). For a loaded motor, an 
open phase is more severe (has a higher impact on the motor) 
than a voltage unbalance. Figure 9 shows the evolution of the 
values assumed by the severity factor according to the 
different tests carried out. 

These tests put into evidence that the FFD is a suitable 
diagnosis tool not only to detect the occurrence of a fault but 
also its severity. This fact is due to the choice of the severity 
index in terms of linguistic variables to monitor the motor 
condition. 

 

C. Discussion 
 

The proposed diagnosis method could be applied to any 
type of induction motors (small to high power motors). In 
fact, we just need to adapt the Fuzzy Fault Detector (FFD) 
normalization gains of the input-output universe of discourse 
to the motor power [8]. Moreover, the power supply quality 
will affect the pattern shape (e.g. hexagonal shape for a 
square-wave voltage supply) but the proposed approach that 
relies upon the difference between a healthy and a faulty 
pattern will still be valid. 
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(a) Healthy unloaded motor. 
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(b) Healthy loaded motor. 
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(c) Voltage unbalance - unloaded motor. 
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(d) Voltage unbalance - loaded motor. 
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(e) Open phase - unloaded motor. 
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(f) Open phase - loaded motor. 
 

Fig. 8. FFD output (ms) for different operating and load conditions. 
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(a): max of Figs. 8a and 8b, (b): max of Fig. 8e, (c): max of Figs. 8c, 
(d): max of Fig. 8d, (e): max of Fig. 8f. 

 

Fig. 9. Severity index evolution according to faults and loading conditions. 
 

V. CONCLUSIONS 
 

This paper is concerned by the problem of the detection 
and the diagnosis of induction motor faults. The proposed 
fuzzy approach is based on the stator current Concordia 
patterns. Induction motor stator currents have been measured, 
recorded and used for Concordia patterns computation under 
different operating conditions, particularly for different load 
levels. In fact, the proposed diagnosis approach addresses the 
problem of fault detection in presence of an oscillating or 
position-varying load torque. 

Experimental results have been presented in terms of 
motor fault detection accuracy and knowledge extraction 
feasibility. These results clearly indicate that the proposed 
fuzzy approach is able to diagnose not only the fault in case 
but also its severity. Moreover, it has been proved that this 
approach is both accurate and easy-to-implement. 

The proposed diagnosis method could be applied to any 
type of induction motors (small to high power motors). In 
fact, we just need to adapt the Fuzzy Fault Detector (FFD) 
normalization gains of the input-output universe of discourse 
to the motor power. Moreover, the power supply quality will 
affect the pattern shape (e.g. hexagonal shape for a square-
wave voltage supply) but the proposed approach that relies 
upon the difference between a healthy and a faulty pattern 
will still be valid. 
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