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Abstract:  This paper deals with the broken bars detection in 
induction motors. The hypothesis on which detection is based is that 
the apparent rotor resistance of an induction motor will increase 
when a rotor bar breaks. To detect broken bars, measurements of 
stator voltages and currents are processed by an Extended Kalman 
Filter for the speed and rotor resistance simultaneous estimation. In 
particular, rotor resistance is estimated and compared with its 
nominal value to detect broken bars. In the proposed extended 
Kalman Filter approach, the state covariance matrix is adequacy 
weighted leading to a better states estimation dynamic. Its main 
advantage is the correct rotor resistance estimation even for an 
unloaded induction motor. As part of this estimation process, it is 
necessary to compensate for the thermal variation in the rotor 
resistance. Computer simulations, carried out for a 4-kW four-pole 
squirrel cage induction motor, provide an encouraging validation of 
the proposed sensorless broken bars detection technique. 

 
Keywords: Induction motor, broken bars, rotor resistance, extended 
Kalman filter, simultaneous estimation. 

 
 
 
 
 
 
 

I. INTRODUCTION 
 

 Induction motors are a critical component of many 
industrial processes and are frequently integrated in 
commercially available equipment and industrial processes. 
Motor driven often provide core capabilities essential to 
business success and to safety of equipment and personnel. 
There are many published techniques and many commercially 
available tools to monitor induction motors to insure high 
degree of reliability uptime. In spite of these tools, many 
companies are still faced with unexpected system failures and 
reduced motor lifetime. Environmental, duty, and installation 
issues may combine to accelerate motor failure far sooner 
than the designed motor lifetimes. 
 Critical induction motor applications are found in all 
industries and include all motor horsepowers. 

It has been found that many of the commercial products to 
monitor induction motors are not cost-effective when 
deployed on typical low to medium horsepower induction 
motors. Advances in sensors, algorithms, and architectures 
should provide the necessary technologies for effective 
incipient failure detection [1-2]. 
 In this context, a variety of sensors could be used to 
collect measurements from an induction motor for the purpose 
of failure monitoring. These sensors might measure stator 
voltages and currents, air-gap and external magnetic flux 
densities, rotor position and speed, output torque, internal and 
external temperature, and case vibrations, etc. In addition, a 
failure monitoring system could monitor a variety of motor 
failures. These failures might include conductor shorts and 
opens, bearing failures, cooling failures, etc. It is apparent 
then that a failure monitoring system should be capable of 
extracting, in a consistent manner, the evidence of many 
possible failures from measurements from many physically 
different sensors [3-6]. 
 The actual trends for induction motors monitoring and 
diagnostics is achieved without thermal and mechanical 
sensors [7-8]. Therefore, based on the work initiated by Cho 
in [9], we have proposed a failure monitoring system 
combining the induction motor physical model with a 
minimum number of sensors. 
 To be specific about the proposed failure monitoring 
system, this paper deals with the broken bars detection in 
induction motors. The hypothesis on which detection is based 
is that the apparent rotor resistance of an induction motor will 
increase when a rotor bar breaks. To detect broken bars, 
measurements of stator voltages and currents are processed by 
an Extended Kalman Filter (EKF) for the speed and rotor 
resistance simultaneous estimation. In particular, rotor 
resistance is estimated and compared with its nominal value to 
detect broken bars. In the proposed EKF approach, the state 
covariance matrix is adequacy weighted leading to a better 
states estimation dynamic. Its main advantage is the correct 
rotor resistance estimation even for an unloaded induction 
motor. As part of this estimation process, it is necessary to 
compensate for the thermal variation in the rotor resistance. In 



fact, a difficulty with broken rotor bar detection is that a 
variation in the rotor temperature can cause significant 
variation in rotor resistance. In this case, the rotor resistance, 
so determined, must be referred and compared to the same 
temperature in normal operating point. 
 Several approaches have been proposed, in the available 
literature, for rotor resistance estimation [10-12]. The purpose 
of using and EKF approach is to improve the rotor resistance 
sensorless estimation using only stator voltages and currents 
measurements [13]. Moreover, the advantage of using stator 
currents as state variable is that they are directly measurable. 

 

II. THE INDUCTION MOTOR MODEL 
 

 Induction motors can be described by fifth order nonlinear 
differential equations with four electrical variables (currents 
and fluxes), a mechanical variable (rotor speed), and two 
control variables (stator voltages). In a-b axes fixed in the 
stator, one has 
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 a, b  =  stator index 

 u   =  stator voltage 

    =  stator flux 

 i   =  stator current 

 Rs (Rr)  =  stator (rotor) resistance 

 Ls (Lr)  =  stator (rotor) inductance 

 Lm   =  mutual inductance 

    =  total leakage coefficient 

 np   =  pole pair 

 J   =  rotor inertia 

 ff   =  friction coefficient. 
 

 The stator voltages and the states are 
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 One can consider a nonlinear system described by the 
following equations. 

   ,X f X U , 

  Y H X , 

 
where X(t) is a n-dimension state vector, U(t) is a m-
dimension control signal, and Y(t) is a p-dimension 
measurement vector. 

 

III. THE EXTENDED KALMAN FILTER THEORY 
 

 In this section, the extended Kalman filter theory will be 
briefly reviewed. The used filter is described by the following 
equations [13]. 

            , ,X t f X t u t t G t w t  ,       (3) 

       Y t h X t t v t , ,          (4) 

 

where 

 

 G(t) = state noise matrix 

 w(t) = state noise vector 

 v(t)  = measurement noise vector. 
 

 The state prediction is 
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where k is the sampling step. Using the medium value 
theorem, described by the following equation, 
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equation (5) can be expressed as follows. 
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where Ts is the sampling period. 

 
 The filter covariance matrix is given by 
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where the transition matrix is 

     k k eT F ks 1, ,           (9) 
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 (k + 1,k) can be linearized by the Taylor development as 
     k k T F ks  1 1, .          (11) 

 
 The state noise variance matrix is expressed by the 
following equation. 
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 The Kalman filter gain is 
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 The state estimation is 
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 The updated covariance matrix filter is then given by the 
following equation. 
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IV. APPLICATION TO THE INDUCTION MOTOR 
 

 The induction motor model described in section II is here 
used to apply the extended Kalman filter above reviewed. The 
state variables are selected as 

    X x x x x x x i i RT
a b a b r 1 2 3 4 5 6    . 

 
 The induction motor dynamic behavior is modeled as 
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 The measurement matrix is given by 
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 The Jacobean matrix, namely F, is deduced using (10). 
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V. SIMULATION RESULTS 
 

 The proposed estimation technique has been simulated on a 
4-kW squirrel cage induction motor whose ratings are 
summarized in the appendix. 
 The validity of the proposed estimation technique is well 
verified by simulations as illustrated by Figs. 1 and 2. It should 
be noticed that these results have been obtained for an unloaded 
induction motor, which is generally more difficult to achieve by 
classical methods such as those based on the active and reactive 
power consumption analysis [14]. 
 To be specific about broken bars monitoring, an abrupt 
stepwise on rotor resistance corresponds to a broken bar 
condition. This situation is also well identified by the proposed 
EKF technique as illustrated by Fig. 1. Moreover, broken bars 
affect not only the rotor resistance but also the magnetic flux 
leading to the decrease of the output torque capability (Fig. 3). 
 The rotor resistance is estimated with 1 and 3%-error. 
Further, the spread of successive estimates given with or 
without broken bars is such that this increase is unambiguous, 
even considering manufacturing nonuniformities in the rotor. 
In fact, apart from the thermal compensation problem, Fig. 4 
could, by itself, show that a broken bar is responsible for the 
increase in the rotor resistance because the proposed EKF 
technique provides estimates before and after bar breakage, 
which is not the case of the near least square error estimator 
proposed in [9]. The proposed estimator is quite sensitive 
even for no-load condition as also illustrated by Fig. 4. 
Moreover, the induction motor and the Kalman filter observer 
initial conditions are not identical but this situation does not 
affect the estimation process, which is not the case of the 
classical estimation methods particularly for unloaded 
induction motors [4]. 
 One difficulty with the rotor resistance estimation and the 
broken bars detection is that a variation in the rotor temperature 
can cause a significant variation in Rr. A thermal variation in Rr 
can be misinterpreted as, or mask the effect of, a broken bar [9]. 
Therefore, as part of the EKF estimation process, the thermal 
variation in the rotor resistance is compensated for by using the 
same approach developed in [7]. In fact, it is easy to monitor 
the rotor temperature from its resistance estimation and then 
its temperature dependence, which is given by 

 
 

Fig. 1. Unloaded induction motor rotor resistance estimation 
with 74% Rr stepwise at 0.7 s. 

 

 
 

Fig. 2. Unloaded induction motor rotor speed estimation 
with 74% Rr stepwise at 0.7 s. 



 
 

Fig. 3. Unloaded induction motor rotor flux estimation 
with rotor resistance 74% stepwise at 0.7 s. 

 

 
 

Fig. 4. Unloaded induction motor rotor flux estimation 
with 1% (one broken bar) to 2% (two broken bars) rotor resistance increase. 

  R R T 0 1  ,           (23) 

 

where 

 
 R0  =  resistance at reference temperature T0 = 25°C 
   =  resistance temperature coefficient 
 T  =  temperature increase. 

 
 Equation (23) provides a means for thermally 
compensating Rr. Assuming that this compensation works as 
planned, variations in the thermally compensated rotor 
resistance estimation can be attributed to broken bars alone. 
 For illustration, the Kalman filter capability to track 
exponential profile, modeling the rotor resistance thermal 
effect, has been tested. This is shown by Fig. 5. One can 
notice that the estimation accuracy is quite satisfactory for 
monitoring purposes. 

 
 

Fig. 5. Induction motor rotor resistance estimation 
with a rotor resistance exponential profile variation, for a load of 10 N.m. 

 

VI. CONCLUSION 
 

 This paper was devoted to the problem of broken bars 
detection in induction motors. The hypothesis on which 
detection is based is that the apparent rotor resistance of an 
induction motor will increase when a rotor bar breaks. To 
detect broken bars, measurements of stator voltages and 
currents are processed by an Extended Kalman Filter for the 
speed and rotor resistance simultaneous estimation. In 
particular, rotor resistance is estimated and compared with its 
nominal value to detect broken bars. In the proposed extended 
Kalman Filter approach, the state covariance matrix is 
adequacy weighted leading to a better states estimation 
dynamic. Its main advantage is the correct rotor resistance 
estimation even for an unloaded induction motor. Computer 
simulations, carried out for a 4-kW four-pole squirrel cage 
induction motor, provide an encouraging validation of the 
proposed broken bars monitoring technique. 

 

APPENDIX 
RATED DATA OF THE SIMULATED INDUCTION MOTOR 

 

 

 Rated values   Power     4   kW 
      Frequency    50   Hz 
      Voltage (/Y)   220/380  V 
      Current (/Y)   15/8.6  A 
      Speed     1440  rpm 
      Pole pair (np)    2 
 Rated parameters  Rs      1.150   
      Rr      1.100   
      l      0.013  H 
      M      0.203  H 
 Constants         0.004  1/°C 
      J      0.042  kg.m2 

      ff      0.032   IS 
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